	+		
_		_,	
-			

			~	^				
INSTITUTO	FEDEDAI	DE EDIT		CIENCIA	E TEC	NOT OCTA	$\mathbf{DO} \mathbf{E}$	M
เมอนนบนบ	TEDENAL		ACAU.	CIENCIA	E IEC	NULUGIA	UUF	VIN.
			5 - 1					

CAMPUS: _____ CURSO: __

ALUNO:

DISCIPLINA: FÍSICA I

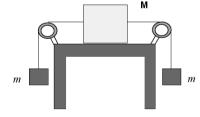
PROFESSOR: EDSON JOSÉ

Considere: $g = 10 \text{ m/s}^2$.

	30°	37°	45°	53°	60°	90°
sen	0,5	0,6	0,7	0,8	0,9	0
cos	0,9	0,8	0,7	0,6	0,5	1

Lista de exercícios 6

- 1. Um bloco de massa 8 kg é puxado por uma força horizontal de 20N. Sabendo que a força de atrito entre o bloco e a superfície é de 2N, calcule a aceleração a que fica sujeito o bloco.
- **2.** Um bloco de massa 10 kg movimenta-se numa mesa horizontal sob a ação de uma força horizontal de 30 N. A força de atrito entre o bloco e a mesa vale 20 N. Determine a aceleração do corpo.
- 3. Um bloco de massa 2 kg é deslocado horizontalmente por uma força F = 10 N, sobre um plano horizontal. A aceleração do bloco é 0.5 m/s^2 . Calcule a força de atrito.
- **4.** Um sólido de massa 5 kg é puxado sobre um plano horizontal por uma força horizontal de 25 N. O coeficiente de atrito entre o sólido e o plano é 0,2.
- a) Qual a força de atrito?
- b) Qual é a aceleração do corpo?
- **5.** (Puc/SP alterada) Um bloco de borracha de massa 5,0 kg está em repouso sobre uma superfície plana e horizontal. O gráfico representa como varia a força de atrito sobre o bloco quando sobre ele atua uma força F de intensidade variável paralela à superfície.

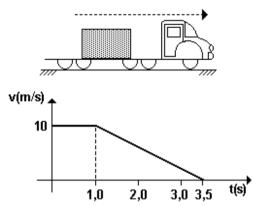

Determine:

- a) o coeficiente de atrito estático entre a borracha e a superfície.
- b) a aceleração adquirida pelo bloco quando a intensidade da força F atinge 30N.
- **6.** O bloco da figura, de massa 5,0 kg, move-se com velocidade constante de 1,0 m/s, num plano horizontal, sob a ação da força \vec{F} , constante e horizontal.

Se o coeficiente de atrito entre o bloco e o plano vale 0,20, determine:

- a) a aceleração do bloco.
- b) o módulo de \vec{F} , em newtons.
- 7. **(UNIMONTES MG/2008)** Um bloco de massa M encontra-se, em repouso, sobre a superfície plana de uma mesa, preso por fios inextensíveis e de massa desprezível, em lados opostos a dois blocos menores, cujas massas são $m_1 = m_2 = m$ (veja a figura). As roldanas podem girar sem atrito e sua massa é também desprezível. O coeficiente de atrito estático entre as superfícies da mesa e da base do bloco é μ_e , e o valor da aceleração da gravidade no local é g. Sobre a força de atrito estático que atua no bloco, é **CORRETO** afirmar que
- a) é nula.
- b) é igual a mg.
- c) é igual a 2 mg.
- d) é igual a Mg μ_e .

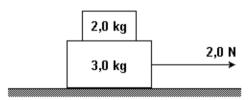
8. (FEI SP/2000) Na montagem abaixo qual o mínimo coeficiente de atrito entre o bloco de 2 kg e o plano horizontal, para que o sistema permaneca em equilíbrio?



