

Transistores Bipolares Parte I

Prof. Jonathan Pereira <jonathan.pereira@ifrn.edu.br>

www.ifrn.edu.br


Programa da aula

- Introdução/Evolução
- Transistor Bipolar
 - Características construtivas
 - Funcionamento como amplificador
 - Configurações básicas
 - Curva característica
 - Reta de carga
 - Circuitos de polarização
 - Transistor como regulador
- Bibliografia

Introdução


■ Em 1948, na Bell Telephone, um grupo de pesquisadores, liderados por Shockley, apresentou um dispositivo formado por três camadas de material semicondutor com tipos alternados, ou seja, um dispositivo com duas junções. O dispositivo recebeu o nome de TRANSISTOR.

Introdução

Figura 1 - O primeiro transistor de junção de germânio da Bell Laboratories, 1950

Evolução

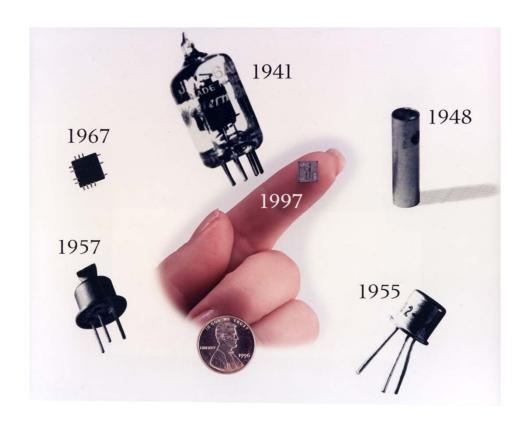
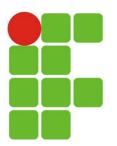
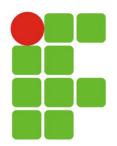




Figura 2 – Evolução do Transistor

<u>Evolução</u>

- Praticamente todos os equipamentos eletrônicos projetados hoje em dia usam componentes semicondutores. As vantagens sobre as difundidas válvulas eram bastantes significativas, tais como:
 - Menor tamanho, mais leve e mais resistente
 - Não precisava de filamento
 - Mais eficiente, pois dissipa menos potência
 - Não necessita de tempo de aquecimento
 - Menores tensões de alimentação

- O transistor pode controlar a corrente;
- Ele é montado numa estrutura de cristais semicondutores, formando duas camadas de um tipo (N) e no meio delas o outro cristal (P);
- Cada uma dessas camadas recebe um nome em relação à sua função na operação do transistor;

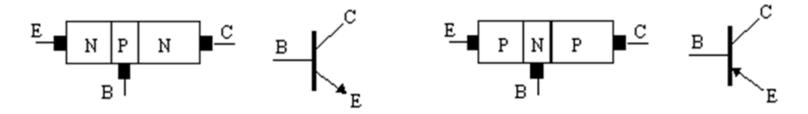



Figura 3 - Transistor da esquerda é chamado de NPN e o outro de PNP

- Características construtivas
 - O emissor tem a propriedade de emitir portadores de carga;
 - A base é muito fina, não consegue absorver todos os portadores emitidos pelo emissor;
 - O coletor é a maior das camadas, sendo o responsável pela coleta dos portadores vindos do emissor.

- Características construtivas (cont.)
 - Da mesma forma que nos diodos, são formadas barreiras de potencial nas junções das camadas P e N.

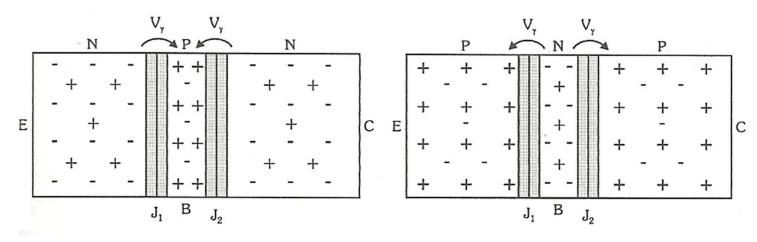
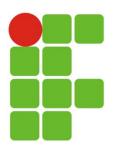



Figura 4 – Barreiras de potencial nos transistores NPN e PNP

- Características construtivas (cont.)
 - O comportamento básico dos transistores em circuitos eletrônicos é fazer o controle da passagem de corrente entre o emissor e o coletor através da base. Para isto é necessário polarizar corretamente as junções do transistor.

