INSTALAÇÕES ELÉTRICAS DE BAIXA TENSÃO Prof. Jean Galdíno Campus São Paulo do Potengí 2015.1

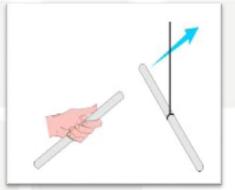
AULA 02

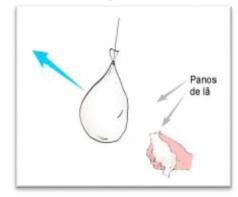
- Grandezas físicas
 - medidas de grandeza
- Unidades fundamentais e derivadas
- Grandezas físicas elétricas
 - Tensão
 - Corrente
 - Resistência
 - Potência

ELETRIZAÇÃO

- Eletrizar um corpo significa colocar ou retirar elétrons de um corpo. As principais maneira de se eletrizar um corpo são:
 - Atrito;
 - Contato;
 - Indução.

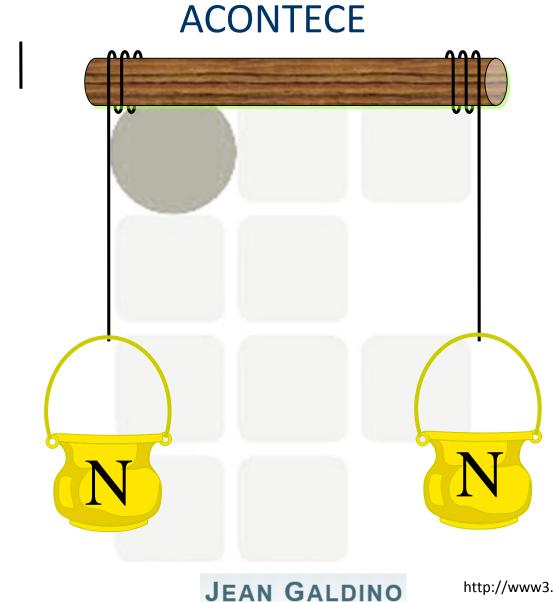
ELETRIZAÇÃO POR ATRITO



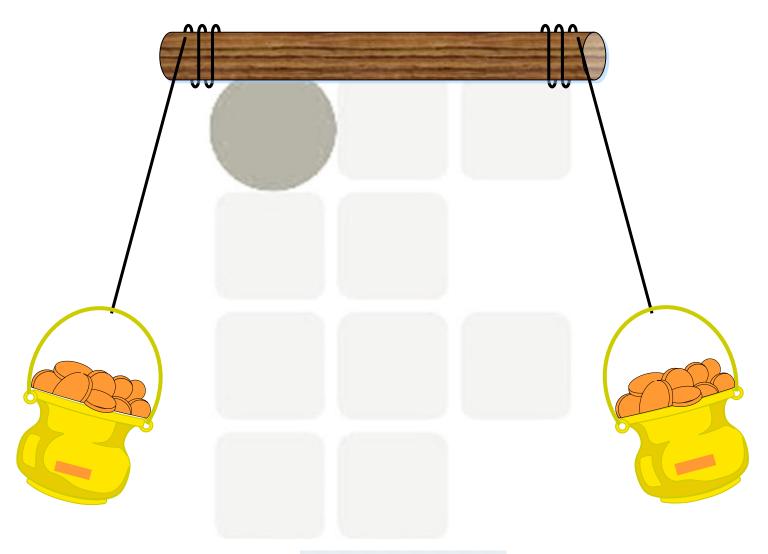

Atração

Repulsão

Repulsão

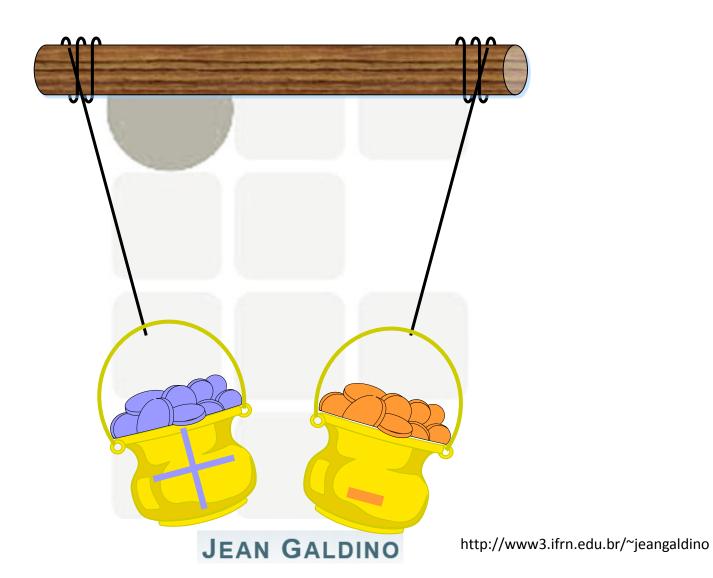

ELETRIZAÇÃO POR ATRITO

- Isso acontece porque, ao esfregarmos a lã contra o vidro, os dois inicialmente neutros, provocamos uma transferência de elétrons do vidro para a lã.
- É um processo semelhante ao que acontece quando usamos um pente de plástico para pentear o cabelo.


QUESTÃO FUNDAMENTAL

- Porque l\u00e1 e vidro atraem-se e l\u00e1 repele l\u00e1 e vidro repele vidro?
 - O vidro perdeu elétrons, ficando carregado positivamente, ao contrário da lã, que ao receber os elétrons, adquiriu carga negativa.
- Isto explica, em parte, a estrutura do átomo, onde os prótons positivos atraem os elétrons negativos.

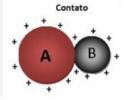
ELEMENTOS NEUTROS OU SEM CARGA, NADA



CARGAS IGUAIS

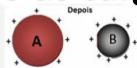
JEAN GALDINO http://www3.ifrn.edu.br/~jeangaldino

CARGAS DIFERENTES



ELETRIZAÇÃO POR CONTATO

- A está eletrizado com cargas positivas
- B está inicialmente neutro.


Ao se realizar o contato

