LISTA DE EXERCÍCIOS – PARTE I ÁLGEBRA ABSTRATA – VERÃO 2012

PROF. FRANCISCO MEDEIROS

I. Grupos

(1) Mostre que o conjunto $G := \{a + b\sqrt{2} \in \mathbb{R}^* \mid a, b \in \mathbb{Q}\}$, munido do produto $(a + b\sqrt{2}) \cdot (c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2},$

é um grupo abeliano.

- (2) Mostre que (\mathbb{R}, \star) é um grupo abeliano, onde \star é definida por $x \star y = x + y 3$, para quaisquer $x, y \in \mathbb{R}$.
- (3) Verifique se $\mathbb{Z} \times \mathbb{Z}$ é um grupo em relação a alguma das leis:
 - (a) $(a,b) \star (c,d) = (a+c,b+d)$
 - (b) $(a, b) \cdot (c, d) = (ac, bd)$
- (4) Determine, em cada um dos seguintes casos, se o sistema descrito é ou não um grupo. Em caso negativo, sinalize qual ou quais dos axiomas de grupo não se verificam.
 - (a) (\mathbb{Z}, \star) , onde $a \star b = a b$.
 - (b) (\mathbb{Z}_+^*,\cdot) , onde \mathbb{Z}_+^* é o conjunto de todos os inteiros positivos e \cdot é o produto usual de \mathbb{Z} .
 - (c) $G = \text{conjunto de todos os números racionais com denominadores ímpares,} munido do produto <math>a \star b = a + b$, onde + é a soma usual de números racionais.
- (5) Seja $G = \{e, a, b\}$ um grupo. Mostre que G é abeliano e que $a \cdot b = e$.
- (6) Sejam G um grupo e $a, b, c \in G$. Prove que $(abc)^{-1} = c^{-1}b^{-1}a^{-1}$.
- (7) Mostre que se x é um elemento de um grupo satisfazendo $x \cdot x = x$, então x é o elemento neutro desse grupo.
- (8) Seja G um grupo tal que $(a \cdot b)^2 = a^2 \cdot b^2$, para todo $a, b \in G$. Mostre que G é abeliano.
- (9) Seja G um grupo em que todo elemento é seu próprio inverso, isto é, $a \cdot a = e$ para todo $a \in G$. Mostre que G é abeliano. **Dica:** $(ab)^2 = e$

 $^{^{1}}$ É frequente usar a notação $x^{2} = x \cdot x$

- (10) Mostre que se G é grupo de ordem par, então existe $a \in G$, $a \neq e$, tal que $a = a^{-1}$. **Dica**: Note que $G = A \cup B$, onde $A = \{x \in G \mid x \neq x^{-1}\}$ e $B = \{x \in G \mid x = x^{-1}\}$
- (11) Sejam A um conjunto não vazio e \mathbb{R}^A o conjunto de todas as funções de A em \mathbb{R} , isto é, $\mathbb{R}^A := \{f \colon A \to \mathbb{R} \mid f \text{ \'e função}\}$. Definimos uma "adição" e uma "multiplicação" em \mathbb{R}^A da seguinte forma:

$$\forall f, g \in \mathbb{R}^A: \bullet (f+g)(x) = f(x) + g(x), \forall x \in A$$
$$\bullet (f \cdot g)(x) = f(x) \cdot g(x), \forall x \in A$$

Mostre que $(\mathbb{R}^A, +)$ é grupo. Por que (\mathbb{R}^A, \cdot) não é grupo, em geral?

- (12) Dados $a, b \in \mathbb{R}$, definimos $f_{ab} \colon \mathbb{R} \to \mathbb{R}$ por $f_{ab}(x) = ax + b$, para todo $x \in \mathbb{R}$. Mostre que o conjunto $G := \{f_{ab} \mid a, b \in \mathbb{R} \text{ e } a \neq 0\}$ é um grupo quando munido da composição usual de funções.² Encontre a fórmula para $f_{ab} \circ f_{cd}$.
- (13) Sejam G um grupo e $A, B \subset G$, ambos não vazio. Definimos $A^{-1} := \{x^{-1} \mid x \in A\}$ e $AB := \{a \cdot b \mid a \in A \text{ e } b \in B\}$. Mostre que:
 - (a) $(A^{-1})^{-1} = A e$
 - (b) $(AB)^{-1} = B^{-1}A^{-1}$.

II. Subgrupos & Grupos Cíclicos

(14) Sejam G um grupo e $H \subset G$, não vazio. Usando a mesma notação do exercício 13, moste que:

$$H$$
é subgrupo de $G\iff HH\subset H$ e $H^{-1}\subset H$

- (15) Sejam H e K subgrupos de G. Mostre que $H \cap K$ é um subgrupo de G.
- (16) Mostre que se H e K são subgrupos de um grupo G, então $H \cup K$ é subgrupo de G se, e somente se, $H \subset K$ ou $K \subset H$.
- (17) Verifique se são subgrupos:
 - (a) $\mathbb{Q}_+^* := \{x \in \mathbb{Q} \mid x > 0\}, \text{ de } (\mathbb{Q}^*, \cdot)$
 - (b) $2\mathbb{Z} := \{0, \pm 2, \pm 4, \pm 6, \dots\}, \text{ de } (\mathbb{Z}, +)$
 - (c) $2\mathbb{Z}$, de $(\mathbb{Q} \{1\}, \star)$, onde \star está definida como $a \star b = a + b ab$
 - (d) $\mathbb{S}^1 := \{ a + bi \in \mathbb{C} \mid a^2 + b^2 = 1 \}$, de (\mathbb{C}^*, \cdot)
- (18) Com a notação do problema 12, mostre que $H:=\{f_{ab}\in G\mid a\in\mathbb{Q}\}$ é um subgrupo de G.

