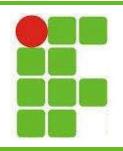
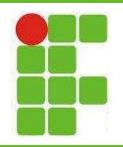

ALGORITMOS

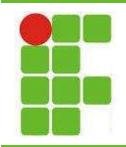
Professor: Diego Oliveira


Introdução à Lógica Matemática

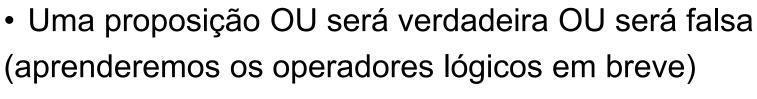


Proposições e Conectivos

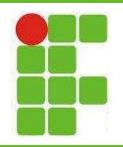
- Na área da Lógica o encadeamento de idéias é chamado de ARGUMENTO
- Dado que um ARGUMENTO é formado por uma seqüência de proposições/afirmações, o seu desfecho é chamado de CONCLUSÃO e os passos anteriores são as PREMISSAS
- A Lógica objetiva analisar se a CONCLUSÃO é uma conseqüência lógica das PREMISSAS



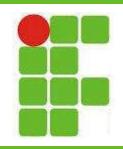
- A PROPOSIÇÃO é um conjunto de palavras que exprimem um pensamento dentro de certo contexto, podendo ser VERDADEIRO ou FALSO:
 - O IFRN é uma escola de ensino médio
 - O IFRN é uma escola de nível técnico
 - O IFRN é um instituto de ensino superior
 - O IFRN tem apenas o nível médio
 - O IFRN não tem apenas o nível técnico e médio



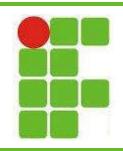
- Não são proposições:
 - Interjeições
 - Nossa, que prova difícil!
 - Ei!
 - Questões
 - Você vai almoçar na cantina hoje?
 - O que?
 - Frases Imperativas
 - Leia o livro que indiquei!
 - · Guarde o celular!



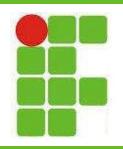
- Princípios das proposições:
 - IDENTIDADE
 - Uma poposição verdadeira é verdadeira, uma proposição falsa é falsa (0 e 1 no computador)
 - NÃO-CONTRADIÇÃO
 - Uma proposição não pode ser verdadeira e falsa simultaneamente
 - TERCEIRO EXCLUÍDO



- As proposições podem ser SIMPLES:
 - P = todo aluno é do IFRN
 - Q = todos os alunos são estudiosos
- Ou COMPOSTAS:
 - P = todo aluno é do IFRN e estudioso
 - Q = o ENEM foi difícil e muitos se deram mal

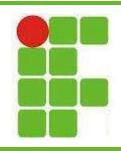


Conectivos


- Os conectivos da lógica são:
 - ~ (NÃO) na programação é !
 - ^ (E) na programação é &&
 - v (OU) na programação é ||
 - $-\underline{v}$ (OU exclusivo)
 - $-\Rightarrow$ (então)
 - $-\Leftrightarrow$ (se e somente se)

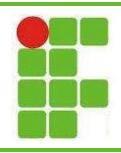


- Com mais de uma proposição podemos usar os conectivos e formar:
 - Conjunção: P ^ Q
 - Disjunção: P v Q
 - Disjunção Exclusiva: P v Q
 - Condicionais: $P \Rightarrow Q$
 - Bicondicionais: P ⇔ Q


- Proposições lógicas compostas podem se tornar complicadas a partir de certo ponto
- Essa ferramenta ajuda a identificarmos a conclusão de uma proposição composta
- Vejamos agora as tabelas-verdade dos conectivos já estudados juntamente com os exemplos no quadro para esclarecer as dúvidas

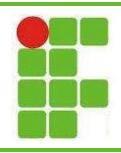
Vejamos agora a tabela do ^ (E):

Р	Q	R (P ^ Q)
V	V	V
V	F	F
F	V	F
F	F	F



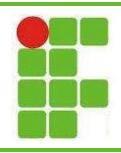
Vejamos agora a tabela do v (OU):

Р	Q	R (P v Q)
V	V	V
V	F	V
F	V	V
F	F	F



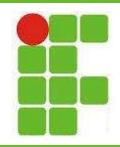
 Vejamos agora a tabela do v (OU EXCLUSIVO):

Р	Q	R (P <u>v</u> Q)
V	V	F
V	F	V
F	V	V
F	F	F



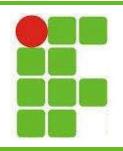
 Vejamos agora a tabela do ⇒ (CONDICIONAL):

Р	Q	$R (P \Rightarrow Q)$
V	V	V
V	F	F
F	V	V
F	F	V

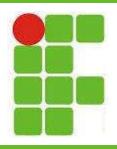


 Vejamos agora a tabela do ⇔ (BICONDICIONAL):

Р	Q	R (P ⇔ Q)
V	V	V
V	F	F
F	V	F
F	F	V



• Resumindo:


Estrutura Lógica	Verdadeiro Quando	Falso Quando
P^Q	Ambos são V	Um dos dois for F
PvQ	Um dos dois for V	Os dois forem F
P <u>v</u> Q	Apenas um for V	Ambos forem F ou V
$P \Rightarrow Q$	Nos demais casos	PéVeQéF
$P \Leftrightarrow Q$	P e Q forem iguais	P e Q forem diferentes

Exercício

- Faça uma tabela verdade para cada conectivo visto explicando suas proposições P e Q em formato textual também
- O formato textual precisa fazer sentido lógico em português
- Desenhe os respectivos conjuntos matemáticos

Perguntas?