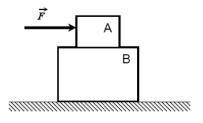
9. (UFRJ) Um caminhão está se deslocando numa estrada plana, retilínea e horizontal. Ele transporta uma caixa de 100 kg

Lista de Exercícios 6 Professor Edson José

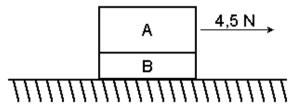
apoiada sobre o piso horizontal de sua carroceria, como mostra a figura.


Num dado instante, o motorista do caminhão pisa o freio. A figura a seguir representa, em gráfico cartesiano, como a velocidade do caminhão variam em função do tempo.

O coeficiente de atrito estático entre a caixa e o piso da carroceria vale 0.30.


Verifique se, durante a freada, a caixa permanece em repouso em relação ao caminhão ou desliza sobre o piso da carroceria. Justifique sua resposta.

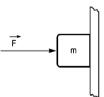
10. (Unesp 2004) Um bloco de massa 2,0 kg repousa sobre outro de massa 3,0 kg, que pode deslizar sem atrito sobre uma superfície plana e horizontal. Quando uma força de intensidade 2,0 N, agindo na direção horizontal, é aplicada ao bloco inferior, como mostra a figura, o conjunto passa a se movimentar sem que o bloco superior escorregue sobre o inferior.



Nessas condições, determine

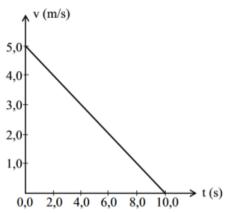
- a) a aceleração do conjunto.
- b) a intensidade da força de atrito entre os dois blocos.
- 11. (UFPE/2010) Considere dois blocos empilhados, A e B, de massas m_A = 1,0 kg e m_B = 2,0 kg. Com a aplicação de uma força horizontal \vec{F} sobre o bloco A, o conjunto move-se sem ocorrer deslizamento entre os blocos. O coeficiente de atrito estático entre as superfícies dos blocos A e B é igual a 0,60, e não há atrito entre o bloco B e a superfície horizontal. Determine o valor máximo do módulo da força \vec{F} , em newtons, para que não ocorra deslizamento entre os blocos.

12. (Unesp 2006) Dois blocos, A e B, com A colocado sobre B, estão em movimento sob ação de uma força horizontal de 4,5 N aplicada sobre A, como ilustrado na figura.

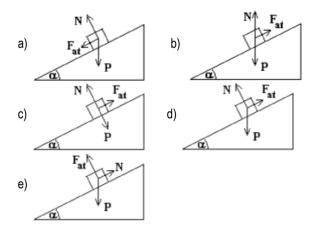

Considere que não há atrito entre o bloco B e o solo e que as massas são respectivamente m_A = 1,8 kg e m_B = 1,2 kg. Tomando q = 10 m/s², calcule

- a) a aceleração dos blocos, se eles se locomovem juntos.
- b) o valor mínimo do coeficiente de atrito estático para que o bloco A não deslize sobre B.
- 13. (Ufrj 2007) Um sistema é constituído por um barco de 100 kg, uma pessoa de 58 kg e um pacote de 2,0 kg que ela carrega consigo. O barco é puxado por uma corda de modo que a força resultante sobre o sistema seja constante, horizontal e de módulo 240 newtons.

Supondo que não haja movimento relativo entre as partes do sistema, calcule o módulo da força horizontal que a pessoa exerce sobre o pacote.


14. (UFAL/2004) Um corpo, de massa 0,20 kg, é comprimido contra uma parede vertical por meio de uma força horizontal \vec{F} de intensidade 8,0 N e fica, nessas condições, prestes a escorregar para baixo.

Calcule:

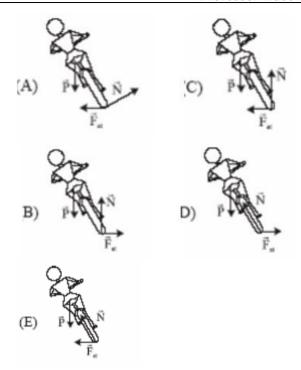

- a) o coeficiente de atrito estático entre o corpo e a parede;
- b) o valor da força de atrito se \vec{F} passar a ter intensidade de 16 N.
- **15. (MACKENZIE 2015)** Um corpo de massa 2,0 kg é lançado sobre um plano horizontal rugoso com uma velocidade inicial de 5,0 m/s e sua velocidade varia com o tempo, segundo o gráfico abaixo.

