# INSTALAÇÕES ELÉTRICAS DE BAIXA TENSÃO Prof. Jean Galdíno Campus São Paulo do Potengí 2015.1

#### **AULA 01**

- Introdução a disciplina
- Revisão e conceitos básicos de Química e física eletricidade

- Introdução
  - Para que nós e o Universo continuemos a existir é necessário que haja energia.
  - Além disso, sem energia o desenvolvimento de nossa sociedade seria inviável.
  - Nosso corpo precisa de energia para realizar as atividades do cotidiano.

- O termo energia vem do grego energéia, que significa "força" ou "trabalho".
- Um conceito que é bem aceito atualmente para definir "energia" é

"a capacidade para realizar trabalho"

- fontes energéticas em primárias, que são os produtos energéticos providos pela natureza na sua forma direta, como o petróleo, gás natural, carvão mineral, minério de urânio, lenha e outros.
  - poder calorífico desses produtos
  - a grande maioria está sob a forma química.

 Outras formas de energia primária como a hidráulica, eólica, solar e nuclear são tratadas de maneira especial, geralmente, levando em conta sua capacidade de gerar energia motriz.

 A energia secundária por exemplo, gasolina, o óleo diesel, o querosene, o gás liquefeito e outros. Em alguns casos, uma fonte secundária, como o óleo combustível obtido do petróleo, passa por outra transformação onde é convertido em eletricidade.

 Energia final designa a energia tal como é recebida pelo usuário nos diferentes setores, seja na forma primária, seja na secundária.

- Tipos de Energias
  - Cinética (energia de movimento um carro em movimento tem isto)
  - Potencial gravitacional (energia de posição pense na água armazenada em uma represa)
  - Elástica (energia de posição uma mola esticada tem isto)
  - Calor (é forma de energia, mas não confunda com temperatura!)

- Química (energia de posição gasolina tem muito disto em sua massa)
- Radiante (luz e calor radiante; pensa na luz do Sol incidindo em sua pele)
- Nuclear (tipicamente proveniente da quebra de átomos; pense na potência atômica)
- Elétrica (aquela que está fazendo meu computador funcionar enquanto digito isso!)
- Sonora (energia mecânica bem óbvio; gritando as crianças emitem muito dela)

 No final do século XVIII, Antoine Laurent Lavoisier (1743-1794) enunciou uma lei fundamental ao Universo, chamada de Lei de Conservação da Massa, que dizia:

Em uma reação química feita em recipiente fechado, a soma das massas dos reagentes é igual à soma das massas dos produtos

 Atualmente, essa lei é mais conhecida da seguinte forma:

Na natureza nada se cria, nada se perde; tudo se transforma

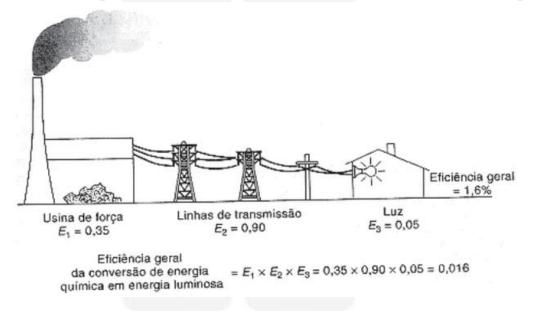
 É exatamente isso o que ocorre com a energia, ela não pode ser criada nem destruída; mas apenas transformada. Portanto, todos os tipos de energia são transformações de outros tipos de energia. Veja algumas dessas conversões:

- Energia Potencial em Energia Cinética:
- Um arco possui energia potencial elástica (ao ser esticado) e essa energia é convertida em energia cinética, quando a flecha é atirada;

- Energia Potencial em Energia elétrica:
- Nas usinas hidrelétricas, a energia potencial acumulada da queda d'água é transmitida até as casas, comércios e indústrias na forma de energia elétrica;

- Energia Elétrica em Energia Térmica:
- Numa torradeira ou num chuveiro elétrico, ou mesmo num ferro de passar roupas, estamos transformando a energia elétrica da tomada em calor;

 Energia Térmica em Energia Cinética: Num sistema formado por um cilindro provido de êmbolo móvel, se ele for aquecido por meio de uma lamparina, o ar no interior do cilindro será expandido e elevará o êmbolo;


- "Energia Química" em Energia Mecânica:
- A energia química contida nas moléculas dos combustíveis, como a gasolina, o etanol ou o diesel, é transformada por meio de reações em energia térmica e mecânica, o que faz o carro se movimentar.

