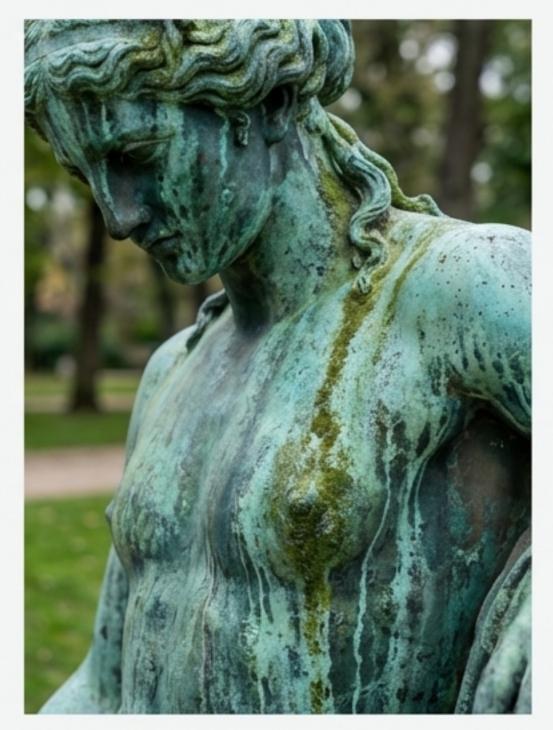
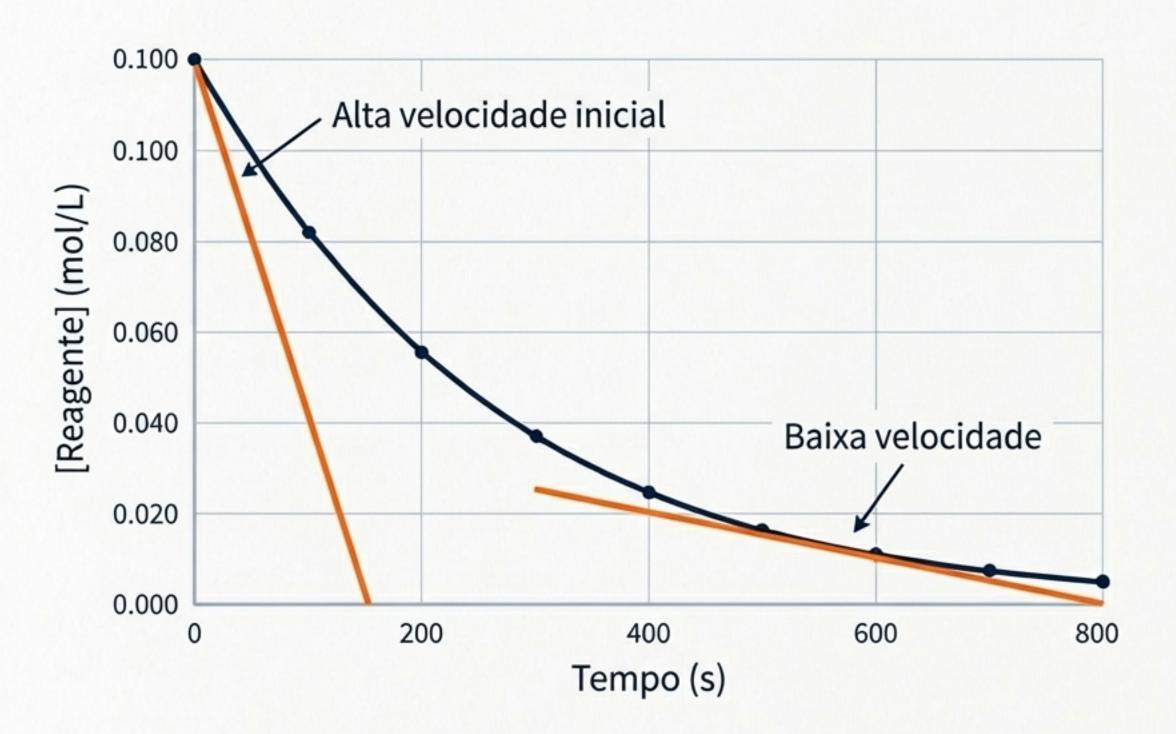


Nossa Rota para o Domínio


O Que é Cinética Química?

