Lista 3 - Intodução à Álgebra Linear

- 1. Decida quais dos subconjuntos abaixo do \mathbb{R}^3 são linearmente independentes:
 - (a) $\{(1,0,0),(0,1,0),(0,0,1),(2,3,5)\}$
 - (b) $\{(1,1,1),(1,0,1),(1,0,-2)\}$
 - (c) $\{(1,1,1),(1,2,1),(3,2,1)\}$
- 2. Decida quais dos subconjuntos abaixo do $\mathcal{P}_4(\mathbb{R})$ são linearmente independentes:
 - (a) $\{1, x 1, x^2 + 2x + 1, x^2\}$
 - (b) $\{x(x-1), x^3, 2x^3 x^2, x\}$
- 3. Demonstrar que o conjunto $\{1, e^x, e^{2x}\}$ de vetores de $\mathcal{C}([0, 1])$ é L.I.
- 4. Determinar m e n para que o conjunto de vetores $\{(6,2,n),(3,m+n,m-1)\}$ do \mathbb{R}^3 seja L.I.
- 5. Suponha que $\{v_1, \ldots, v_n\}$ é um subconjunto L.I. de um espaço vetorial. Mostrar que $\{a_1 \cdot v_1, \ldots, a_n \cdot v_n\}$ também é L.I., desde que os escalares a_1, \ldots, a_n sejam todos não nulos.
- 6. Dar uma base e a dimensão do subespaço W de \mathbb{R}^4 onde $W=\{(x,y,z,t)\in\mathbb{R}^3\mid x-y=0\ \text{e}\ x-3y+t=0\}.$
- 7. Sendo W e U subespaços do \mathbb{R}^4 de dimensão 3, que dimensões pode ter W+U se os vetores (1,2,1,0), (-1,1,0,1) e (1,5,2,1) formam um sistema de geradores de $W \cap U$.
- 8. Sendo W o subespaço do exercício 6 e U o subespaço do \mathbb{R}^4 gerado pelos vetores (1,2,1,3) e (3,1,-1,4), determinar uma base e a dimensão de U+W e $U\cap W$.
- 9. Mostrar que os polinômios $1, 1+t, 1-t^2, 1-t-t^2-t^3$ formam uma base de $\mathcal{P}_3(\mathbb{R})$.
- 10. Determinar uma base e a dimensão do espaço solução de cada um dos seguintes sistemas lineares homogêneos:

(a)
$$\begin{cases} x - y = 0 \\ 2x - 3y = 0 \\ 3x + \frac{1}{2}y = 0 \end{cases}$$

(b)
$$\begin{cases} x + y + z &= 0\\ 2x - y - 2z &= 0\\ x + 4y + 5z &= 0 \end{cases}$$

- 11. Determinar uma base de \mathbb{R}^4 que contenha os vetores (1,1,1,0) e (1,1,2,1).
- 12. Sejam u_1, \ldots, u_n vetores de um espaço vetorial V. Provar que se cada vetor u de $S = [u_1, \ldots, u_n]$ admite uma única respresentação como combinação linear de u_1, \ldots, u_n , então os veores u_1, \ldots, u_n formam uma base de S.

1

- 13. Determinar a dimensão fos seguintes subespaço de $\mathbf{M}_3(\mathbb{R})$:
 - (a) Subespaço das matrizes simétricas;
 - (b) Subespaço das matrizes anti-simétricas.