
AULA PRÁTICA 06

Multímetro

MULTÍMETRO

CARACTERÍSTICAS

- O multímetro digital tem display grande com iluminação de fundo e medidas de tensão DC / AC, corrente DC / AC, resistência, capacitância, temperatura, frequência e indutância, e pelos testes de diodo, continuidade e hFE de transistor.
- O projeto da estrutura adota um holster protetor que se molda ao gabinete dos instrumentos, diferente dos padrões convencionais.

CARACTERÍSTICAS

Como características adicionais apresenta as funções Peak Hold, Auto Power Off, indicador de bateria fraca, fusível de auto restauração na entrada mA e fusível de ação rápida na entrada 20A

IMPORTANTE

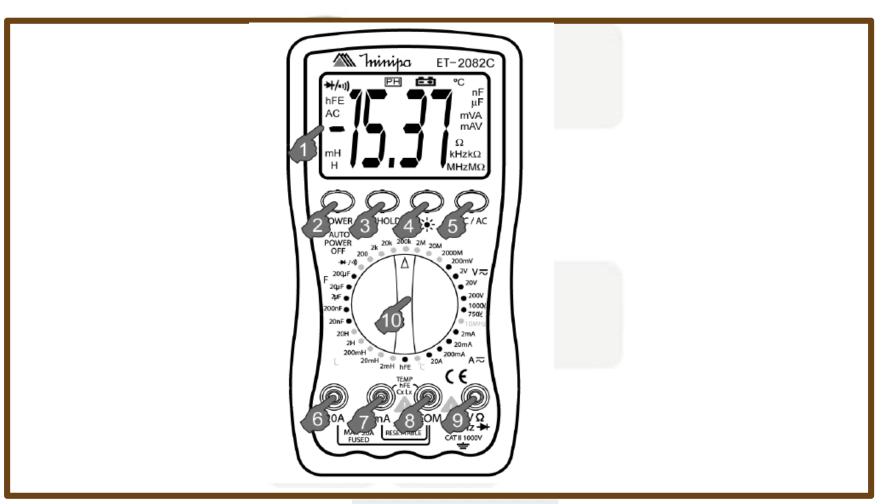
- Use o instrumento somente como especificado no manual de instruções, caso contrário a proteção proporcionada pelo instrumento pode ser comprometida.

SÍMBOLOS ELÉTRICOS INTERNACIONAIS

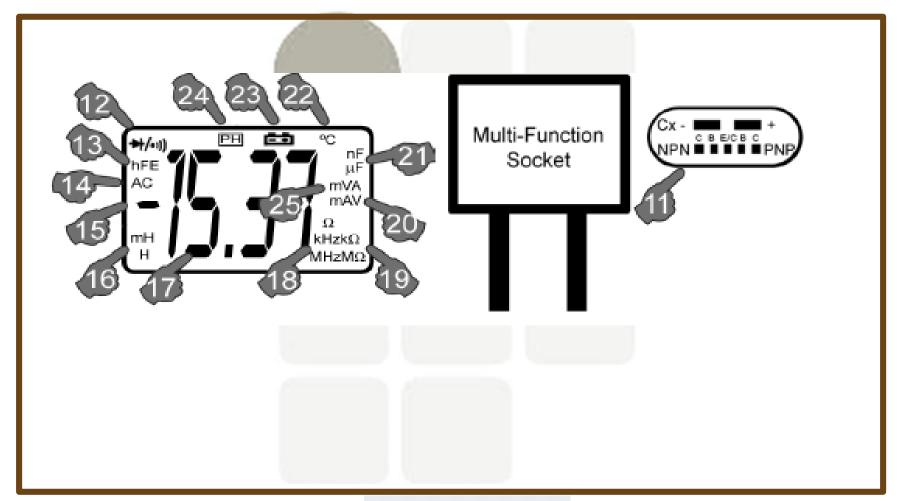
~	AC (Corrente Alternada)	+ -	Bateria Fraca
	DC (Corrente Direta)	B S	Teste de Continuidade
=	AC ouDC	*	Diodo
÷	Aterramento	+	Teste de Capacitância
	Dupla Isolação	♠	Advertência. Refira-se ao Manual de Instruções

ESTRUTURA DO INSTRUMENTO

- 1. Display LCD.
- 2. Tecla POWER: Liga e desliga o instrumento.
- 3. Tecla PK HOLD: Pressione para congelar o valor máximo medido no LCD. O indicador PH acende. Pressione novamente para sair deste modo.
- 4. Tecla: Acende a iluminação do display, que desliga-se automaticamente após cerca de 10 segundos.

