Ada Lovelace Biography

(1815–1852)

Topics

- Who Was Ada Lovelace?
- Early Years
- Personal Life
- Babbage and the Analytical Engine
- Legacy

Components: Arquimedes Mairon Pedro Samuel

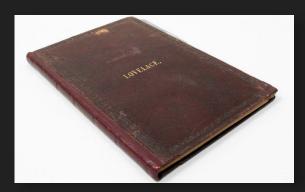
Date: 10/03/2020

Who Was Ada Lovelace?

The daughter of famed poet Lord Byron, Augusta Ada Byron, Countess of Lovelace — better known as "Ada Lovelace" showed her gift for mathematics at an early age. She translated an article on an invention by Charles Babbage, and added her own comments. Because she introduced many computer concepts, Lovelace is considered the first computer programmer. She died on November 27, 1852.

Early Years

Ada, born as Augusta Ada Byron on December 10, 1815, was the only legitimate child of the famous poet Lord George Gordon Byron. Lord Byron's marriage to Ada's mother, Lady Anne Isabella Milbanke Byron, was not a happy one. Lady Byron separated from her husband only weeks after their daughter was born. A few months later, Lord Byron left England, and Ada never saw her father again. He died in Greece when Ada was 8 years old.


Personal Life


In 1835, Ada married William King, who became the Earl of Lovelace three years later. She then took the title of Countess of Lovelace. They shared a love of horses and had three children together. From most accounts, he supported his wife's academic endeavors. Ada and her husband socialized with many of the interesting minds of times, including scientist the Michael Faraday and writer Charles Dickens.

Babbage and the Analytical Legacy Engine

Around the age of 17, Ada met Charles Babbage, a mathematician and inventor. The pair became friends, and the much older Babbage served as a mentor to Ada. Through Babbage, Ada began studying advanced mathematics with University of London professor Augustus de Morgan.

Ada's contributions to the field of computer science were not discovered until the 1950s. Her notes were reintroduced to the world by B.V. Bowden, who republished them in *Faster* Than Thought: A Symposium on Digital Computing Machines in 1953. Since then, Ada has received many posthumous honors for her work. In 1980, the U.S. Department of Defense named a newly developed computer language "Ada," after Lovelace.

