

We first describe these dangers and then describe our
current approach to avoiding them.

2 THE COMMUNICATION PROBLEM

The importance of effective communication in the de-
velopment process is highlighted in a detailed look at
seventeen large software projects in nine companies
(Curtis, Krasner, and Iscoe; 1988). Based on inter-
views with project team members, they noted three
frequently recurring problems, all related to the lack
of effective communication between those involved
in the design effort: (1) the thin spread of application
knowledge, (2) emerging, fluctuating and conflicting
requirements, and (3) communication bottlenecks and
breakdowns.

The first problem, gaining application knowledge, ac-
knowledges that application knowledge is a crucial
part of design. As one participant in the Curtis, Kras-
ner, and Iscoe study noted, “writing code isn’t the
problem, understanding the problem is the problem.”

Even on seemingly simple applications, all the neces-
sary application knowledge may be spread over doz-
ens of individuals. Omitting any of this knowledge,
through a lack of communication or simple oversight,
jeopardizes a successful development effort. To avoid

INTERACT ’95 CONFERENCE PROCEEDINGS, pp. 179-184

1 INTRODUCTION

The basic problem in large software development ef-
forts is communication — not communication be-
tween modules or communication between hardware
and software systems, but communication between
people. Recognition of the need for better communi-
cation between the users of systems, the developers of
systems, and other effected persons is a major moti-
vation for the use of prototyping.

In this paper, we argue that prototypes, as frequently
used, can hinder rather than aid effective communica-
tion. We will not categorically argue that prototyping
efforts should cease. However, as with any tool, pro-
totypes can be misused as well as used effectively.
The seductive nature of quickly building a prototype
artifact carries with it three alluring dangers. First,
prototypes may hide, rather than highlight, some of
the assumptions made during their development. Sec-
ond, obtaining feedback in the context of use is pro-
hibitively expensive and rarely done. Third, and, part-
ly as a consequence of these problems, prototypes
cause a focus on surface features such as displays in-
stead of on the more difficult problem of how people
function in their environments to solve problems.

Prototyping Considered Dangerous

Michael E. Atwood, Bart Burns, Andreas Girgensohn, Alison Lee, Thea Turner,
and Beatrix Zimmermann

NYNEX Science and Technology
500 Westchester Avenue

White Plains, NY 10604 USA
{atwood, bart, andreasg, alee, thea, bz}@nynexst.com

KEY WORDS:

prototypes, prototyping, scenarios, domain-oriented design environments, de-
sign intent, expectation agents.

ABSTRACT:

In this paper, we argue that prototypes can hinder, rather than aid effective com-
munication. The dangers are: (1) prototypes may contain hidden assumptions which might
surface too late; (2) obtaining feedback in the context of use is prohibitively expensive and
rarely done; and (3) partly as a consequence of these problems, prototypes cause a focus on
displays and other surface features of computers, not on the more difficult problem of how
people function in their environments to solve problems. We propose

design intent

 which
specifies how a system will fit in and interact with the environment in which it is placed and

expectation agents

 which monitor the system in use and detect uses counter to the intent as
ways to alleviate these dangers.

the “Tower of Babel” problem (Brooks, 1975), com-
munication between diverse groups of people is re-
quired.

The second problem, fluctuating and conflicting re-
quirements, arises primarily because computer sys-
tems fit into larger environments which are not them-
selves static. While requirements sometimes change
because people involved in the development effort re-
think earlier decisions, more typically, they change to
reflect the fact the environments are changed. Be-
cause the environments into which systems are to be
placed continue to evolve, problem understanding
must proceed continuously and simultaneously with
other system development activities. New require-
ments are likely to emerge as understanding matures.

Similarly, the third common problem, communica-
tion bottlenecks and breakdowns, does not typically
occur because one group neglects to communicate
with another. Rather, they occur because one group is
not able to

effectively

 communicate with another.
The underlying problem is that many people are re-
quired to develop a system, but each has their own
view of the system, does not recognize how many
others have different views of the system, and cannot
communicate effectively with many of the others.
Our solution to this “symmetry of ignorance” prob-
lem (Rittel, 1984) is to provide a common artifact
through which many people can communicate. While
this is the solution that prototyping intends to imple-
ment, we will argue later that it can often fail to do so.

