

Redes de Computadores

Camada de Rede Endereçamento

Motivação

- Desperdício de endereços
 - Qualquer endereço de rede somente pode ser alocada a uma única rede física
 - Esquema de endereçamento original mostrou-se insatisfatório
 - Expectativa de rápido esgotamento do espaço de endereçamento
 - Impossibilidade de conexão de novas redes
 - Crescimento da internet inviabilizado

Motivação

Soluções

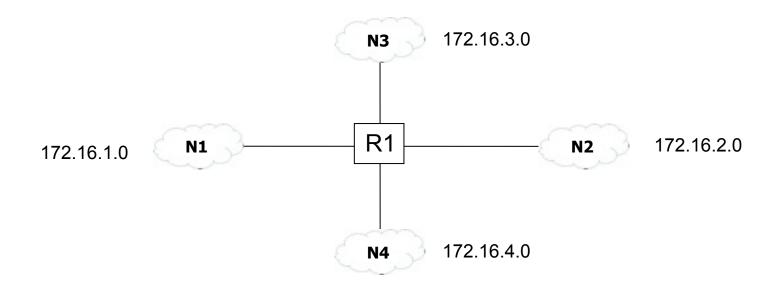
- Pesquisar e adotar esquemas de endereçamento mais eficientes
- Compartilhar um único endereço de rede com múltiplas redes físicas

Objetivos

- Minimizar o desperdício de endereços
- Maximizar o tempo de vida do espaço de endereçamento de 32 bits

Esquema de endereçamento Classfull

Classe	Intervalo de endereços		
А	0.0.0.0 a 127.255.255.255		
В	128.0.0.0 a 191.255.255.255		
С	192.0.0.0 a 223.255.255.255		


Exemplos

Prefixo de rede	Classe	Intervalo de endereços	
10	А	10.0.0.0 a 10.255.255.255	
172.16	В	172.16.0.0 a 172.16.255.255	
192.168.10	С	192.168.10.0 até 192.168.10.255	

Sub-redes

- Permitem o compartilhar um único endereço de rede entre diversas redes físicas
- Minimiza o desperdício de endereços

Sub-redes

- Endereços de sub-rede podem variar os bits de prefixo de rede e identificador de estação
 - O novo prefixo deve ser maior que o prefixo original
 - O identificador de rede e prefixo de estação deve possuir 32 bits
- Os endereços de rede classes A, B ou C podem ser utilizados para criar sub-redes

Super-redes

- Permite o uso de diversos endereços de rede nas redes de uma instituição
- Alocam quantidade de endereços adequada a cada instituição
 - Partes de endereços classe A, B ou C
- O bloco deve comportar o número de estações da instituição

Super-redes

- Bloco de endereços é um conjunto contíguo de endereços
 - O tamanho do bloco deve ser potência de 2 (8, 16, 32 ... 2.048...)
 - Satisfaz algumas restrições adicionais
- Os endereços são formados por um prefixo de bloco e um identificador de estação
 - Endereço pode ter variado o número de bits no prefixo de bloco
 - Invalida o conceito de classes A, B e C
 - Identificador de estação define o tamanho do bloco

Arquiteturas de endereçamento

- Arquitetura Classfull
 - Adota o conceito de classes A, B e C
 - O roteamento usa o conceito de classes
 - Suporta esquema de sub-redes
 - Não suporta o esquema de super-redes

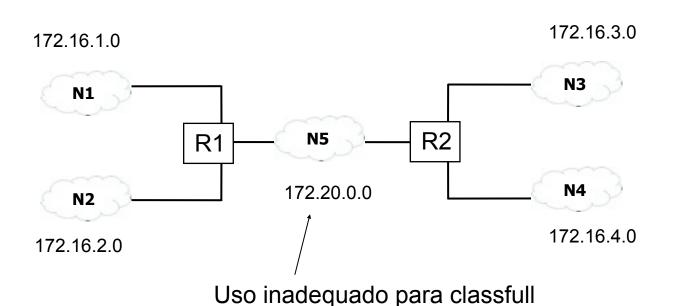
- Arquitetura Classless
 - Não adota o conceito de classes A, B e C
 - O roteamento n\u00e3o usa o conceito de classes
- Suporta o esquema de sub-redes e de superredes

Arquiteturas de endereçamento

Arquitetura Classfull

- Sub-rede é a subdivisão de um endereço de rede classe A, B ou C em endereços de sub-rede
 - Proíbe alguns endereços de sub-rede
 - Não permite recursividad e de subredes

Arquitetura Classless


- Sub-rede é a subdivisão de um endereço de rede classe A, B ou C em endereços de sub-rede
- O Permite todos os endereços de sub-rede
- Permite recursividade de sub-rede