2 IFRN

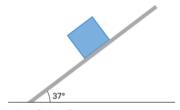
Considerando a aceleração da gravidade g = 10,0 m/s², o coeficiente de atrito cinético entre o corpo e o plano vale

- a) $5,0.10^{-2}$
- b) $5,0.10^{-1}$
- c) $1.0.10^{-1}$
- d) $2,0.10^{-1}$
- e) 2,0.10⁻²
- 16. (UNISC RS/2011) A seguinte figura representa um bloco de massa m parado sobre um plano inclinado de α com a horizontal. Sabendo que F_{at} representa a força de atrito que existe entre o bloco e o plano inclinado, que P é o peso do bloco de massa m e que N é a força normal, neste caso, podemos afirmar que as forças que atuam sobre o corpo são representadas pelo diagrama de forças da figura:

17. (CEFET -SP) Ao realizar uma curva à esquerda, num plano horizontal, o ciclista inclina a bicicleta e o corpo para o interior da curva.Nesse instante, pelo menos três forças estão atuando sobre o conjunto ciclista + bicicleta.

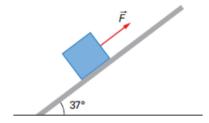

Dados:

 \vec{P} - peso do sistema ciclista + bicicleta


 \vec{N} - componente normal da força de reação do solo sobre a roda

 $\overrightarrow{F_{at}}$ - força de atrito de escorregamento lateral do solo sobre a roda

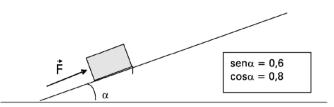
A figura que representa corretamente a direção e o sentido dessa forcas é:



18. Um bloco de massa m = 2,0 kg está sobre um plano inclinado 37° em relação à horizontal, como mostra a figura: (Dados: μ_e = 0,50 e μ_c = 0,40).

- a) O bloco se desloca? Justifique.
- b) Em caso afirmativo, qual o módulo da aceleração do bloco?
- **19.** Sob a ação da força \vec{F} constante, o bloco representado na figura abaixo sobe o plano inclinado.

Dados: m = 2.0 kg, massa do bloco; $\mu c = 0.20$, coeficiente de atrito cinético entre o bloco e o plano.

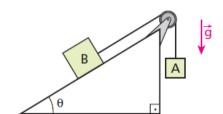


Determine o módulo da força \vec{F} supondo que o bloco tenha:

- a) aceleração de módulo constante de 1,0 m/s², no mesmo sentido da força;
- **b)** velocidade constante no sentido ascendente;
- c) aceleração de módulo constante de 1,0 m/s², no sentido oposto à forca.

<u>Lista de Exercícios 6</u> Professor Edson José

20. (PUC SP/2007) Um caixote de madeira de 4,0 kg é empurrado por uma força constante \bar{F} e sobe com velocidade constante de 6,0 m/s um plano inclinado de um ângulo α , conforme representado na figura.


A direção da força \vec{F} é paralela ao plano inclinado e o coeficiente de atrito cinético entre as superfícies em contato é igual a 0,5. Com base nisso, analise as seguintes afirmações:

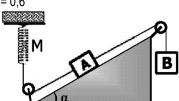
- I. O módulo de \vec{F} é igual a 24 N.
- II. \vec{F} é a força resultante do movimento na direção paralela ao plano inclinado.
- III. As forças contrárias ao movimento de subida do caixote totalizam 40 N.
- IV. O módulo da força de atrito que atua no caixote é igual a 16 N.