²Qunado $a \neq 0$, a aplicação f_{ab} é chamada de função afim. Quando $a \neq 0$ e b = 0, f_{ab} é chamada de função linear.

- (19) Com a notação do problema 12, seja $N := \{f_{1b} \in G\}$. Prove que:
 - (a) N é um subgrupo de G.
 - (b) Se $g \in G$ e $n \in N$, então $g \circ n \circ g^{-1} \in N$.
- (20) Mostre que as matrizes do tipo $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, com $a, b \in \mathbb{R}$ e não ambos nulos, constituem um subgrupo do grupo linear $\mathbf{GL}_2(\mathbb{R}) := \{A \in \mathbf{M}_2(\mathbb{R}) \mid \det A \neq 0\}$.
- (21) Seja G um grupo finito. Mostre que $H \subset G$, $H \neq$, é subgrupo de G se, e somente se " $a, b \in H \Longrightarrow a \cdot b \in H$ ".
- (22) Mostre que $H \subset \mathbb{Z}$ é subgrupo do grupo $(\mathbb{Z}, +)$ se, e somente se , $\exists m \in H$ de modo que $H = m\mathbb{Z} := \{km \mid k \in \mathbb{Z}\}.$
- (23) Determine os elementos de subgrupo $3\mathbb{Z} \cap 6\mathbb{Z}$ de $(\mathbb{Z}, +)$.
- (24) Seja G um grupo e $a \in G$. Mostre que o conjunto $N(a) := \{x \in G \mid ax = xa\}$ é um subgrupo de G.
- (25) Seja G um grupo. Mostre que o conjunto $Z:=\{z\in G\mid zx=xz, \text{ para todo }x\in G\}$ é um subgrupo de G.
- (26) Mostre que todo grupo de ordem 2 ou 3 é cíclico.
- (27) A tábua de multiplicação abaixo define uma operação \cdot que confere ao conjunto $G = \{e, a, b, c, d, f\}$ uma estrutura de grupo.

	е	a	b	c	d	f
е	е	a	b	c	d	f
a	a	b	c	d	f	е
b	b	c	d	f	е	a
С	С	d	f	е	a	b
d	d	f	е	a	b	c
f	f	е	a	b	c	d

Pede-se determinar:

- (a) o subgrupo gerado por b;
- (b) a ordem de d;
- (c) os geradores de G;
- (d) $x \in G$ tal que $b \cdot x \cdot c = d^{-1}$.

 $^{^3}N(a)$ se chama, geralmente, normalizador ou centralizador de a em ${\cal G}.$

 $^{^{4}}Z$ é chamado, geralmente, de *centro* do grupo G.

Dica: Para o item (c) use os itens (a) e (b) para concluir que b e d não geram G e veja também que $\langle a \rangle = \langle f \rangle$. Para o item (d) veja que $b \cdot x \cdot c = d^{-1} \iff x = b^{-1} \cdot d^{-1} \cdot c^{-1}$ e consulte a tabela acima para encontrar os inversos de b e d.

- (28) Mostre que qualquer subgrupo de um grupo cíclico é também um grupo cíclico.
- (29) Quantos geradores tem um grupo cíclico de ordem n? ⁵
- (30) Se em um grupo G tem-se que $a^5 = e$ e $aba^{-1} = b^2$ para $a, b \in G$, determine a o(b). **Dica**: Calcule b^4, b^8, b^{16}, \dots
- (31) Sejam G um grupo e $x \in G$. Mostre que se existe um inteiro positivo n tal que $x^n = e$, então existe um inteiro positivo m tal que $x^{-1} = x^m$.
- (32) Sejam G um grupo e $a,b \in G$. Mostre que se o(ab) = o(a) = o(b) = 2, então ab = ba.

III. Classes Laterais & Subgrupos Normais

- (33) Determine todas as classes laterais do subgrupo $3\mathbb{Z}$ de $(\mathbb{Z}, +)$.
- (34) Se H é um subgrupo de G tal que (G:H)=2, mostre que $aH=Ha, \forall a\in G$.
- (35) Seja H como no problema anterior. Mostre que H é um subgrupo normal de G.
- (36) Sejam N um subgrupo normal de G e H é um subgrupo qualquer de G. Usando a mesma notação do exercício 13, mostre que NH é um subgrupo de G e que NH = HN.
- (37) Sejam H e K dois subgrupos normais de G. Mostre que $H \cap K$ e HK também são subgrupos normais de G.
- (38) Mostre que o subconjunto Z como definido no problema 25 de um grupo G é um subgrupo normal de G.
- (39) Prove que todo subgrupo de um grupo abeliano é normal.
- (40) Seja G um grupo e seja H um subgrupo de G. Seja, para $g \in G$ fixado, $gHg^{-1} := \{ghg^{-1} \mid h \in H\}$. Prove que gHg^{-1} é um subgrupo de G.
- (41) Para um dado subgrupo H de G, defina $N(H) := \{g \in G \mid gHg^{-1} = H\}$. Prove:
 - (a) N(H) é um subgrupo de G;
 - (b) H é um subgrupo normal de N(H);
 - (c) Se H é um subgrupo normal do subgrupo K em G, então $K \subset N(H)$ (isto é, N(H) é o maior subgrupo de G em que H é normal);
 - (d) H é normal em G se, e somente se, N(H) = G.

 $^{{}^{5}}b \in G$ é um gerador de G se $\langle b \rangle = G$.