3 FLAWED IMPLEMENTATION OF NOBLE
INTENT

A prototype is a common artifact that represents the
evolving system under development. This is exactly
as it should be! What, then, are the dangers that pre-
vent us from achieving this goal? We consider three
dangers to be most serious.

3.1 Assumptions may be hidden

Prototypes are considered to be useful to all con-
cerned with a development effort in facilitating a con-
vergence on the system’s requirements. Require-
ments specify

what

 the system must do and should
result in specifications that specify

how

 the system
will function. What prototypes are most in danger of
losing is the

why

 information that records the assump-
tions underlying these decisions.

For example, consider a hypothetical system that al-
lows customers to call a representative to order new
telephone services.

What

 the system should do is clear

— it will answer a telephone call, connect the custom-
er to a representative, determine what services are
available to the customer, and support the order entry
process.

How

 is equally clear — we will use a com-
mercial answering system to take calls and route them
to a representative, write a program that queries an ex-
isting system to determine what services are avail-
able, and then uses a form-based interface to support
order entry. A prototype of this system should take
hours, at most, to develop. (Berghel’s (1994) com-
ments on the dangers of “vacuous prototyping” are
worth noting here. He clearly notes the dangers of
prototyping what cannot be built.)

In constructing our prototype, we made several as-
sumptions. We assumed a certain call arrival rate
when selecting the answering system; we assumed a
certain response time with an existing data base when
we designed the interface; we assumed that orders
would be completed in one transaction when design-
ing the data base for customer records. Failure to
record these assumptions — the

why

 information —
will complicate our efforts to refine this prototype.

During tests, we found that the call rate and number
of customers was more than expected, that the re-
sponse time with the database can occasionally take
minutes, rather than seconds, and that customers often
must make multiple calls in order to gather all the in-
formation needed for an order. These are exactly the
problems that we later see as communication break-
downs (“why didn’t you tell me how many customers
would call at once?”), fluctuating requirements (“you
mean we have to store and retrieve partial orders?”),
and a thin spread of application knowledge (“who
should have known that data base access would be so
slow?”). All very real problems; all created by failing
to note carefully

why

 information.

3.2 Feedback may be too expensive

Failing to record

why

 information also makes analyz-
ing a system more difficult. The usefulness and us-
ability of a system can only be measured with respect
to actual users performing actual tasks in their actual
environment on working systems (cf., Gray, John &
Atwood, 1993; Atwood, Gray & John, in press; Turn-
er, Lee, & Atwood, in press). We do not claim that ob-
taining feedback is too expensive because systems
must be substantially developed before they can be
evaluated. This is clearly true, but we make a stronger
argument. Feedback is too expensive because we for-
get to record the assumptions that would let us link
analysis results with design decisions.

Returning to the order entry system discussed above,
assume that we are in a field trial. The most signifi-
cant point that comes from analysis is that too many
customers hang up the telephone before completing a
transaction. This problem must be corrected if the
system is to be successfully used. What aspect of the
system do you change to correct this problem? Do
people hang up because the initial prompt is in a lan-
guage they do not understand, because the response
time to query the data base is too long, because the
representative asks for information they view as inap-
propriate, or what?

The common approach to analysis is to measure all
that can be measured and then make inferences about
what is happening. Only a small fraction of this data
is useful, however. We made assumptions about how
the system would be used. That the system is not used
successfully indicates that one or more of these as-
sumptions is not met in practice. Did we assume that
most speakers would understand the initial natural
language prompt, that the data base query would take
no more than one second, or what?

Analysis only indirectly indicates that the system
must be changed. Directly, analysis indicates that our
assumptions about system use must change. Because
we do not typically record these assumptions, howev-
er, we struggle to relate analysis results to properties
of the system, rather than simply relate them to the as-
sumptions underlying these properties.

3.3 Inappropriate human-computer interaction
issues are highlighted

As a community, we often identify ourselves as

hu-
man-computer interaction

 specialists. This is an in-
appropriate attribution and one that denigrates our
contributions to system development. It leads to fo-
cusing inappropriately on the artifact that is the tool
through which we do our work rather than on the pri-
mary focus of our work.

Prototyping can cause a clear focus on the artifact
rather than on the use of the artifact. With the proto-
type discussed above, we contend that a prototype is
more likely to cause discussion of whether the initial
prompt should say “hello” or “welcome” than on
whether the initial prompt should convey that multi-
ple natural languages are available. The problem, as
noted by Ramamoorthy, Prakash, Tsai, and Usuda,
1984, is that prototypes can cause a focus on nonfunc-
tional, rather than functional, requirements The proto-
type artifact highlights nonfunctional aspects and ob-

scures the reasons underlying the functional
decisions.