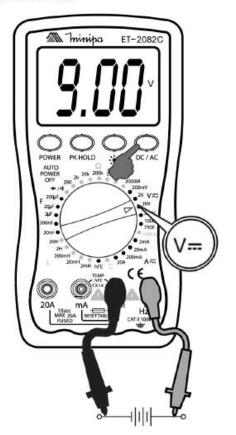

- 5. Tecla DC/AC: Utilizada para alternar entre os modos DC e AC nas medidas de tensão e corrente.
- 6. Terminal de Entrada 20A: Entrada positiva para medidas de corrente na
- escala de 20A.
- 7. Terminal de Entrada mA: Entrada positiva para medidas de corrente nas escalas de mA, e entrada negativa para medidas de capacitância, indutância, temperatura e hFE.

• 8. Terminal de Entrada COM: Entrada negativa para as medidas de tensão, resistência, frequência e corrente, e para os testes de diodo e continuidade. Também é a entrada positiva para as medidas de capacitância, indutância, temperatura e hfe.


- 9. Terminal de Entrada VWHz: Entrada positiva para medidas de tensão, resistência e frequência, e para os testes de diodo e continuidade.
- 10. Chave Rotativa.
- 11. Adaptador Multi Funções: Para medida de temperatura, capacitância, indutância e hFE de transistor.
- 12. Indicador do teste de continuidade e indicador do teste de diodo.
- 13. Indicador da medida de hFE de transistor.

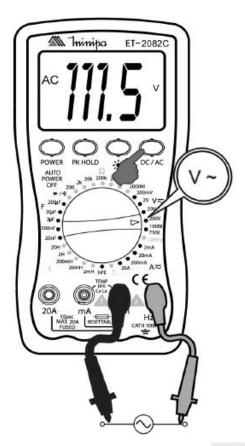
- 14. Indicador AC: Para medida de tensão e corrente AC.
- 15. Indicador de Polaridade Negativa (positiva é implícita).
- 16. Unidades de medida de indutância (mH e H).
- 17. Dígitos do Display de Cristal Líquido.
- 18. Unidades de medida de frequência (kHz e MHz).
- 19. Unidades de medida de resistência (W, kW e MW).

- 20. Unidades de medida de tensão (mV e V).
- 21. Unidades de medida de capacitância (nF e μF).
- 22. Unidade de medida de temperatura (°C).
- 23. Indicador de Bateria Fraca.
- 24. Indicador PH do modo Peak Hold.
- 25. Unidades de medida de corrente (mA e A).

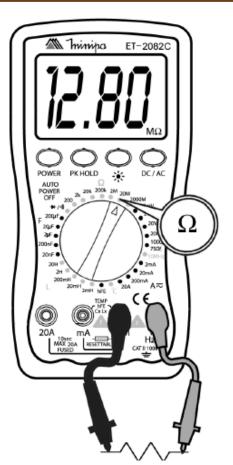

ESTRUTURA DO INSTRUMENTO

MEDINDO TENSÃO DC

OPERAÇÃO DAS MEDIDAS


A. Medidas de Tensão DC

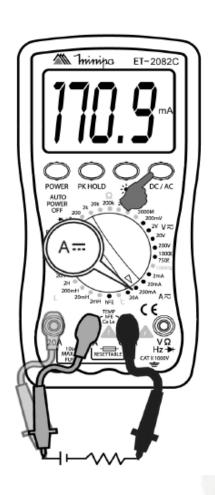
Para evitar ferimentos pessoais danos ou ao instrumento a partir de choques elétricos, por favor não tente medir tensões maiores que 1000V DC.


MEDINDO TENSÃO AC

B. Medidas de Tensão AC

evitar Para ferimentos pessoais ou danos ao instrumento a partir de choques elétricos, por favor não tente medir tensões maiores que 1000V DC / **750V RMS.**

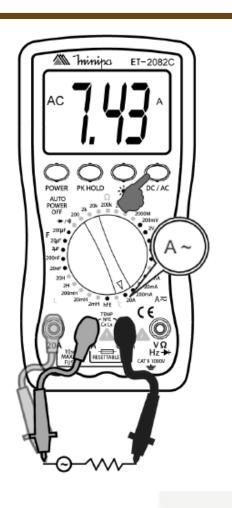
MEDINDO RESISTÊNCIA


Para evitar danos ao instrumento ou dispositivo em teste, desconecte alimentação circuito e descarregue todos os capacitores de alta tensão antes da medida de resistência.