Dessas afirmações, é correto apenas o que se lê em

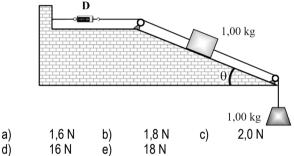
- a)(I)e(II)
- b) (1) e (III)
- c) (II) e (III)
- d) (II) e (IV)
- e) (III) e (IV)
- **21. (PUC RJ/2010)** Um bloco escorrega a partir do repouso por um plano inclinado que faz um ângulo de 45° com a horizontal. Sabendo que durante a queda a aceleração do bloco é de 5,0 m/s² e considerando g= 10m/s², podemos dizer que o coeficiente de atrito cinético entre o bloco e o plano é
- a) 0,1 b) 0,2 c) 0,3 d) 0,4 e) 0,5
- **22.** Na situação esquematizada na figura, o fio e a polia são ideais. Despreza-se o efeito do ar.

sen θ = 0,60cos θ = 0.80

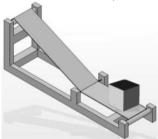
Sabendo que os blocos $\bf A$ e $\bf B$ têm massas iguais a 5,0 kg e que os coeficientes de atrito estático e cinético entre $\bf B$ e o plano de apoio valem, respectivamente, 0,45 e 0,40, determine:


- a) o módulo da aceleração dos blocos;
- b) a intensidade da forca de tração no fio.
- **23. (MACK SP/2006)** O conjunto ao lado é constituido de polias, fios e mola ideais e não há atrito entre o corpo A e a superfície do plano inclinado. Os corpos A e B possuem a mesma

massa. O sistema está em equilíbrio quando a mola M, de constante elástica 2 000 N/m. está deformada de 2 cm.

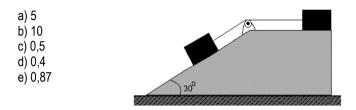

A massa de cada um desses corpos é:

ADOTE: $\cos \alpha = 0.8 \text{ e sen } \alpha = 0.6$


- a) 10 kg
- b) 8 kg
- c) 6 kg
- d) 4 kg
- e) 2 kg

24. (MACK SP/2009) Em um ensaio físico, desenvolvido com o objetivo de se estudar a resistência à tração de um fio, montouse o conjunto ilustrado abaixo. Desprezado o atrito, bem como as inércias das polias, do dinamômetro (D) e dos fios, considerados inextensíveis, a indicação do dinamômetro, com o sistema em equilíbrio, é

25. (UNIRG/2012) Uma indústria utiliza esteiras que se movem com velocidade constante v = 3 m/s para transportar caixas contendo a sua produção. Em determinado setor as caixas são transportadas através de uma esteira inclinada conforme ilustra a figura. Considere a massa da esteira igual a zero e que só existe atrito entre a superfície da esteira e a superfície das caixas.



Para que não ocorra deslizamento entre as superfícies da caixa e da esteira deve-se escolher, de acordo com a inclinação da esteira, os materiais que compõem a caixa e a esteira. Esta escolha é feita com base no coeficiente de atrito estático entre os materiais da caixa e da esteira. Considere o ângulo de inclinação da esteira igual a 60°.

Assinale a alternativa que apresenta o valor do coeficiente de atrito estático, entre as duas superfícies, para que não ocorra o deslizamento.

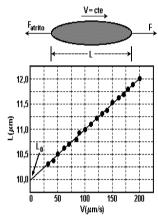
- a) 0,5
- b) $\sqrt{2}$
- c) $\sqrt{3}$
- d) 2,1

26. (UPE/2009) No sistema representado na figura abaixo, dois blocos têm massas iguais e estão ligados por um fio de massa desprezível. Na superfície do plano inclinado, o bloco desloca-se sem atrito. O coeficiente de atrito cinético entre o plano horizontal e o bloco é 0,4, e o atrito na roldana da corda, desprezível. Nessas condições, a aceleração do sistema vale em m/s²

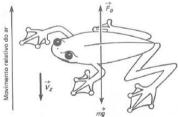
27. (PUC-RS) Sobre uma gota de chuva atuam, principalmente, duas forças: o peso e a força de resistência do ar, ambas com direções verticais, mas com sentidos opostos. A partir de uma determinada altura h em relação ao solo, estando a gota com velocidade v, essas duas forças passam a ter o mesmo módulo.