 A repulsão entre os elétrons de A faz com que haja a transferência de parte desses elétrons para B.

ELETRIZAÇÃO POR CONTATO

- Após o contato a carga final de cada um é diretamente proporcional às dimensões de cada um.
- Se os condutores tiverem dimensões iguais, ao final do contato as cargas serão iguais.

 Com base no princípio de conservação da carga, esse valor será a média aritmética da carga total inicial¹.

1- É necessário que os corpos envolvidos formem um sistema eletricamente isolado.

ELETRIZAÇÃO POR CONTATO

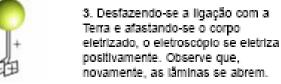
- Este tipo de eletrização pode gerar um choque elétrico.
 - –O contato do nosso corpo com a superfície eletrizada faz com que haja uma rápida passagem de cargas elétricas através do nosso corpo, daí aparecendo a sensação de choque elétrico.

EFEITO TERRA

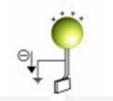
- O "Efeito Terra": A Terra, por ter dimensões bem maiores que qualquer corpo que precisemos manipular, pode ser considerada um grande "depósito" de elétrons.
- Se ligarmos uma esfera carregada positivamente à Terra, por meio de um fio, verificamos que rapidamente ela perde sua eletrização, ficando neutra.

EFEITO TERRA

- Isto acontece devido à subida de elétrons da Terra, que neutralizam a carga positiva da esfera.
- Da mesma maneira, ao ligarmos uma esfera de carga negativa, esta também perde sua carga, já que seus elétrons descem para a Terra.


ELETRIZAÇÃO POR INDUÇÃO

 Este tipo de eletrização faz uso da atração de cargas de sinais opostos, como na sequência mostrada na figura abaixo.


 Ao aproximarmos da esfera do eletroscópio um corpo eletrizado negativamente, o eletroscópio sofre indução eletrostática e as láminas se abrem.

