Matrizes

Matrizes são organizações de informações numéricas em uma tabela retangular formada por linhas e colunas.

Toda matriz tem o formato $\mathbf{m} \times \mathbf{n}$ (leia-se: m por n, $com m \in n \in N^*$), onde $\mathbf{m} \in n$ o número de linhas e $\mathbf{n} \in n$ o número de colunas.

Representação de matrizes

Existem diversas maneiras de representarmos matrizes, veja quais são:

- Colchetes: []
- Parênteses: ()

Exemplos:

$$A = \begin{bmatrix} 1 & 4 & 0 \\ -2 & 4 & 3 \end{bmatrix}$$

$$B = \begin{pmatrix} 4 & 2 \\ 3 & 0 \\ 2 & -2 \end{pmatrix}$$

Elementos de uma matriz

Seja a matriz genérica \mathbf{A}_{mxn} , isto é, \mathbf{m} representa as linhas e \mathbf{n} o número de colunas. Então, temos:

n o número de colunas. Então, temos:
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix}$$

Dessa forma, os elementos da matriz $\bf A$ são indicados por $\bf a_{ij}$, onde o $\bf i$ representa o índice da linha e $\bf j$ representa o índice da coluna para o elemento em questão. Assim, para localizarmos um elemento na coluna, procuramos o número da linha e da coluna, esses números são os índices $\bf i$ e $\bf j$.

Exemplo: Seja a matriz

$$A = \begin{bmatrix} 1 & 4 & 0 \\ -2 & 4 & 3 \end{bmatrix}$$

Exemplo 01:

Considere a matriz $\mathbf{M} = [\mathbf{a}_{ij}]_{2\times 3}$, tal que $\mathbf{a}_{ij} = \mathbf{i} + \mathbf{j}$. Escreva a matriz \mathbf{M} .

Tipos de Matrizes

Matriz Linha

É uma matriz que possui somente uma linha (ordem 1 x n)

Exemplo:

$$A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Matriz Coluna

É uma matriz que possui uma única coluna (ordem m x 1)

Exemplo:

$$A = egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}$$

Matriz Nula

É uma matriz que possui todas as entradas iguais a zero.

Exemplo

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matriz Quadrada

É uma matriz em que o número de colunas é igual ao número de linhas. Sendo que uma matriz quadrada de ordem **mxn** podemos dizer que ela tem ordem **n** Exemplo:

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 4 & 6 \\ 0 & 5 & 0 \end{bmatrix}$$

Essa é uma matriz quadrada 3 x 3, ou simplesmente de ordem 3.

Numa matriz quadrada de ordem \mathbf{n} , temos que os elementos \mathbf{a}_{ij} com $\mathbf{i} = \mathbf{j}$ formam a diagonal principal, enquanto que os elementos $\mathbf{i} + \mathbf{j} = \mathbf{n} + \mathbf{1}$, formam a diagonal secundária. Veia:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Traço de uma matriz: soma dos n elementos de sua diagonal principal.

Matriz Diagonal

É uma matriz quadrada onde todos os elementos que não pertencem a diagonal principal são nulos.

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

Matriz Identidade

É uma matriz quadrada em que todos os elementos que não pertencem a diagonal principal são nulos e os elementos da diagonal principal são 1. É representada por I_n , matriz quadrada de ordem n.

Exemplos:

I₂ = Matriz identidade de ondem 2

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

I₃ = Matriz identidade de ondem 3

$$\begin{array}{cccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}$$

Forma Geral

$$I_n = [a_{ij}]^{n,n}$$
 Onde $a_{ij} = \{ 1, se i = j e 0, se i \neq j \}$

Matriz Oposta

É uma matriz que é obtida trocando os sinais dos elementos da matriz. Se chamamos uma matriz de **A**, então a matriz oposta é **-A**.

Exemplo: Considere a matriz **A** a seguir:

$$A = \begin{bmatrix} 2 & -1 \\ 4 & 1 \end{bmatrix}$$

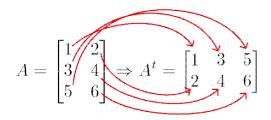
Então a matriz oposta -A é:

$$-A = \begin{bmatrix} -2 & 1 \\ -4 & -1 \end{bmatrix}$$

Matriz Transposta

Uma <u>matriz transposta</u> é uma matriz resultante da troca ordenadamente de linhas pelas colunas de outra matriz. Se temos uma matriz **A**, então a transposta de **A** tem notação **A**^t.

Exemplo: Seja a matriz $A = [a_{ij}]_{mxn}$, a matriz transposta de $A \in A^t = [a_{ij}]_{nxm}$.



Propriedade da transposta

Considere as matrizes **A** e **B**, e **a** um número real qualquer, caso as operações a seguir sejam possíveis, então temos que:

- $(A + B)^t = A^t + B^t$
- $(a.A)^t = a.A^t$
- $(A^t)^t = A$
- $(A.B)^t = B^t.A^t$

Obs.