A Cinética Química estuda a **velocidade** das reações e os **mecanismos** (o caminho passo a passo) pelos quais elas ocorrem.

Termodinâmica diz se a reação é **possível**. Cinética diz **quão rápido** ela acontece.



Reação Rápida

Reação Lenta

Quantificando a Mudança no Tempo

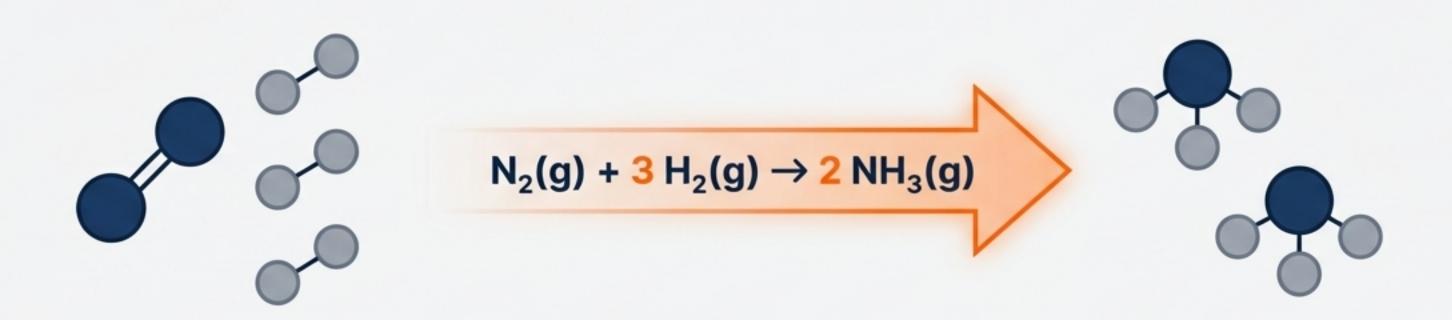
Velocidade Média:

A mudança em um intervalo.

$$\bar{v} = -\frac{\Delta[\text{Reagente}]}{\Delta t}$$

Velocidade Instantânea:

A velocidade em um momento exato. É a inclinação da tangente ao gráfico.


$$v = -\frac{d[\text{Reagente}]}{dt}$$

A velocidade da reação geralmente diminui com o tempo, pois os reagentes são consumidos.

Uma Velocidade Única para a Reação

Para a reação N₂(g) + 3 H₂(g) → 2 NH₃(g), a amônia é formada a 2/3 da velocidade com que o hidrogênio é consumido. Como reportar isso? Normalizamos pelos coeficientes estequiométricos para definir uma velocidade única:

$$V = -\frac{1}{1} \frac{d[N_2]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt} = +\frac{1}{2} \frac{d[NH_3]}{dt}$$

Posto de Controle 1: Calculando a Velocidade

Para a reação $C_4H_9Cl(aq) + H_2O(l) \rightarrow C_4H_9OH(aq) + HCl(aq)$, use os dados da tabela para calcular a velocidade média de consumo de C_4H_9Cl no intervalo de t=50,0 s a t=150,0 s.

Tempo, t (s)	[C ₄ H ₉ Cl] (mol/L)
0,0	0,1000
50,0	0,0905
50,0	0,0905
100,0	0,0820
100,0	0,0820
150,0	0,0741
200,0	0,0671
300,0	0,0549
400,0	0,0448
500,0	0,0368
800,0	0,0200
10.000	0

Resolução:

$$\bar{v} = -\frac{(0.0741 - 0.0905) \text{ M}}{(150.0 - 50.0) \text{ s}} = 1.64 \times 10^{-4} \text{ M/s}$$

Decifrando o Código: A Lei de Velocidade

$$V = K[A]^{X}[B]^{y}$$

v: Velocidade instantânea da reação.
Source Sans Pro Regular

k: A constante de velocidade.