- "Energia Química" em Energia Elétrica:
- Numa pilha ou bateria, a energia química contida nas moléculas das substâncias presentes nelas é transformada em energia elétrica, fazendo os equipamentos eletrônicos funcionarem.

Em qualquer transformação parte da energia é perdida no processo.

- A eficiência de um processo de conversão de energia é definida como a razão entre a produção de energia ou trabalho útil e o total de entrada de energia no processo.
- Em um processo de conversão de energia com diversas etapas, a eficiência geral será igual ao produto das eficiências das etapas individuais.

 A entrada de energia que não se transforma em trabalho útil é perdida sob formas não utilizáveis (como resíduos de calor).



- Eficiência da conversão de energia solar para eletricidade fornecida diretamente à rede de distribuição alcançou 31,25%.
- O gás natural uma eficiência de 85% na geração de calor e de 25% como força motriz.

#### Eficiência no sistema eólico chega a 35%

Tabela 1 – Valores médios da eficiência de conversão nos estágios do aerogerador

| Estágios de conversão         | Eficiência |
|-------------------------------|------------|
| Rotor                         | 40 %       |
| Transmissão                   | 95 %       |
| Gerador                       | 95 %       |
| Rajadas de vento e orientação | 95 %       |
| da turbina                    |            |
| Média geral                   | 35 %       |

Fonte: GIPE (1995)

## MÚLTIPLOS E SUBMÚLTIPLOS

| Múltiplos        |         |         |  |
|------------------|---------|---------|--|
| Factor           | Prefixo | Símbolo |  |
| $10^{1}$         | deca    | da      |  |
| $10^{2}$         | hecto   | h       |  |
| $10^{3}$         | quilo   | k       |  |
| $10^{6}$         | mega    | M       |  |
| $10^{9}$         | giga    | G       |  |
| $10^{12}$        | tera    | T       |  |
| 10 <sup>15</sup> | peta    | P       |  |
| $10^{18}$        | exa     | Е       |  |
| $10^{21}$        | zetta   | Z       |  |
| $10^{24}$        | yotta   | Y       |  |

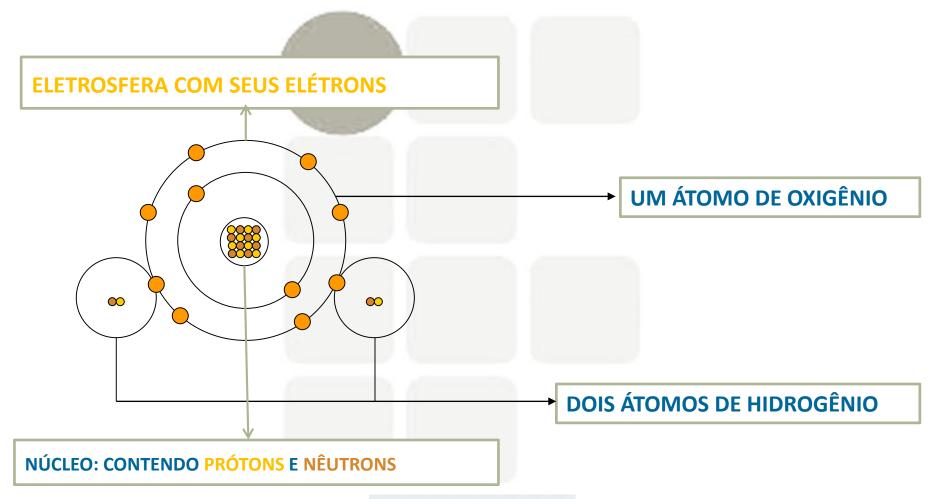
| Submúltiplos      |         |         |  |
|-------------------|---------|---------|--|
| Factor            | Prefixo | Símbolo |  |
| $10^{-1}$         | deci    | d       |  |
| $10^{-2}$         | centi   | С       |  |
| $10^{-3}$         | mili    | m       |  |
| $10^{-6}$         | micro   | μ       |  |
| 10 <sup>-9</sup>  | nano    | n       |  |
| $10^{-12}$        | pico    | p       |  |
| 10 <sup>-15</sup> | femto   | f       |  |
| 10 <sup>-18</sup> | atto    | a       |  |
| $10^{-21}$        | zepto   | Z       |  |
| $10^{-24}$        | yocto   | у       |  |