 Ligando-se o eletroscópio à Terra, as láminas se fecham, pois os elétrons escoam para a Terra.

2- Eletroscópio é um instrumento que determina se um objeto está ou não eletrizado, podendo

ELETRIZAÇÃO POR INDUÇÃO

- A estrutura de um para-raios consiste em uma haste metálica colocada no ponto mais alto da estrutura a ser protegida.
- A extremidade inferior da haste é conectada a um cabo condutor, que desce pela estrutura e é aterrado ao solo. condutor, a densidade de cargas é maior em

ELETRIZAÇÃO POR INDUÇÃO

 Se a nuvem carregada estiver acima da haste, nesta são induzidas cargas elétricas intensificando o campo elétrico na região entre a nuvem e a haste, produzindo assim uma descarga elétrica através do para-raios.

JEAN GALDING

MEDIDAS

- Medidas
- Uma grandeza física é uma propriedade de um corpo, ou particularidade de um fenômeno, susceptível de ser medida, à qual se pode atribuir um valor numérico.
- A medição de uma grandeza é então a comparação dessa grandeza com outra da mesma espécie, um padrão, a que chamamos unidade por convenção.

MEDIÇÃO DE UMA GRANDEZA

- A medição de uma grandeza pode ser efetuada por:
 - √ comparação direta com um padrão
 - ✓ com um aparelho de medida (medição direta),
 - ✓ calculada, através de uma expressão conhecida, à custa das medições de outras grandezas (medição indireta).
 - ✓ O último caso engloba medidas diretas, por isso é importante ter alguns conhecimentos básicos sobre este tipo de medições.

GRANDEZAS

✓ Grandezas derivadas;

✓ Grandezas fundamentais e

g

grandezas

✓ Unidades derivadas;

✓ Unidades fundamentais

e

unidades

UNIDADES BÁSICAS

Unidades fundamentais do SI.		
Grandeza	Unidade	Símbolo
comprimento	metro	m
massa	quilograma	kg
tempo 😘	segundo	S
corrente elétrica	ampère	A
temperatura 😜	kelvin	К
quantidade de matéria	mol	mol -
intensidade luminosa	candela	cd

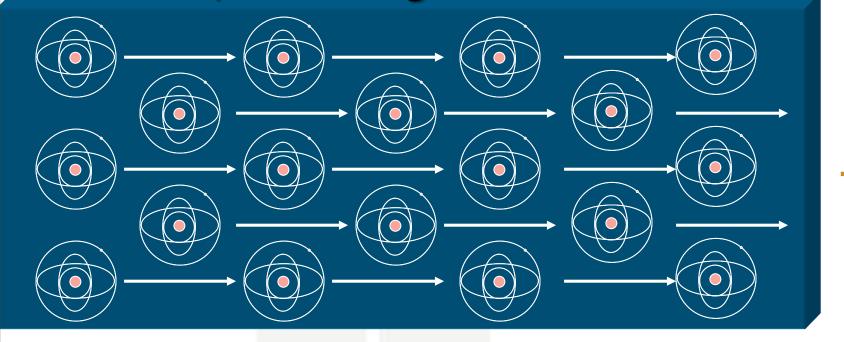
- ✓ Grandezas fundamentais e grandezas derivadas;
- ✓ Unidades fundamentais e unidades derivadas;

UNIDADES DERIVADAS

Algumas unidades derivadas do SI.		
Grandeza	Unidade	Símbolo
área	metro quadrado	m ²
volume	metro cúbico	m ³
densidade	quilograma por metro cúbico	Kg/m³
velocidade	metro por segundo	m/s
aceleração	metro por segundo ao quadrado	m/s²
força	newton	$N = Kgm/s^2$
pressão	pascal	$Pa = N/m^2$
trabalho, energia, calor	joule	J
potência	watt	W = J/s
carga elétrica	coulomb	C = A.s
diferença de potencial	volt	V = J/C
resistência elétrica	ohm	Ω=V/A