Característica da reação e depende da temperatura. Source Sans Pro Regular [A], [B]:

Concentrações dos reagentes. Source Sans Pro Regular x, y: As ordens da reação.

Source Sans Pro Regular

As ordens de reação (x, y) são determinadas EXPERIMENTALMENTE e, em geral, NÃO são iguais aos coeficientes estequiométricos.

O Método Experimental das Velocidades Iniciais

Como determinamos x e y? Observando como a velocidade inicial muda ao alterarmos a concentração inicial de um reagente de cada vez.

Expt.	[BrO ₃ -] / mol L ⁻¹	[Br ⁻] / mol L ⁻¹	[H ₃ O ⁺] / mol L ⁻¹	v / mmol s ⁻¹	 1. Comparando Exp. 1 e 2: [BrO₃¹] dobra, v dobra. → A reação é de primeira ordem em [BrO₃⁻] (x=1).
1	0,10	0,10	0,10	1,2	2. Comparando Exp. 1 e 3: [Br⁻] triplica, v triplica.
2	0,20	0,10	0,10	2,4	 → A reação é de primeira ordem em [Br⁻] (y=1). 3. Comparando Exp. 2 e 4: [H₃O⁺] aumenta 1.5x, v aumenta 2.25x (1.5²).
3	0,10	0,30	0,10	3,6	
4	0,20	0,10	0,15	5,4	
					→ A reação é de segunda ordem em [H ₃ O ⁺] (z=2).

A Lei Decifrada: $v = k[BrO_3^-][Br^-][H_3O^+]^2$ Ordem global = 1 + 1 + 2 = 4.

Posto de Controle 2: Você é o Detetive

Utilize os dados experimentais da reação entre os íons amônio (NH_4^+) e nitrito (NO_2^-) para determinar a lei de velocidade completa e a ordem global da reação.

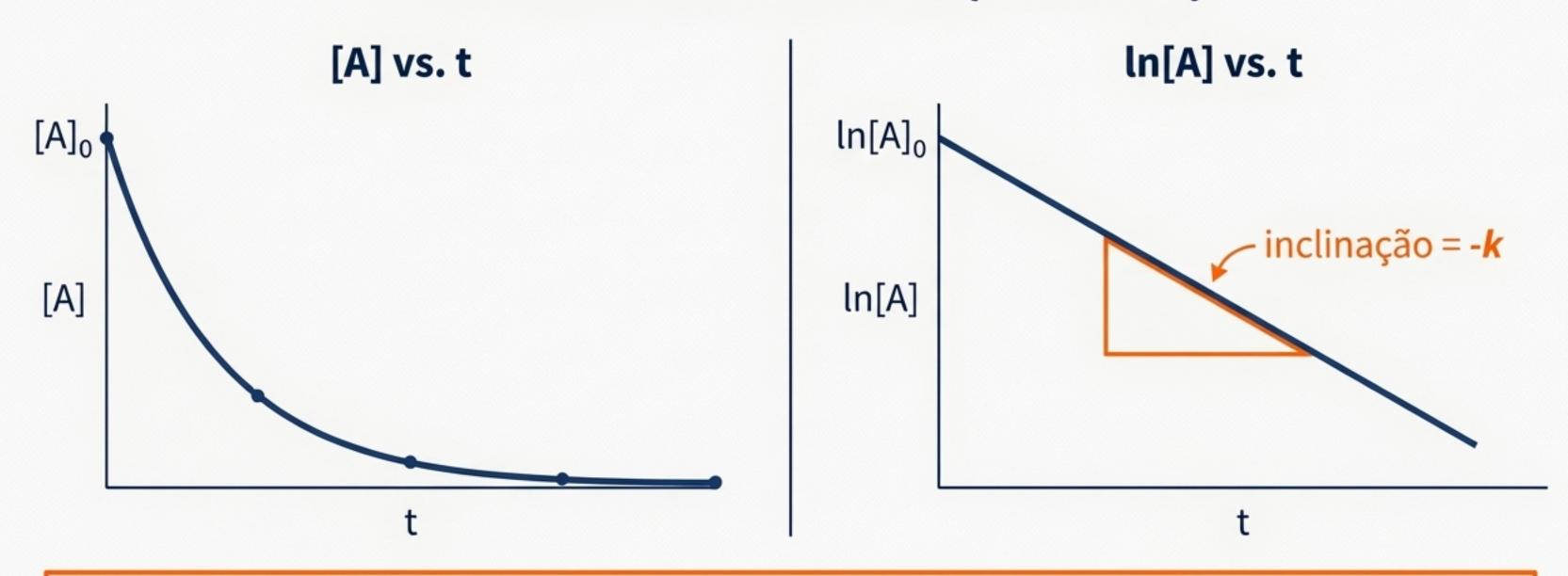
Número do experimento	Concentração inicial de NH ₄ ⁺ (mol/L)	Concentração inicial de NO ₂ - (mol/L)	Velocidades iniciais observadas (mol L ⁻¹ s ⁻¹)
1	0,0100	0,200	5,4 x 10 ⁻⁷
2	0,0200	0,200	10,8 x 10 ⁻⁷
3	0,0400	0,200	21,5 x 10 ⁻⁷
4	0,200	0,0202	10,8 x 10 ⁻⁷
5 0,200		0,0404	21,6 x 10 ⁻⁷
6	0,200	0,0606	32,4 x 10 ⁻⁷