Nota

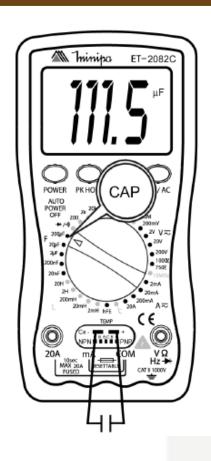
 As pontas de prova podem adicionar 0. Ω a 0.2Ω de erro na medida de resistência.

MEDINDO CORRENTE

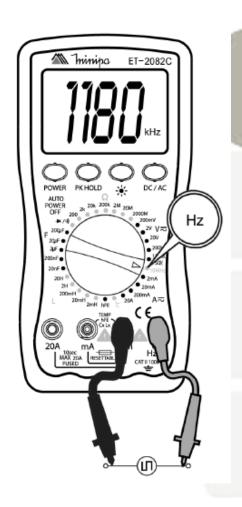


Nunca tente efetuar a medida de corrente em um circuito onde tensão de circuito aberto entre o circuito e o terra seja maior que 250V. Se o fusível se queimar durante uma medida, o instrumento pode ser danificado ou o sofrer usuário ferimentos.

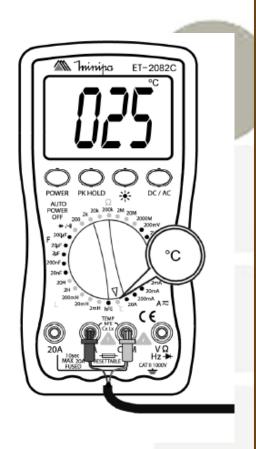
MEDINDO CORRENTE


- Utilize os terminais, função e faixa de medida apropriados.
- Quando o instrumento estiver configurado para medir corrente, não coloque-as em paralelo com nenhum circuito.
- Posicione a chave rotativa em uma das faixas A (2mA, 20mA, 200mA ou 20A).
- Lembre-se que para medida na faixa 20A, deve-se usar a entrada de 20A.

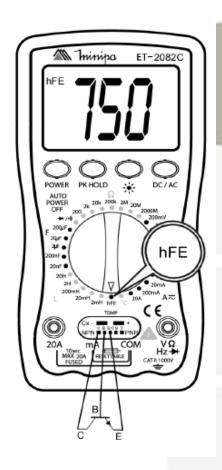
MEDINDO CORRENTE


 Quando o instrumento estiver configurado para medir corrente, não coloque-as em paralelo com nenhum circuito.

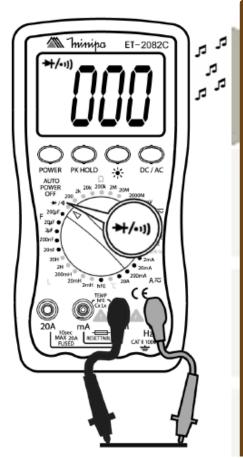
MEDINDO CAPACITÂNCIA


Posicione a chave rotativa em umas das faixas F (20nF, 200nF, $2\mu F$, $20\mu F$ ou $200\mu F$). E utilize o adaptador multi funções ou as pontas de prova, nas polaridades corretas (COM - positivo e mA - negativo).

MEDINDO FREQUÊNCIA


 Posicione a chave rotativa na faixa 10MHz (2kHz, 20kHz, 200kHz, 2000kHz ou 10MHz autorange).

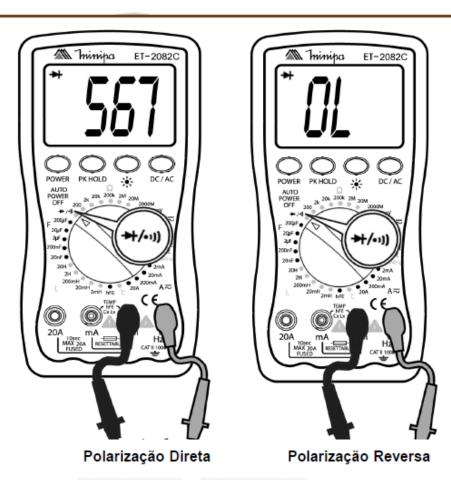
MEDINDO TEMPERATURA


Posicione a chave rotativa em °C . Observe a polaridade correta,
COM - positivo (vermelha) e mA - negativo (preta).