# MATÉRIA/MOLÉCULA

- Matéria
  - É tudo aquilo que possui massa e ocupa lugar no espaço.
- Molécula
  - Menor parte da matéria que ainda conserva suas características é formado por átomos.

### **ÁTOMOS**

 Átomos com poucos elétrons na última camada são condutores. Têm facilidade de perder elétrons.


Muitos elétrons na última camada são isolantes. Tem facilidade de receber

elétrons.



ÁTOMO DE SELÊNIO

### EXEMPLO DE MOLÉCULA



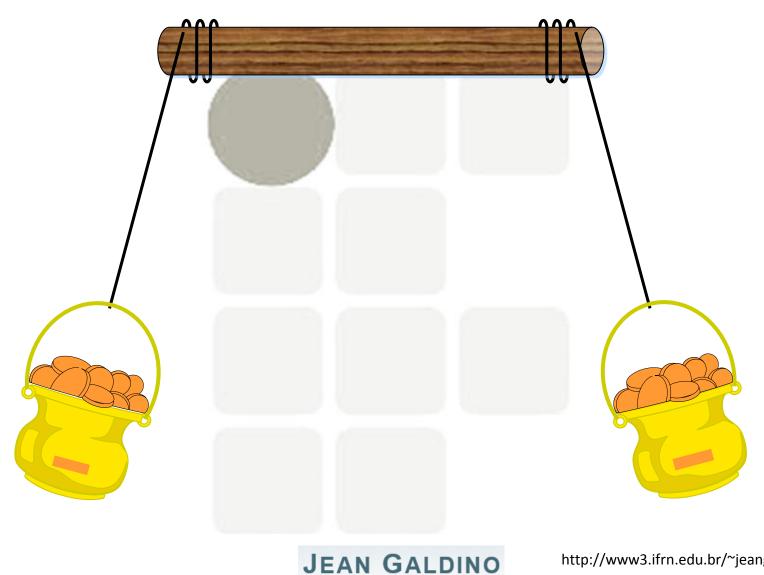
JEAN GALDINO

http://www3.ifrn.edu.br/~jeangaldino

#### **CARGAS ELÉTRICAS**

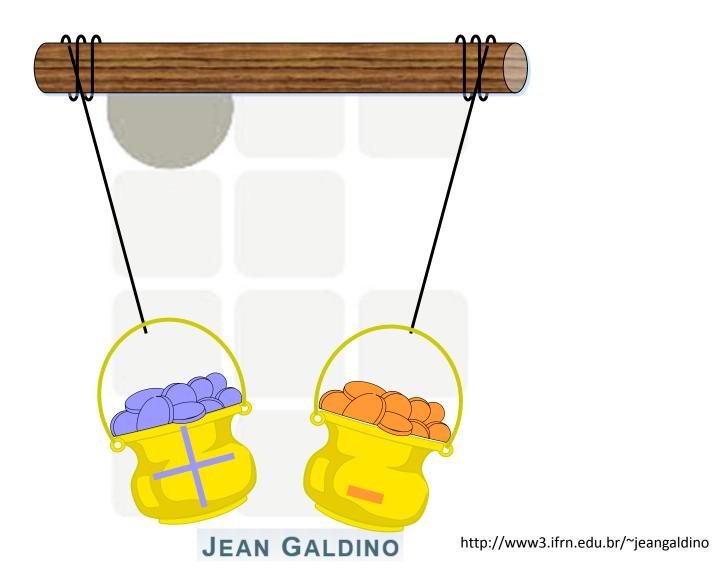
- NÊUTRONS:
  - NÃO POSSUEM CARGAS ELÉTRICAS
- PRÓTONS:
  - POSSUEM CARGAS POSITIVAS
- ELÉTRONS:
  - POSSUEM CARGAS NEGATIVAS