4 RELATED RESEARCH

Recognition of the need to capture the

why

 informa-
tion is behind the current interest in

design rationale

.
Design rationale captures the history of the arguments
that are associated with design decisions. This infor-
mation is frequently structured formally; in IBIS (Rit-
tel, 1984) and gIBIS (Conklin & Yakemovic, 1991) it
is structured in terms of

issues, answers, and argu-
ments

, while in QOC (McLean, Young, Bellotti, &
Moran, 1991) it is structured as

questions, options,
and criteria

. In DRL (Lee & Lai, 1991), the structures
are equally formal but much more elaborate. The fo-
cus of these approaches is both on

what

 the system is
and

why

 it is the way it is.

However, while many currently claim that design ra-
tionale will have value, there are few studies suggest-
ing any value. Of the six papers in one issue of the
journal

Human-Computer Interaction

 devoted to the
issue of design rationale, only one (Conklin & Yake-
movic, 1991) described the application of design ra-
tionale to a real project and presented anecdotal evi-
dence that it was of value.

Why is an idea that has such broad appeal on both the-
oretical and intuitive grounds used so little? We be-
lieve there are two reasons. First, they violate the
“benefit-work rule” that governs collaborative ef-
forts. That is, benefits should go to those who do the
work. With existing schemes, however, designers do
the work, but others benefit; as a result, this work is
not done well or not done at all. Second, existing
schemes focus on what designers know; this may in-
clude application knowledge that they have abstract-
ed from others, but it does not directly involve all
those who directly represent this application knowl-
edge. We argue that constructing this information as
it evolves increases effective communication among
all people involved and that this increase in effective
communication is of sufficient benefit that this pro-
cess will be followed.

5 COMMUNICATION, COLLABORATION, AND
CONTEXT — AVOIDING THE DANGERS OF
PROTOTYPING

We propose an evolutionary model of software devel-
opment in which the expected utility of a system is
improved by active, computer-based support for (1)
feedback from users of prototype systems to develop-
ers, (2) communication and collaboration among us-

ers and developers, and (3) mutual education among
user and developer communities.

Our approach is based on real development experi-
ences and current research on agent-based software
environments. Previous projects — Ernestine (Gray,
et al; 1993; Atwood, et al, in press), New Hori-
zons/OSDI (Turner, Lee, & Atwood, in press), and
Bridget (Atwood, Burns, Girgensohn, & Zimmer-
mann, 1994) — highlighted for us the importance of
feedback, communication, and mutual education in
system development efforts. This realization also
caused us to work on methods to actively support
these activities.

Project Ernestine provided us with critical insight:
Design of systems to function in complex situations,
such as large technology-oriented companies or inter-
disciplinary design domains, requires a deep under-
standing not only of the application domain, but also
of the practice (Bjerknes et al, 1985) of the people
who will use the systems. In order for useful systems
to be built in these conditions, system design must be
based on a process of mutual education (Ehn, 1988)
between system builders and users.

The goal of mutual education is to allow all members
of the design team to contribute their expertise to the
system building process. The most important resource
in the system building process is an artifact that all
stakeholders can understand and contribute to and
which serves to build a sense of community among
the stakeholders. We call this resource

 design inten

t.

6 DESIGN INTENT

Design intent specifies how the system will fit in and
interact with the environment into which it will be
placed. It includes design decisions, changes to deci-
sions, and the rationale for those decisions and chang-
es. While a focus on interactions with the environ-
ment, rather than just a description of the system’s
own operations, is not a common practice in software
development, we believe it is an appropriate practice,
because of the importance of understanding the envi-
ronment (cf., Gray et al, 1993; Atwood et al, in press,
Turner et al, in press).

Design intent derives from communications among
the individuals and groups associated with a develop-
ment effort and becomes the focus for communica-
tions among these individuals and groups (see Figure
1). There is no generic or canonical representation of
design intent. Unlike the more prescriptive notations
of design rationale, design intent is more process than

tool. The key idea is to facilitate and capture the com-
munication among the participants in a design effort.
The form and content of design intent are determined
more by the problem addressed and the people in-
volved than by proscriptive ideas about notational
format.