Considerando a aceleração da gravidade constante, é correto afirmar que

- a) o módulo da força devido à resistência do ar não se altera desde o início da sua queda.
- b) o módulo do peso da gota varia durante a sua queda.
- c) durante a queda, a aceleração da gota aumenta.
- d) a velocidade com que a gota atinge o solo é v.
- e) a partir da altura h até o solo, a velocidade da gota vai diminuir
- **28. (UNICAMP-SP)** Abandona-se, de uma altura muito grande, um objeto de massa m, que então cai verticalmente. O atrito com o ar não é desprezível; sobre o objeto atua uma força resistiva proporcional ao quadrado da velocidade: $F_R = -K.V^2$
- a) Faça um diagrama das forças atuando sobre o objeto durante a queda.
- b) Depois de um longo tempo o objeto atinge velocidade constante. Calcule o valor dessa velocidade.


Dados: m = 4,0kg; K = 2,5kg/m; $g = 10m/s^2$

29. (UFMG-MG) Durante um vôo, um avião lança uma caixa presa a um pára-quedas. Após esse lançamento o pára-quedas abre-se, e uma força devida à resistência do ar, passa a atuar sobre o conjunto – caixa e pára-quedas. Considere que o módulo dessa força é dado por F= b.V, em que b é uma constante e V o módulo da velocidade do conjunto.


Observa-se que, depois de algum tempo, o conjunto passa a cair com velocidade constante.

- a) Com base nessas informações, explique por que, depois de algum tempo, o conjunto passa a cair com velocidade constante.
- b) Considere que a massa do conjunto é 50 kg e a sua velocidade final é 10 m/s. Calcule a constante de proporcionalidade b. Considere $g=10 \text{m/s}^2$.
- **30. (UNICAMP SP/2004)** A elasticidade das hemácias, muito importante para o fluxo sangüíneo, é determinada arrastando-se a

hemácia com velocidade constante V através de um líquido. Ao ser arrastada, a força de atrito causada pelo líquido deforma a hemácia, esticando-a, e o seu comprimento pode ser medido através de um microscópio (vide esquema). O gráfico apresenta o comprimento L de uma hemácia para diversas velocidades de arraste V. O comprimento de repouso desta hemácia é L_0 = 10 micra.

- a) A força de atrito é dada por F_{atrito} = bV, com b sendo uma constante. Qual é a dimensão de b, e quais são as suas unidades no SI?
- b) Sendo $b = 1.0 \times 10^{-8}$ em unidades do SI, encontre a força de atrito quando o comprimento da hemácia é de 11 micra.
- c) Supondo que a hemácia seja deformada elasticamente, encontre a constante de mola k, a partir do gráfico.
- **31.** (UEG-GO-010) Entre os poucos animais que desenvolveram o "pára-quedismo" está o sapo voador de Bornéu Rhacophorus dulitensis, apresentado na figura a seguir.

OKUNO, Emico; CALDAS, Iberê Luiz; CHOW, Cecil. Física para Ciências Biológicas e Biomédicas. São Paulo: Harbra Itda, 1982. p. 421.

Na ilustração, $\overrightarrow{F_A}$ e m. \overrightarrow{g} são, respectivamente, a força de resistência do ar e a força peso. Considerando que esse animal tenha se atirado do alto de uma árvore em direção ao solo, o seu pára-quedas será utilizado e, durante sua queda,

- a) as suas membranas interdigitais nas patas favorecem o aumento da força de resistência do ar, haja vista que elas aumentam a área de contato com o ar.
- b) a resultante das forças que atuam sobre ele tenderá a se tornar nula, levando-o, necessariamente, ao repouso no ar.
- c) a sua velocidade tenderá a um valor limite, chamada de velocidade terminal, independentemente da resistência do ar.
- d) a sua aceleração será nula em todo o percurso, independentemente da resistência do ar.

IFRN