A Máquina do Tempo: Leis de Velocidade Integradas

A lei de velocidade nos diz a rapidez *agora*. As leis integradas nos permitem calcular a concentração em *qualquer* tempo *t*. Elas transformam uma derivada em uma equação algébrica.

$$v = -\frac{d[A]}{dt} = k[A]^n$$

Velocidade Agora

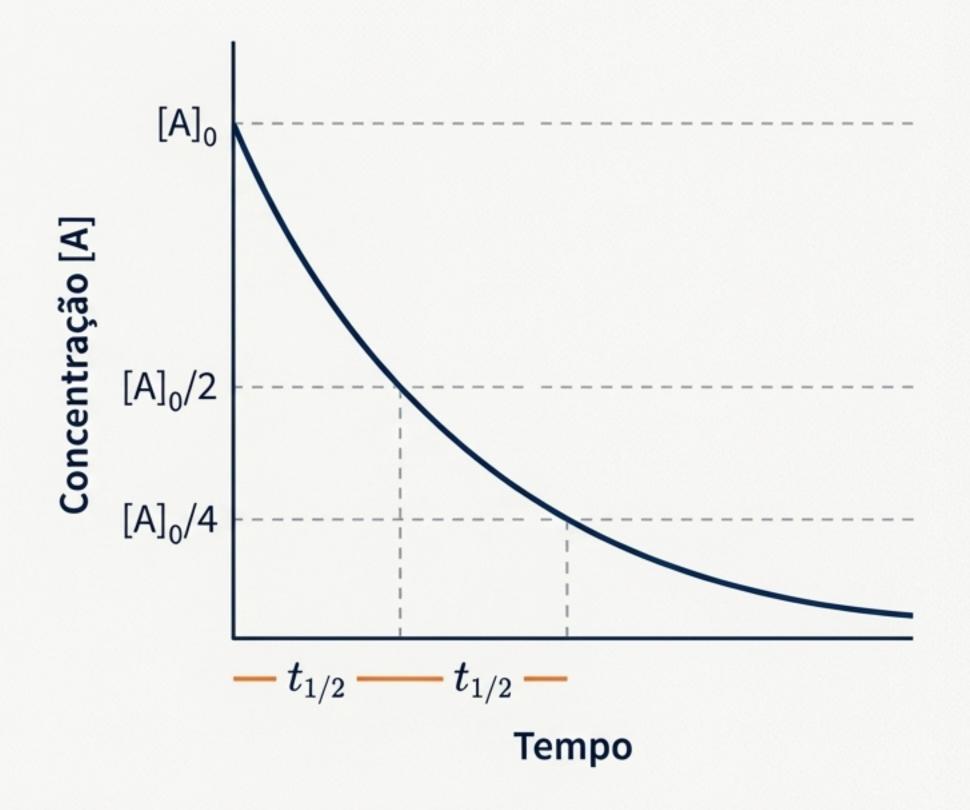


$$[A]_t = f(t)$$

Concentração no Futuro

Cinética de Primeira Ordem

Lei de Velocidade Diferencial: v = k[A]Lei de Velocidade Integrada: $ln[A]_t = -kt + ln[A]_0$



O gráfico de ln[A] versus tempo ser uma reta é a **prova** de que a reação é de primeira ordem. A inclinação da reta é igual a -k.

Meia-Vida de Primeira Ordem: O Relógio Constante

O tempo necessário para que a concentração de um reagente caia para metade do seu valor inicial.

$$t_{1/2}=rac{\ln 2}{k}pprox rac{0.693}{k}$$