ATRAÇÃO

Se aproximarmos um polo positivo de um

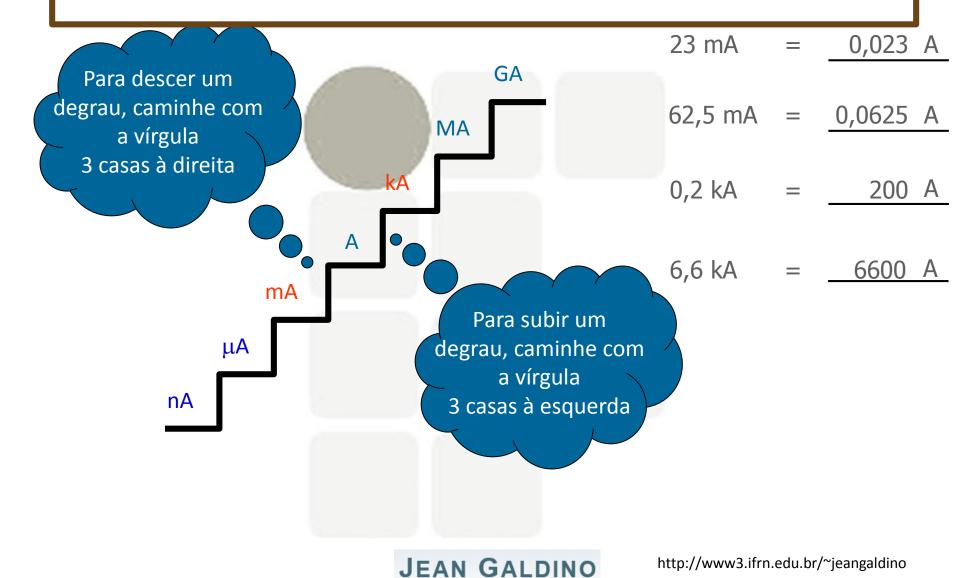

FLUXO DE CARGA

Se aproximarmos um polo positivo de um

FLUXO DE CARGA

 Estes elétrons passam a ter um movimento ordenado, dando origem à corrente elétrica,

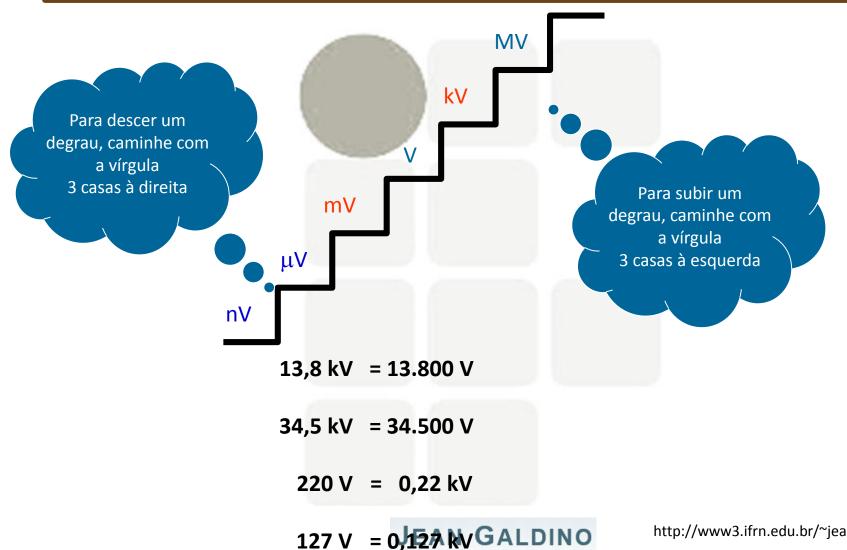
CORRENTE ELÉTRICA


- Corrente elétrica é o movimento ordenado dos elétrons no interior de um condutor.
 - -Símbolo da corrente elétrica (I)

- Definição de corrente elétrica

$$-I = \frac{\Delta Q}{\Delta t}$$

- Unidade: AMPÈRE (A).