Arquiteturas de endereçamento

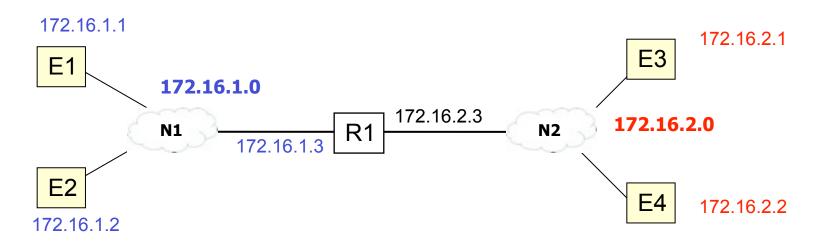
- Arquitetura Classfull
 - Sub-redes devem ser contíguas

- Arquitetura Classless
 - Sub-redes não precisam ser contíguas

Objetivo

- Permite um único endereço de rede classe A, B ou C ser compartilhado entre diversas sub-redes físicas
 - Modifica a estrutura hierárquica dos endereços IP
 - Divide o identificador de estação para representar as sub-redes

Identificador de rede Identificador de sub-rede Identificador de estação


Identificador de rede Identificador de sub-rede Identificador de estação

- Hierarquia de endereçamento
 - Identificador de sub-rede
 - Identifica, juntamente com o identificador de rede, cada sub-rede física de forma individual e única
 - A concatenação dos prefixos de rede e sub-rede é denominado de prefixo de sub-rede
 - Identificador de estação
 - Identifica de forma individual e única cada estação da sub-rede física

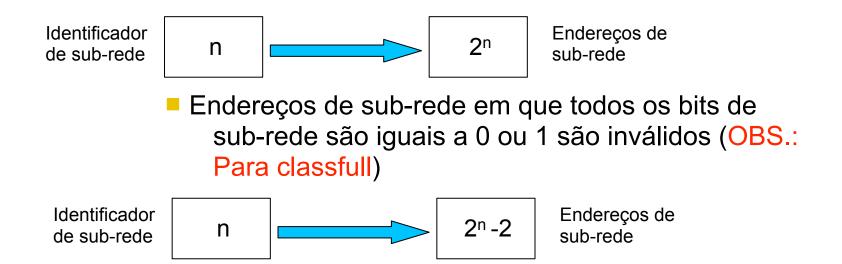
- Atribuição de endereços
 - Diferentes prefixos de sub-rede devem ser adotados para diferentes redes físicas
 - Um único prefixo de sub-rede deve ser compartilhado por interfaces da mesma rede física
 - Um único identificador de estação deve ser atribuído a cada interface de uma rede física

- Endereço de sub-rede
 - Pode ser utilizado para referenciar a sub-rede física

0 Identificador de rede Identificador de sub-rede 0...0

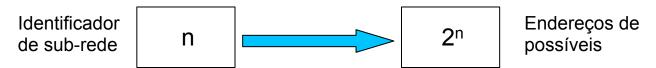
- Endereço de broadcast
- Permite o envio de datagrama para todas as estações da sub-rede

0 31 Identificador de rede Identificador de sub-rede 1...1



- Máscara de sub-rede
 - Objetivo
 - Delimitar a posição do prefixo de sub-rede e do identificador de estação
 - Representação
 - Padrão de 32 bits
 - Possui bits 1 para o prefixo de sub-rede
 - Possui bits 0 para o identificador da estação
 - Pode ser representada pela notação decimal pontuada

- Projeto de sub-redes
 - Número de sub-redes
 - Definido pelo número de bits do identificador de subrede



- Projeto de sub-redes
 - Exemplo: sub-dividir o endereço 192.168.1.0/24 utilizando 3 bits do identificador de estação como identificador de sub-rede

0	<u> 25 27</u>	7 31	
11000000 10101000 00000001	000	00000	192.168.1.0/27
11000000 10101000 00000001	001	00000	192.168.1.32/27
11000000 10101000 00000001	010	00000	192.168.1.64/27
11000000 10101000 00000001	011	00000	192.168.1.96/27
11000000 10101000 00000001	100	00000	192.168.1.128/27
11000000 10101000 00000001	101	00000	192.168.1.160/27
11000000 10101000 00000001	110	00000	192.168.1.192/27
11000000 10101000 00000001	111	00000	192.168.1.224/27

- Endereços possíveis
 - Conjunto de endereços que compartilham o mesmo prefixo de sub-rede

- Endereços válidos
 - Conjunto de endereços possíveis que podem ser atribuídos às interfaces

Endereços possíveis e válidos

Endereço de sub-rede	Endereços possíveis	Endereços válidos
192.168.1.32/27	192.168.1.32 até 192.168.63	192.168.1.33 até 192.168.62
192.168.1.64/27	192.168.1.64 até 192.168.1.95	192.168.1.65 até 192.168.1.94
192.168.1.96/27	192.168.1.96 até 192.168.1.127	192.168.1.97 até 192.168.1.126
192.168.1.128/27	192.168.1.128 até 192.168.1.159	192.168.1.129 até 192.168.1.158
192.168.1.160/27	192.168.1.160 até 192.168.1.191	192.168.1.161 até 192.168.1.190
192.168.1.192/27	192.168.1.192 até 192.168.1.223	192.168.1.193 até 192.168.1.222