Para reações de primeira ordem, a meia-vida é constante e INDEPENDENTE da concentração inicial.

Posto de Controle 3: O Decaimento em Ação

A decomposição do N₂O₅ é uma reação de primeira ordem com uma constante de velocidade k = 5,2 x 10⁻³ s⁻¹ a 45°C. Se a concentração inicial de N₂O₅ é 0,25 M:

- a) Qual é a meia-vida da reação?
- b) Qual será a concentração de N₂O₅após 3,0 minutos (180 s)?

$$t_{1/2} = 0.693/k$$

 $ln[A]_t = -kt + ln[A]_0$

Cinética de Segunda Ordem

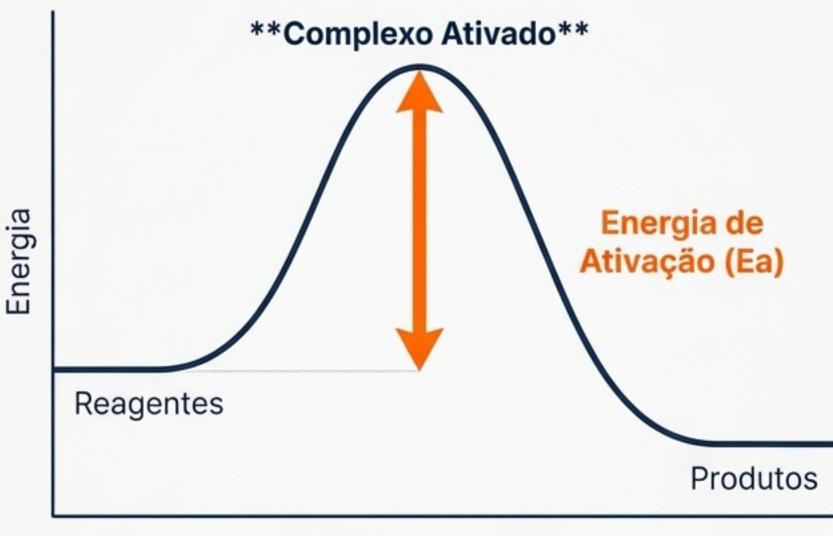
Lei de Velocidade Diferencial: $\mathbf{v} = \mathbf{k}[\mathbf{A}]^2$ Lei de Velocidade Integrada: $\mathbf{1}/[\mathbf{A}]_t = \mathbf{k}t + \mathbf{1}/[\mathbf{A}]_0$

A meia-vida depende da concentração inicial: $t_{1/2} = 1 / (k[A]_0)$. Conforme $[A]_0$ diminui, a meia-vida aumenta.