- Funcionamento como amplificador (NPN)
 - Polarizando diretamente a junção emissor-base

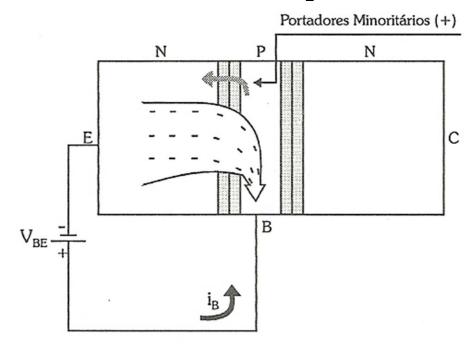



Figura 5 – Polarização direta da junção emissor-base

- Funcionamento como amplificador (NPN)
 - Polarizando inversamente a junção base-coletor

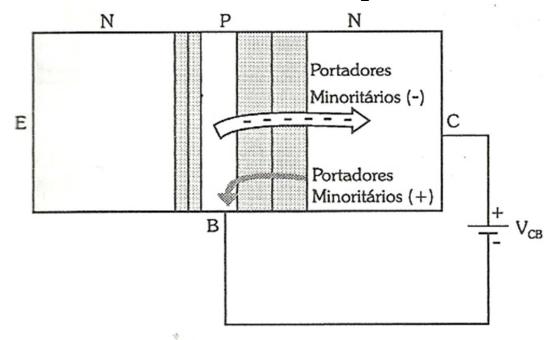


Figura 6 – Polarização reversa da junção base-coletor

- Funcionamento como amplificador (NPN)
 - Polarização completa, a corrente de coletor IC passa a ser controlada pela corrente de base IB.

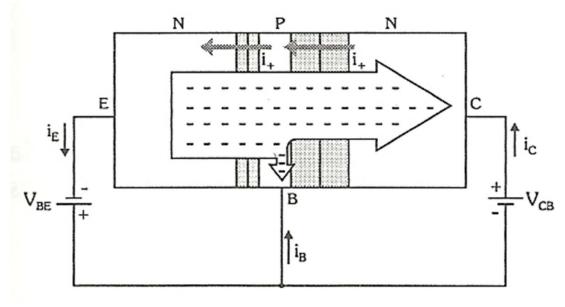
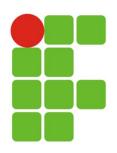
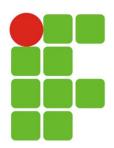



Figura 7 - Transistor controlando corrente



- Funcionamento como amplificador (cont.)
 - Um aumento na corrente de base IB provoca um aumento na corrente de coletor IC.
 - A corrente de base sendo bem menor que a corrente de coletor, uma pequena variação de IB provoca uma grande variação de IC. Isto significa que a variação de corrente de coletor é um reflexo amplificado da variação da corrente na base.

- Funcionamento como amplificador (cont.)
 - O fato do transistor possibilitar a amplificação de um sinal faz com que ele seja considerado um dispositivo ativo.
 - Este efeito amplificação, denominado ganho de corrente, pode ser expresso matematicamente pela relação entre a variação de corrente do coletor e a variação da corrente de base, isto é:

 $Ganho(\beta) = \frac{\Delta I_C}{\Delta I_B}$

Funcionamento como amplificador (cont.)