MÚLTIPLOS E SUBMÚLTIPLOS

DEFINIÇÃO DE TENSÃO ELÉTRICA

- Tensão elétrica é a pressão exercida sobre os elétrons livres para que estes se movimentem no interior de um condutor.
- Símbolo VAs linhas de indução são uma simples representação gráfica da variação do vetor B.
- Unidade VOLTS (V)

MÚLTIPLOS E SUBMÚLTIPLOS DA TENSÃO ELÉTRICA

EXEMPLOS

- 13,8 kV = 13.800 V
- 34,5 kV = 34.500 V
- 220 V = 0,22 kV
- 127 V = 0,127 kV

RESISTÊNCIA ELÉTRICA

A 1ª lâmpada possui maior RESISTÊNCIA ELÉTRICA.

A 2ª lâmpada possui menor RESISTÊNCIA ELÉTRICA.

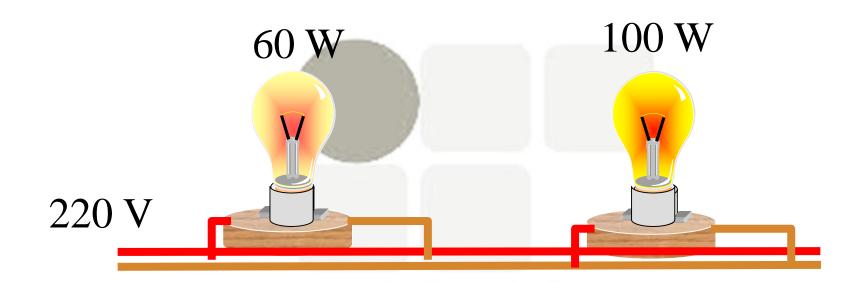
RESISTÊNCIA ELÉTRICA

- A oposição oferecida à passagem da corrente elétrica chamamos de
 - -SÍMBOLO R
 - UNIDADE OHM (Ω)
- Definição matemática
 - -1 ohm é a resistência que permite a passagem de 1 ampère quando submetida a tensão de 1 volt

MÚLTIPLOS E SUBMÚLTIPLOS

Para valores elevados, utilizamos os múltiplos e para valores muito baixos, os submúltiplos

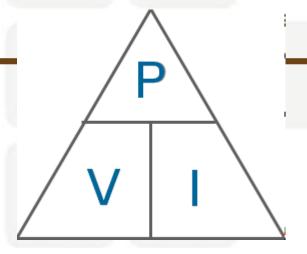
JEAN GALDINO


POTÊNCIA ELÉTRICA

- Da mesma maneira as cargas elétricas possuem uma capacidade de produzir trabalho.
- A capacidade de produzir trabalho de uma carga elétrica é expressa em Watts
 - SÍMBOLO P
 - UNIDADE WATT (W)
- Exemplo:
 - Capacidade de produzir trabalho de 100 W. Se for ligada a uma fonte de 127 V

Totência da lâmpada

OBSERVEMOS O BRILHO DAS LÂMPADAS


A POTÊNCIA DEPENDE DE OUTRAS GRANDEZAS

- R Resistência
- V Tensão
- I Corrente
- Aplicando a tensão V na resistência R circula a corrente I.

$$-P = V^2/R$$

$$-P = R \times I^2$$

$$-P = V \times I$$

ENERGIA

• É o produto da potência elétrica pelo tempo.

$$-E = P.t$$

Números do teleatendimento da Cosern e das agências reguladoras.

Número do NIS – Número de Identificação Social.

Descrição dos itens que compõem a nota fiscal. Este campo descreve os itens faturados na sua conta, seus valores e as tarifas aplicadas

Informações sobre os percentuais de impostos e tributos presentes nos valores pagos na conta de energia.

Data de vencimento da conta.

Valor total a pagar.

Número da Conta Contrato. Tenha-o em mãos sempre que entrar em contato com a Cosern.

Informações de débitos anteriores, caso existam.

Tarifas aplicadas.

Informações sobre a composição do consumo: neste campo você fica sabendo exatamente o que está pagando, entre os custos da energia e outros encargos e tributos.

Histórico do consumo dos últimos 13 meses.