Posto de Controle 4: Qual é a Ordem?

A decomposição do dióxido de nitrogênio, $2 \text{ NO}_2(g) \rightarrow 2 \text{ NO}(g) + O_2(g)$, foi estudada a 300°C, e os dados de concentração versus tempo foram coletados. A reação é de primeira ou segunda ordem em relação ao NO_2 ? Determine a constante de velocidade k.

Tempo (s)	[NO ₂] (mol/L)
0	0.01000
50	0.00787
100	0.00649
200	0.00481
300	0.00380


Dica: Teste os dois modelos gráficos: $ln[NO_2]$ vs. t e $1/[NO_2]$ vs. t. Aquele que for linear revela a ordem.

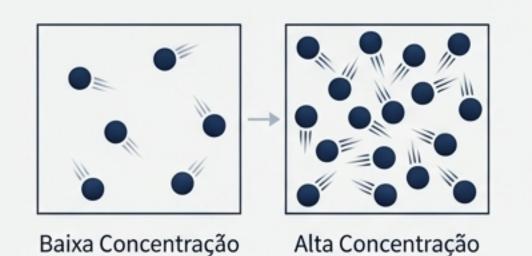
Assumindo o Controle: A Teoria das Colisões

Frequência

As moléculas precisam se chocar.

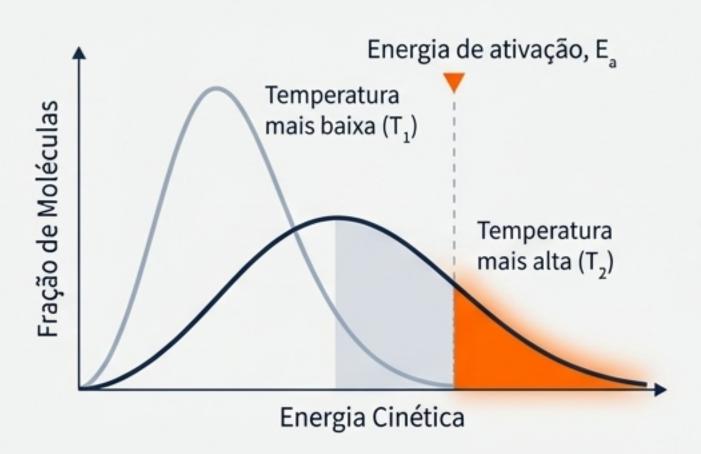
Energia Suficiente

A energia da colisão deve ser ≥ Ea.


Caminho da Reação

Alavancas 1 e 2: Concentração e Temperatura

Aumentando a Concentração / Superfície de Contato


Mecanismo: Aumenta a **frequência** de colisões.

Aumentando a Temperatura

Mecanismo: Aumenta a **energia cinética média**, fazendo com que uma fração maior de colisões tenha energia suficiente para superar a Ea.

Conexão Matemática: Equação de Arrhenius: $k = Ae^{-E_{\alpha}/RT}$ mostra a relação exponencial entre k e T.

ก NotebookLM

A Alavanca Mestra: Catalisadores

Um catalisador aumenta a velocidade da reação fornecendo um caminho reacional alternativo com uma Energia de Ativação (Ea) menor.