- 1 Uma matriz é simétrica, se, e somente se, ela seja igual a sua transposta: $A = A^t$.
- 2 Uma matriz é antissimétrica, se, e somente se, ela seja igual a oposta da sua transposta: A = -At.
- 3 Uma matriz quadrada é ortogonal, se, e somente se, a sua transposta seja igual a sua inversa: At = A-1.

Enem 2019

Um professor aplica, durante os cinco dias úteis de uma semana, testes com quatro questões de múltipla escolha a cinco alunos. Os resultados foram representados na matriz.

3	2	0	1	2
3	2	4	1	2
3 2 3 0	2 2 2 2	2	3	2 2 2 0 4
3	2	4	1	0
0	2	0	4	4

Nessa matriz os elementos das linhas de 1 a 5 representam as quantidades de questões acertadas pelos alunos Ana, Bruno, Carlos, Denis e Érica, respectivamente, enquanto que as colunas de 1 a 5 indicam os dias da semana, de segunda-feira a sexta-feira, respectivamente, em que os testes foram aplicados.

O teste que apresentou maior quantidade de acertos foi o aplicado na

A) segunda-feira. B) terça-feira. C) quarta-feira. D) quinta-feira. E) sexta-feira.

1) Enem 2018

A Transferência Eletrônica Disponível (TED) é uma transação financeira de valores entre diferentes bancos. Um economista decide analisar os valores enviados por meio de TEDs entre cinco bancos (1, 2, 3, 4 e 5) durante um mês. Para isso, ele dispõe esses valores em uma matriz $A = [a_{ij}]$, em que $1 \le i \le 5$ e $1 \le j \le 5$, e o elemento a_{ij} corresponde ao total proveniente das operações feitas via TED, em milhão de real, transferidos do banco i para o banco j durante o mês. Observe que os elementos $a_{ij} = 0$, uma vez que TED é uma transferência entre bancos distintos. Esta é a matriz obtida para essa análise:

$$A = \begin{bmatrix} 0 & 2 & 0 & 2 & 2 \\ 0 & 0 & 2 & 1 & 0 \\ 1 & 2 & 0 & 1 & 1 \\ 0 & 2 & 2 & 0 & 0 \\ 3 & 0 & 1 & 1 & 0 \end{bmatrix}$$

Com base nessas informações, o banco que transferiu a maior quantia via TED é o banco

- a) 1.
- b) 2.
- c) 3.
- d) 4.
- e) 5.

(Unesp-sp 2002) Considere três lojas, L_1 , L_2 e L_3 , e três tipos de produtos, P_1 , P_2 e P_3 . A matriz a seguir descreve a quantidade de cada produto vendido por cada loja na primeira semana de dezembro. Cada elemento aij da matriz indica a quantidade do produto P_i vendido pela loja L_j , i, j = 1, 2, 3.

$$\begin{array}{c|cccc}
L_1 & L_2 & L_3 \\
p_1 & 30 & 19 & 20 \\
p_2 & 15 & 10 & 8 \\
p_3 & 12 & 8 & 11
\end{array}$$

Analisando a matriz, podemos afirmar que:

- a) a quantidade de produtos do tipo P₂ vendidos pela loja L₂ é 11.
- b) a quantidade de produtos do tipo P₁ vendidos pela loja L₃ é 30.
- c) a soma das quantidades de produtos do tipo P₃ vendidos pelas três lojas é 40.
- d) A soma das quantidades do produto P1 vendida pelas 3 lojas é 52.
- e)A soma das quantidades dos produtos do tipo P1 e P2 vendidas pela loja L1 é 45.

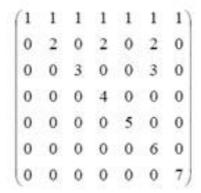
(Fgv-sp 2004) Três ônibus levaram alunos de uma escola para uma excursão. Em uma parada, todos os alunos saíram dos ônibus. Todos prosseguiram a viagem, mas não necessariamente no ônibus de onde tinham saído. Na matriz abaixo, **aij** representa o número de pessoas que saíram do ônibus **i** e subiram no ônibus **j** após a parada.

$$\begin{bmatrix} 30 & 5 & 7 \\ 2 & 25 & 8 \\ 3 & 6 & 20 \end{bmatrix}$$

Então:

- a) participaram da excursão 75 alunos.
- b) um dos ônibus permaneceu com o mesmo número de passageiros.
- c) o ônibus 1 perdeu 6 passageiros.
- d) o ônibus 2 ganhou 4 passageiros.
- e) o ônibus 3 ganhou 6 passageiros

(Ufrn 2004) A matriz abaixo é 7x7 e foi formada com o número 1 em cada posição da primeira linha, um 0 e um 2, alternadamente, nas posições da segunda linha, dois 0 e um 3, também alternadamente, nas posições da terceira linha, e assim sucessivamente.



Numa matriz 100x100, construída com o mesmo critério, a quantidade de números diferentes de zero na centésima coluna é:

a) 8.

- b) 9.
- c) 10.
- d) 11.