The initial steps in forming design intent are common
with many other approaches — we talk to those in-
volved, listen to what they have to say, and reflect our
understanding back to them. A difference is that we
structure this mutual understanding as it evolves. To
illustrate the various ways in which design intent is
used to facilitate communication, we will step
through a brief scenario.

In this scenario, a customer service representative
(CSR) is interacting with a customer who has called
to order new telephone services. In order to do this,
the CSR must determine whether the customer has
existing service, what their credit rating is, how to
contact them later, and the address where the services
are to be installed. The address information is impor-
tant for two reasons. First, the CSR needs to verify
that the address is one that actually exists so that the
installer can find it. Second, the address is associated
with a wire center and it is the wire center and the
equipment it contains that determine what services
are available.

In observing the CSRs interactions with customers,
the system developers note that the CSRs typically
validate the address early in the dialogue but query
what services are available at that address much later

 Figure 1: Design Intent Scenario

developers

users & other

direct
manipulation

stakeholders

annotations
email
design/code modification
expectation agents
test scenarios

browsing
questions & answers
direct manipulation

annotations
email
expectation data
test scenarios

knowledge
facilitator

developers,
 users &

other stake-
holders

Design
Intent

in the dialogue. Since the query for available services
may take minutes, this can increase the total interac-
tion time. The system developers, therefore, propose
that the query for available services be automatically
initiated by the system once the address is verified
and that addresses be verified before initiating other
aspects of the transaction, such as collecting billing
information. This proposal is accepted by the CSRs
working with the developers as one that saves them
the effort of manually performing this operation and
that saves time. The understanding between the de-
velopers and the CSRs is represented as design intent.

The understandings encoded in design intent are cod-
ed by the developers as expectation agents (Girgen-
sohn, Redmiles, & Shipman, 1994). Expectation
agents actively monitor the system in use to detect
uses that are counter to the intent. While expectation
agents are initiated by the system and comment on
how the user is interacting with the system, annota-
tions are initiated by the user and comment on the sys-
tem performance from the user’s perspective. The
value is in helping to understand how the system is
being used, where it needs to be improved, and espe-
cially where the developers (or others) have “bugs” in
their understanding of the system requirements.

Expectation agents are active and can initiate dia-
logues with system users at any point where they are
instructed to do so, either immediately when trig-
gered, at the end of the current interaction with the
customer, or at another time. This mode of operation
is influenced by Schön’s (1983) view that profession-
als learn during “breakdowns” — situations in which
well-learned procedures fail to work. Either users
learn a more effective mode of operation or develop-
ers learn where requirements need to be refined.
Again, the focus on having an active, rather than pas-
sive, understanding of the system is not a common
practice, but, we believe it should be.

In this scenario, the design intent specifies that ad-
dress validation should be started while the CSR and
customer are in the “customer” section of the order
entry form. However, the CSR leaves this section be-
fore validating the address in order to make an entry
in the “billing” section. This triggers an expectation
agent (see Figure 2). The CSR may then comment on
this agent. In the case shown in Figure 2, the CSR dis-
agrees with the agent and the underlying design intent
and indicates why. Because the agent is tied to the un-
derlying code and the system maintains a list of who
is responsible for each section of code, the CSR’s re-
ply is directed to the appropriate developer.

The interactions between developers and users, and
others, centered around expectation agents are effec-
tive ways to refine their mutual understanding of the
system requirements and the environment in which
the system will sit. We contend that situating this re-
quirements refinement process in the actual work set-
ting facilitates both the elicitation of requirements and
the validation of those requirements.

Annotations are similar to expectation agents in that
they allow for comment on expected performance.
They allow the user to initiate a dialogue on system
performance, as opposed to allowing the developer to
initiate a dialogue on user performance through an ex-
pectation agent. Since the system maintains a list of
who is responsible for what section of code, the anno-
tations are directed to the responsible developer, as
well as being recorded in the design intent document.

Annotations and responses to expectation agents may
be text or multi-media. If a user prefers, for example,
an audio reply or an audio-video reply can be sent to
the developers. The history of the interaction that pre-
ceded the breakdown can also be included to give the
developer additional context information. All this in-
formation is associated with some aspect of the de-
sign intent documentation and all is directed to an in-
dividual or an identified group of individuals. That is,
information relevant to a development effort is not al-
lowed to “float” with no relation to other information
nor is information sent to a “general delivery” address
where the sender is not aware of the identity of the re-
cipient.

