Química Inorgânica Experimental Roteiros de Práticas - Grupo 14

Disciplina de Química Inorgânica Experimental

Prática 1: Síntese e propriedades de compostos de carbono e silício

1. Objetivos

- Sintetizar o dióxido de carbono (CO₂) e o dióxido de silício (SiO₂).
- Comparar as propriedades físicas e químicas (principalmente a reatividade frente à água) dos óxidos de carbono e silício.

2. Materiais e Reagentes

- Tubos de ensaio e estante para tubos
- Pipetas de Pasteur e pipetador
- Béquer de 50 mL
- Bastão de vidro
- Tela de amianto e tripé
- Bico de Bunsen
- Papel indicador universal
- Carbonato de cálcio (CaCO₃ mármore)
- Solução de ácido clorídrico (HCl) 6 mol/L
- Solução de hidróxido de cálcio (Ca(OH)₂) 0,02 mol/L (água de cal)
- Solução de silicato de sódio (Na₂SiO₃)
- Etanol (C₂H₅OH)
- Água destilada (H₂O)

3. Procedimento Experimental

Parte A: Obtenção e propriedades do CO₂

- 1. Adicionar uma pequena porção de CaCO₃ (mármore) em um tubo de ensaio.
- 2. Adicionar, com cuidado, cerca de 2 mL de HCl 6 mol/L.
- 3. **(CUIDADO: Efervescência)** Borbulhar o gás desprendido em um segundo tubo de ensaio contendo cerca de 3 mL de água destilada e algumas gotas de indicador universal. Anote o pH.

4. Borbulhar o gás (de A.1) em um terceiro tubo de ensaio contendo cerca de 2 mL de solução de Ca(OH)₂ (água de cal). Anote as observações.

Parte B: Obtenção da sílica (SiO₂)

- 1. Em um béquer de 50 mL, misturar 2 mL de solução de Na_2SiO_3 com 10 mL de água destilada.
- 2. Adicionar, gota a gota e sob agitação constante, 1 mL de HCl 6 mol/L. Observar a formação de um precipitado gelatinoso (ácido silícico).
- 3. Adicionar 5 mL de etanol (C_2H_5OH) para auxiliar na precipitação e agitar.
- 4. Deixar o precipitado decantar, descartar o líquido sobrenadante com cuidado (decantação).
- 5. Adicionar 10 mL de água destilada ao precipitado, agitar e decantar novamente para lavar o sólido.
- 6. Transferir o sólido (gel) para um tubo de ensaio e aquecer suavemente no bico de Bunsen para secar o material, obtendo a sílica (SiO₂).
- 7. Após esfriar, testar a solubilidade da sílica obtida em 2 mL de água destilada. Anotar as observações.

4. Questões

- 1. Escreva as equações químicas balanceadas para a obtenção do CO_2 e para a reação do CO_2 com a água de cal.
- 2. Com base no teste de pH (Parte A.3), qual o caráter (ácido, básico ou neutro) do CO₂ quando dissolvido em água? Escreva a equação da reação.
- 3. Escreva a equação química balanceada para a obtenção da sílica (SiO_2) a partir do silicato de sódio e HCl.
- 4. Compare a solubilidade em água e o aspecto físico do CO_2 e da SiO_2 em condições ambiente.
- 5. Explique a diferença de reatividade com a água dos óxidos de carbono e silício com base na estrutura e no tipo de ligação química de cada composto.

Prática 2: Estudo da reatividade do estanho e do chumbo metálicos com ácidos oxidantes e não oxidantes

1. Objetivos

- Comparar a reatividade dos metais estanho (Sn) e chumbo (Pb) frente a ácidos oxidantes (HNO₃) e não oxidantes (HCl, H_2SO_4).
- Identificar os produtos gasosos formados nas reações.
- Analisar o efeito da passivação na reatividade do chumbo.

2. Materiais e Reagentes

- 4 Tubos de ensaio e estante para tubos
- Pipetas de Pasteur e pipetador
- Limalha de estanho (Sn)
- Limalha de chumbo (Pb)
- Solução de ácido clorídrico (HCl) 6 mol/L
- Solução de ácido nítrico (HNO₃) 6 mol/L
- Solução de ácido sulfúrico (H2SO4) 6 mol/L

3. Procedimento Experimental

- 1. (Realizar na capela de exaustão!) Numerar 4 tubos de ensaio.
- 2. No Tubo 1: Adicionar uma pequena porção de limalha de Sn.
- 3. No Tubo 2: Adicionar uma pequena porção de limalha de Pb.
- 4. No Tubo 3: Adicionar uma pequena porção de limalha de Sn.
- 5. No Tubo 4: Adicionar uma pequena porção de limalha de Pb.
- 6. Aos Tubos 1 e 2, adicionar, com cuidado, 2 mL de HCl 6 mol/L. Aquecer brandamente no bico de Bunsen se a reação for muito lenta. Anotar as observações (desprendimento de gás, coloração).
- 7. Aos Tubos 3 e 4, adicionar, com cuidado, 2 mL de HNO₃ 6 mol/L. **(CUIDADO: Liberação de gás castanho tóxico)**. Anotar as observações.
- 8. (*Procedimento opcional, se houver tempo*) Em um novo tubo, adicionar uma porção de Pb e 2 mL de H₂SO₄ 6 mol/L. Observar a reatividade inicial.

4. Questões

- 1. O HCl é um ácido oxidante ou não oxidante? Qual é o agente oxidante na reação com os metais?
- 2. Escreva as equações químicas balanceadas para as reações do Sn e Pb com o HCl. Qual gás foi produzido? (Considere que Sn forma Sn^{2+} e Pb forma Pb^{2+}).
- 3. O HNO₃ é um ácido oxidante ou não oxidante?

- 4. Na reação do Sn e Pb com HNO_3 (Tubos 3 e 4), observou-se a formação de um gás incolor (que rapidamente reage com o oxigênio do ar formando um gás castanho, o NO_2) e, possivelmente, um sólido branco no caso do estanho. Escreva as equações balanceadas:
 - $Sn(s) + HNO_3(conc) \longrightarrow SnO_2(s) + NO_2(g) + H_2O(l)$
 - Pb(s) + HNO₃(conc) \longrightarrow Pb(NO₃)₂(aq) + NO₂(g) + H₂O(l)
- 5. (Relacionado ao opcional) O chumbo reage vigorosamente com H_2SO_4 6 mol/L? Pesquise sobre o fenômeno da "passivação" do chumbo em ácido sulfúrico e explique o que ocorre.
- 6. Com base nos experimentos e nos potenciais padrão de redução (pesquise-os), qual metal (Sn ou Pb) é mais reativo? Os resultados experimentais confirmam essa tendência?