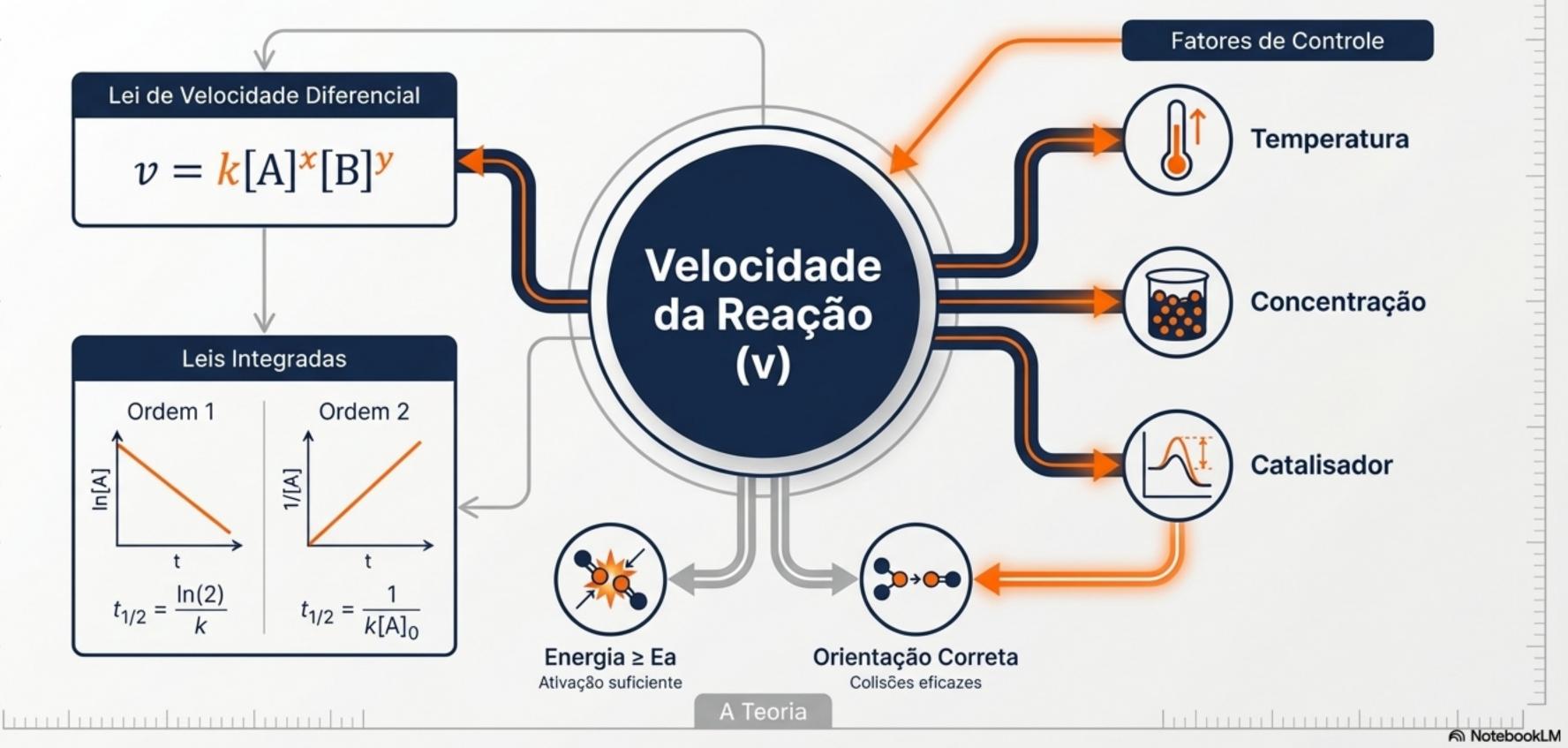
O catalisador não é consumido na reação global; ele é regenerado.

Source Sans Pro Homogêneos (mesma fase) e Heterogêneos (fase diferente, como catalisadores em carros).

Caminho da Reação

Posto de Controle Final: Controlando o Fogo

Considere a reação de combustão de lascas de madeira em uma fogueira. Usando os princípios da cinética química, descreva duas maneiras de **acelerar** a queima e duas maneiras de **desacelerá-la** (ou extingui-la). Explique sua resposta em nível molecular (em termos de teoria das colisões).


Possíveis Respostas:

Acelerar: Aumentar superfície de contato (usar lascas menores), aumentar temperatura (usar um acendedor), aumentar concentração de O_2 (ventar).

Desacelerar: Diminuir temperatura (jogar água), diminuir concentração de O₂ (abafar com areia).

Cinética Química: O Mapa Completo do Controle