#### LEI DE COULOMB


- Define qual a quantidade de carga que um elétron carrega, em coulombs, sendo esta negativa.
- Evidentemente a carga do próton apresenta o mesmo valor, sendo com valor negativo.
- Como a quantidade envolvida é muito pequena utilizamos múltiplos e submúltiplos (mc, μc e pc).

## CARGA ELÉTRICA ELEMENTAR

- É a menor quantidade elétrica possível de existir, e é a carga que um elétron carrega;
- $e = 1,6x10^{-19}c$


- A quantidade de carga de um corpo é sempre um número inteiro desta quantidade (n).
- Q = n. e

#### **CARGAS IGUAIS**



http://www3.ifrn.edu.br/~jeangaldino

#### **CARGAS DIFERENTES**



#### **GRANDEZAS FÍSICAS**

- Uma grandeza física é uma propriedade de um corpo, ou particularidade de um fenômeno, susceptível de ser medida, à qual se pode atribuir um valor numérico.
- A medição de uma grandeza é então a comparação dessa grandeza com outra da mesma espécie, um padrão, a que chamamos unidade por convenção.

## MEDIÇÃO DE UMA GRANDEZA

- A medição de uma grandeza pode ser efetuada por:
  - ✓ comparação direta com um padrão
  - ✓ com um aparelho de medida (medição direta),
  - ✓ calculada, através de uma expressão conhecida, à custa das medições de outras grandezas (medição indireta).
  - ✓ O último caso engloba medidas diretas, por isso é importante ter alguns conhecimentos básicos sobre este tipo de medições.

#### **GRANDEZAS**

✓ Grandezas derivadas;

fundamentais e

g

grandezas

✓ Unidades derivadas;

fundamentais

e

unidades

## UNIDADES BÁSICAS

| Unidades fundamentais do SI. |            |         |
|------------------------------|------------|---------|
| Grandeza                     | Unidade    | Símbolo |
| comprimento                  | metro      | m       |
| massa                        | quilograma | kg      |
| tempo                        | segundo    | S       |
| corrente elétrica            | ampère     | A       |
| temperatura 😜                | kelvin     | К       |
| quantidade de matéria        | mol        | mol     |
| intensidade luminosa         | candela    | cd      |

- ✓ Grandezas fundamentais e grandezas derivadas;
- ✓ Unidades fundamentais e unidades derivadas;



#### **UNIDADES DERIVADAS**

| Algumas unidades derivadas do SI. |                               |                       |  |  |
|-----------------------------------|-------------------------------|-----------------------|--|--|
| Grandeza                          | Unidade                       | Símbolo               |  |  |
| área                              | metro quadrado                | m²                    |  |  |
| volume                            | metro cúbico                  | m <sup>3</sup>        |  |  |
| densidade                         | quilograma por metro cúbico   | Kg/m³                 |  |  |
| velocidade                        | metro por segundo             | m/s                   |  |  |
| aceleração                        | metro por segundo ao quadrado | m/s²                  |  |  |
| força                             | newton                        | $N = Kgm/s^2$         |  |  |
| pressão                           | pascal                        | Pa = N/m <sup>2</sup> |  |  |
| trabalho, energia, calor          | joule                         | J                     |  |  |
| potência                          | watt                          | W = J/s               |  |  |
| carga elétrica                    | coulomb                       | C = A.s               |  |  |
| diferença de potencial            | volt                          | V = J/C               |  |  |
| resistência elétrica              | ohm                           | Ω=V/A                 |  |  |