MEDINDO HFE

Posicione a chave rotativa em hFE. Identifique o tipo de transistor (NPN ou PNP) e conecte os terminais emissor, base e coletor aos pontos correspondentes do adaptador multi funções

TESTE DE CONTIUIDADE


Para evitar danos ao instrumento ao dispositivo em teste, desconecte a alimentação do circuito e descarregue todos os capacitores de alta tensão antes do teste de continuidade.

Nota

 O LCD mostra apenas o dígito mais significativo φL) para indicar que o circuito em teste está aberto.

TESTANDO DIODOS

TESTANDO SEMICONDUTORES

 Utilize o teste de diodo para testar não só diodos, mas também transistores e outros dispositivos semicondutores. O teste de diodo envia uma corrente através da junção do semicondutor, e então mede a queda de tensão sobre a junção. Uma junção de silício boa fornece uma queda de 0.5V a 0.8V.

TESTANDO SEMICONDUTORES

 Em um circuito, um diodo bom ainda deve produzir uma leitura de queda de tensão direta de 0.5V a 0.8V; entretanto, a leitura da queda de tensão reversa pode variar dependendo da resistência de outros caminhos entre as extremidades das pontas de prova

OBSERVAÇÃO

J. Teste de Diodo / Continuidade

Faixa	Descrição	Condição de Teste
*	O display exibe a queda de tensão aproximada do diodo.	Corrente direta de aprox. 1mA, e tensão reversa de aprox 3V.
4 111))	A buzina toca se a resistência medida for menor que (30±10) Ω	Tensão de Circuito Aberto de aprox. 3V.

Observações: Proteção de Sobrecarga: 250V DC / Pico AC.

K. Teste de hFE de Transistor

Faixa	Descrição	Condição de Teste
0~1000	O display exibe o valor de hFE do transistor em teste	Corrente de Base de 10µA e Vce de 3V.

MODO PEAK HOLD

- O modo Peak Hold é aplicável a todas as funções de medida, mas sua maior aplicação é nas medidas de tensão e corrente.
- Pressione PK HOLD para entrar no modo Peak Hold e congelar o valor máximo.
- Pressione PK HOLD novamente para sair do modo Peak Hold.
- No modo Peak Hold, PH é mostrado no display.

AUTO POWER OFF

 Para preservar a vida útil da bateria, o instrumento desliga-se automaticamente após aproximadamente 20 minutos. Para retornar do modo de Auto Power Off, pressione a tecla POWER duas vezes.

CARACTERÍSTICAS GERAIS

- Indicação de Sobrefaixa: OL.
- Auto Power Off: Aprox. 20 ± 10 minutos.
- Proteção por Fusível para o Terminal de Entrada mA: Fusível de Auto Restauração 200mA / 250V.
- Proteção por Fusível para o Terminal de Entrada 20A: Fusível de Ação Lenta 15A / 250V.
- Contagem Máxima do Display: 1999.
- Taxa de Amostragem: Aprox. 3 vezes por segundo.
- •

CARACTERÍSTICAS GERAIS

- Coeficiente de Temperatura: 0.1 x (precisão especificada) / 1° C, < 18° C ou > 28° C.
- Ambiente: Operação: 0°C a 40°C (32°F a 104°F), RH<80%.
- Armazenamento: -20°C a 60°C (-4°F a 140°F), RH<80%.
- • Altitude: Operação: 2000m. Armazenamento: 10000m.
- Tipo de Bateria: 1 x 9V (NEDA1604 ou 6F22 ou 006P).

Indicador de Bateria Fraca: \equiv

SERVIÇOS

- Periodicamente limpe o gabinete com pano macio umedecido em detergente neutro. Não utilize produtos abrasivos ou solventes.
- Limpar os terminais com cotonete umedecido em detergente neutro quando a sujeira ou a umidade estiverem afetando as medidas.
- Desligue o instrumento quando este não estiver em uso.
- Retire a bateria quando não for utilizar o instrumento por muito tempo.
- •

SERVIÇOS

- Não utilize ou armazene o instrumento em locais úmidos, com alta temperatura, explosivos, inflamáveis e fortes campos magnéticos;
 - -Para trocar a bateria; Desligue o instrumento e remova todas as conexões dos terminais de entrada. Remova o parafuso do compartimento da bateria, e separe a tampa da bateria do gabinete inferior. Remova a bateria do compartimento da bateria. Recoloque uma bateria nova de 9V. Encaixe o gabinete inferior e o compartimento da bateria e reinstale o parafuso.