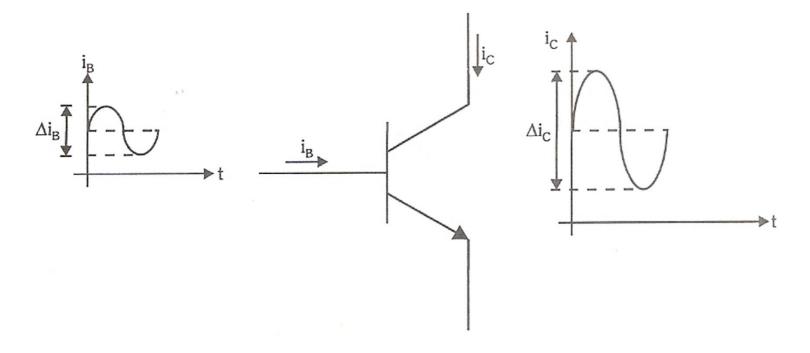


Figura 8 – Efeito Amplificação no Transistor NPN

■ Tensões e Correntes nos Transistores

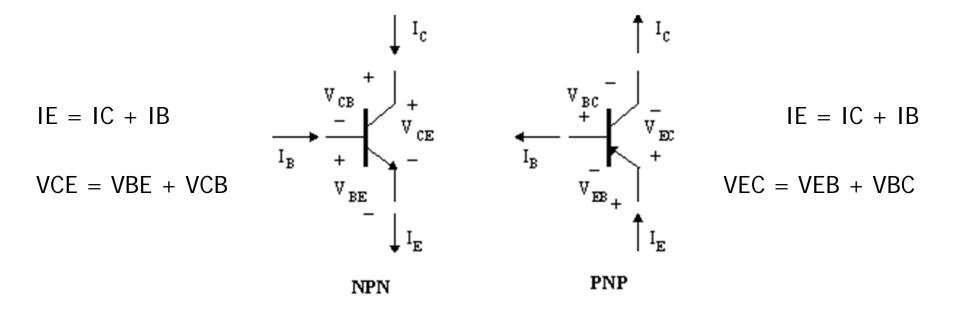


Figura 9 - Tensões e Correntes

- Configurações Básicas
 - Os transistores podem ser utilizados em três configurações básicas: Base Comum (BC), Emissor comum (EC), e Coletor comum (CC). O termo comum significa que o terminal é comum a entrada e a saída do circuito.

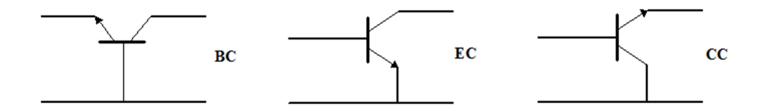
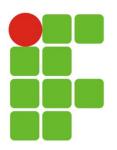
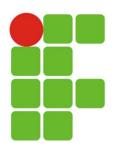




Figura 10 - Configurações Básicas



Configurações Básicas (cont.)


Base Comum	Ganho de tensão elevado Ganho de corrente menor que 1 Ganho de potência intermediário Impedância de entrada baixa Impedância de saída alta
Coletor Comum	Ganho de tensão menor que 1 Ganho de corrente elevado Ganho de potência intermediário Impedância de entrada alta Impedância de saída baixa
Emissor Comum	Ganho de tensão elevado Ganho de corrente elevado Ganho de potência elevado Impedância de entrada baixa Impedância de saída alta

- Configurações Básicas (cont.)
 - A configuração Emissor-Comum é a mais utilizada em circuitos transistorizados.
 - Por isso, os diversos parâmetros dos transistores fornecidos pelos manuais técnicos têm como referência esta configuração.

- Curva Característica EC
 - Podemos trabalhar com a chamada curva característica de entrada. Para cada valor constante de VCE, varia-se a tensão de entrada VBE, obtendo-se uma corrente de entrada IB, resultando num gráfico conforme figura abaixo.
 - Observa-se que é possível controlar a corrente de base, variando-se a tensão entre a base e o emissor.

Curva Característica – EC

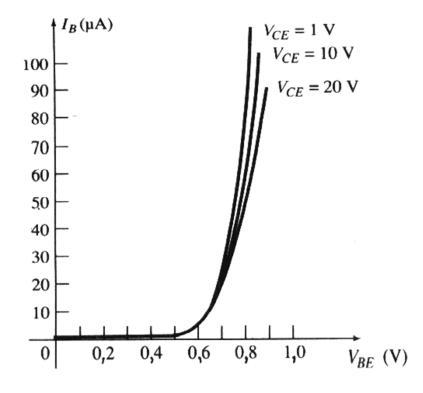
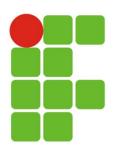



Figura 11 - Curva Característica de Entrada EC

- Curva Característica EC
 - Para cada constante de corrente de entrada IB, variando-se a tensão de saída VCE, obtém-se uma corrente de saída IC, cujo gráfico tem o seguinte aspecto.

Curva Característica – EC

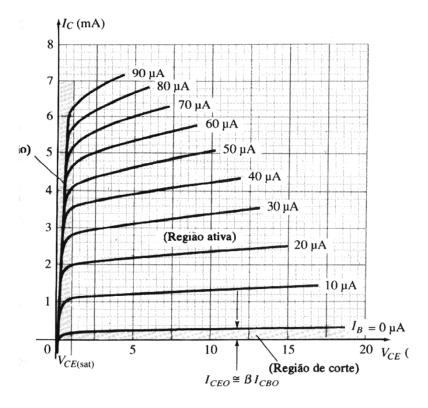



Figura 12 - Curva Característica de Saída EC

- Funcionamento como chave
 - A utilização do transistor nos seus estados de SATURAÇÃO e CORTE, isto é, de modo que ele ligue conduzindo totalmente a corrente entre emissor e o coletor, ou desligue sem conduzir corrente alguma é conhecido como operação como chave.
 - No exemplo a seguir, ao se ligar a chave S1, fazendo circular uma corrente pela base do transistor, ele satura e acende a lâmpada.