					Diagram for the c	omp	atation	a by t	the E	ngine	of the	Num	bers o	f Ben	noulli	. See Note G. (pag	o 722 et seg	4)				
Newter of Operation.	Nature of Operation.	Variables acted upon,	Variables receiving results,	Indication of change in the value on any Variable.	Statement of Resolut.	Data				Working Variables.									Result Variables.			
						Y 0001	IV: 0002 2	1720004 W	\$ 0000 g		v. Oo o o	5-00-5	2.0000	24°0000	**©===	"Vu 0 0 0 0	5-000 e	Υ ₀ 0 0 0	T BefaadOg	20 By In a decimation of fraction.	0	1 0000 F
1 2 3 4 5	1, + +	${}^{1}V_{2} \times {}^{1}V_{3}$ ${}^{1}V_{4} - {}^{1}V_{1}$ ${}^{1}V_{5} + {}^{1}V_{1}$ ${}^{2}V_{5} + {}^{2}V_{4}$ ${}^{1}V_{11} + {}^{1}V_{2}$	ν _{ν_a}	$\begin{cases} \frac{1}{1} $	$= \frac{2}{3} = \frac{2}{3} = \frac{1}{3} = $	1	2		2 n 2 n - 1 0 	2 = 2 =+ 1 0 	2 =		-			$\frac{2n-1}{2n+1}$ $\frac{1}{2}\frac{2n-1}{2n+1}$	10 ala					
0 7 8	-	$v_{13} = v_{13}$ $v_{13} = v_{11}$ $v_{14} + v_{15}$	³ V ₃₀	$ \begin{cases} {}^{2}V_{11} = {}^{6}V_{11} \\ {}^{6}V_{12} = {}^{1}V_{12} \\ {}^{3}V_{8} = {}^{1}V_{3} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases} \\ \end{cases} \\ \begin{cases} {}^{1}V_{8} = {}^{1}V_{8} \\ {}^{1}V_{8} = {}^{1}V_{8} \end{cases} \end{cases}$	$= -\frac{1}{2} \cdot \frac{2^{n} - 1}{2^{n} + 1} = \Lambda_{0}$ = $\epsilon - 1 (= 3)$	1									 n - 1	0		$=\frac{1}{2}\cdot\frac{2n-1}{2n+1}-\lambda_n$				
9 10 11 12	+ × +	¹ V ₆ + ¹ V ₂ ¹ V ₂₁ × ³ V ₁₀ ¹ V ₁₀ + ¹ V ₁₀	9V ₁₁	$\begin{cases} i Y_2 = i Y_2 \\ i Y_1 = i Y_1 \\ i Y_4 = i Y_4 \\ i Y_{10} = i Y_{10} \\ \end{cases}$	$\begin{aligned} &=\frac{2n}{2}=\lambda_1\\ &=B_1,\frac{2n}{2}=B_1\lambda_1\\ &=-\frac{1}{2},\frac{2n}{2n+1}+B_1,\frac{2n}{2},\\ &=n-2(=2) \end{aligned}$		-				2 m	8 8 1			 	$\frac{\frac{2n}{2} - \lambda_1}{\frac{2n}{2} - \lambda_2}$	$B_1, \frac{2\pi}{2} = B_1 A_1$	$\left\{-\frac{1}{2},\frac{2n-1}{2n+1}+B_1,\frac{2n}{2}\right\}$	п,			
13 14 15 16 17 18 19 20 21 22 23	+ + × = + + × × +		1Y2 1Y4 1Y4 1Y4 1Y6 1Y7 1Y9 1Y9 1Y9 1Y9		$\begin{array}{l} y = 1 \\ z = 1 \\ z = 1 \\ -3 \\ -\frac{2 x - 1}{3} \\ -\frac{3 - 3}{3} \\ -x - 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 $		11111111111				2 = -1 2 = -1 2 = -1 	3 3 4 4 4 	11111				B ₂ A ₂ 0	$\left\{ A_{0}+B_{1}A_{1}+B_{2}A_{2}^{\prime}\right\}$		B.		
				1 C W - W 1	the state of the state of the state			1	lere foll	0 M S A PA	petition	of Ope	rations t	kirteen	60 EWEN	ty-three.						1
24		•Y ₀ +•Y ₁		$\begin{cases} {}^{4}\!Y_{13} \!=\! {}^{4}\!Y_{13} \\ {}^{6}\!Y_{16} \!=\! {}^{4}\!Y_{16} \\ {}^{1}\!Y_{16} \!=\! {}^{4}\!Y_{16} \\ {}^{1}\!Y_{16} \!=\! {}^{4}\!Y_{16} \\ {}^{4}\!Y_{16} \!=\! {}^{4}\!Y_{16} \\ {}^{4}\!Y_{16} \!=\! {}^{6}\!Y_{16} \\ {}^{4}\!Y_{17} \!=\! {}^{6}\!Y_{17} \\ {}^{4}\!Y_{16} \!=\! {}^{6}\!Y_{16} \\ {}^{4}\!Y_{17} \!=\! {}^{6}\!Y_{17} \\ {}^{4}\!Y_{16} \!=\! {}^{6}\!Y_{16} \\ {}^{4}\!Y_{17} \!=\! {}^{6}\!Y_{17} \\ {}^{4}\!Y_{17} \!=\! {}^{6}\!Y_{17} \\ {}^{4}\!Y_{17} \!=\! {}^{6}\!Y_{17} \\ {}^{4}\!Y_{17} \!=\! {}^{6}\!Y_{17} \\ {}^{6}\!Y_{17} {}^{6}\!Y_{17$	==+1=4+1=5	1	-	*+1			0	0										By

Skimming

O texto trata sobre a vida e o legado de Ada Lovelace

Cognatos

Computer - Computador Algorithm - Algoritmo Inventor - Inventor Academic - Acadêmico

Scanning

Quem era Ada Lovelace? Seus primeiros anos. Vida pessoal Babbage e a máquina analítica. Seu legado.

Key-Words

Ada Lovelace Algorithm Programmer Computer science

Falsos Cognatos

Programmer - Programador, parece programa Times - Tempo, parece times. Until - Até, parece útil Age - Idade, parece a age de "agir"

Palavras novas

Endeavors - Empreendimentos Husband - Marido

FONTES

https://www.biography.com/scholar/ada-lovelace