7 SUMMARY

The basic problem with any large scale development
effort is communication. During a development ef-

 Figure 2: Expectation Agent Interaction

fort, a great deal of information is generated and ex-
changed. However, it is apparent that all of the infor-
mation necessary to the development process is not
communicated effectively. Some necessary informa-
tion is not generated or not exchanged appropriately;
some information is not maintained throughout the
development effort, preventing its communication to
the others that may need this information later in the
development effort.

Design intent provides solutions to the communica-
tion problems associated with large scale develop-
ment efforts. We avoid the problem of the

thin spread
of application knowledge

, by capturing domain
knowledge in a form that can be shared with others;
we mitigate the problem of e

merging, fluctuating and
conflicting requirements

 by maintaining a the history
of design changes and the rationale underlying those
changes; we reduce problems of

communication bot-
tlenecks and breakdowns

 by ensuring that all commu-
nications are related to the design intent documents
(they do not “float free”) and that all communications
are addressed to individuals (they do not go to “gen-
eral delivery”). Most importantly, it develops a sense
of community among all those involved in the devel-
opment effort.

REFERENCES

Atwood, M.E., Burns, B., Girgensohn, A., &
Zimmermann, B. Dynamic forms: Intelligent
interfaces to support customer interactions.
Technical Report. White Plains, NY: NYNEX
Science & Technology, 1994.

Atwood, M.E., Gray, W.D., & John, B.E.
Project Ernestine: Analytic and empirical
methods applied to a real-world CHI problem.
In P.G. Polson & C. Lewis (Eds.) Success
Cases, Emerging Methods, and Pragmatic
Context in Human-Computer Interaction.
San Mateo, CA: Morgan-Kaufman, in press.

Berghel, H. New wave prototyping: Use and
abuse of vacuous prototyping. interactions

,

1(2), 1994, 49-54.

G. Bjerknes, T. Bratteteig, J. Kaasboll, K.
Nygaard, I. Sannes, H. Sinding-Larsen, G.
Thingelstad. Gjensidig Laerning: Florence
Rapport fra fase 1 [Mutual Learning: Florence
Report No. 1]. Department of Informatics,
University of Oslo, Norway, 1985

Brooks, F.P., Jr.

The mythical man-month:
Essays on software engineering.

 Reading,
MA: Addison-Wesley, 1975.

Conklin, E.J. & Yakemovic, K.C.B. A
process-oriented approach to design rationale.

Human-Computer Interaction,

6

, 1991, 357-
391.

Curtis, B., Krasner, H., & Iscoe, N. A field
study of the software design process for large
systems. Communications of the ACM,
31(

11

), 1988, 1268-1287.

P. Ehn.

Work-Oriented Design of Computer
Artifacts

. Almquist & Wiksell International,
Stockholm, Sweden, 1988

Girgensohn, A., Redmiles, D., & Shipman, F.
Agent-based support for communication
between developers and users in software
design. In Proceedings of the 9th Knowledge-
based Software Engineering Conference,
Monterey, CA: IEEE Computer Society. 1994

Gray, W.D., John, B.E., & Atwood, M.E.
Project Ernestine: Validating GOMS for
predicting and explaining real-world task
performance. Human-Computer Interaction,

8

, 1993, 237-309.

Lee, J. & Lai, K.-Y. What's in design
rationale?

Human-Computer Interaction,

6

,
1991, 251-280.

McLean, A., Young, R.M., Bellotti, V.M.E.,
& Moran, T.P. Questions, options and
criteria: Elements of design space analysis.
Human-Computer Interaction,

6

, 1991, 201-
250.

Ramamoorthy, C.V., Prakash, A., Tsai, W-K.,
& Usuda, Y. Software engineering: Problems
and perspectives. IEEE Computer, October
1984, 191-209.

Rittel, H. Second-Generation Design
Methods. In N. Cross (Eds.), Developments in
Design Methodology (pp. 317-327). New
York: John Wiley & Sons, 1984.

Schön, D.A. The reflective practitioner: How
professionals think in action. Basic Books:
New York, 1983.

Turner, T., Lee, A., & Atwood, M.E. (in
press) Usability engineering: Do we practice
what we preach? In: Nielsen, J. (Ed.),
Advances in Human-Computer Interaction
vol. 5, Ablex, Norwood, NJ, in press.