- Funcionamento como chave
 - O resistor ligado a base é calculado, de forma que, a corrente multiplicada pelo ganho dê um valor maior do que o necessário o circuito do coletor, no caso, a lâmpada.

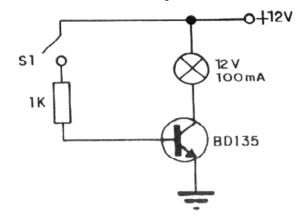
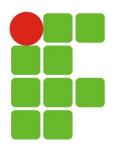



Figura 13 – Exemplo de utilização como chave

Funcionamento como chave



Figura 14 – Analogia de um transistor com uma chave

- Ponto de Operação (Quiescente)
 - Os transistores são utilizados como elementos de amplificação de corrente e tensão, ou como elementos de controle ON-OFF. Tanto para estas como para outras aplicações, o transistor deve estar polarizado corretamente.
 - Polarizar um transistor é fixá-lo num ponto de operação em corrente contínua, dentro de suas curvas características.

- Ponto de Operação (Quiescente)
 - Também chamado de polarização DC, este ponto de operação (ou quiescente) pode estar localizado nas regiões de corte, saturação ou ativa da curva característica de saída.
 - Os pontos QA (região ativa), QB (região de saturação) e QC (região de corte) da figura a seguir caracterizam as três regiões citadas.

■ Ponto de Operação (Quiescente)

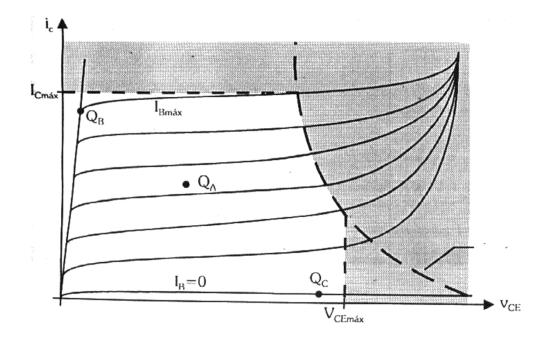
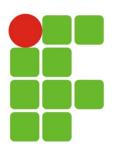



Figura 15 – Pontos Quiescentes de um Transistor

Reta de carga

■ É o lugar geométrico de todos os pontos de operação possíveis para uma determinada polarização.

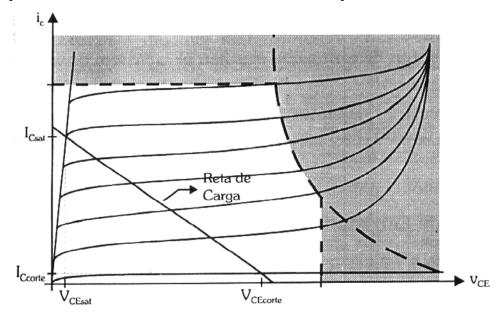
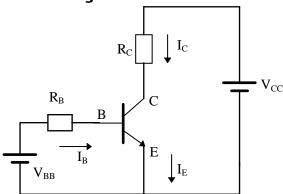


Figura 16 - Reta de Carga de um Transistor


Circuito de Polarização em Emissor Comum

Nesta configuração, a junção BE é polarizada diretamente e a junção BC reversamente. Para isso, utilizam-se duas baterias e dois resistores para limitar as correntes e fixar o ponto de

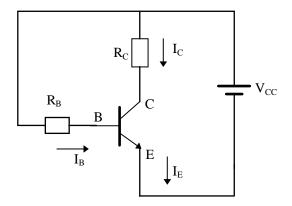
operação.

Circuito de Polarização em Emissor Comum

■ Malha de entrada: $R_B.I_B + V_{BE} = V_{BB}$ então,

$$R_{B} = \frac{V_{BB} - V_{BE}}{I_{B}}$$

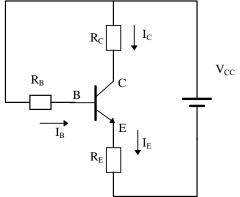
■ Malha de saída: R_C.I_C+V_{CE}=V_{CC} então,

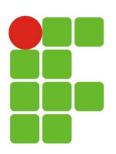

$$R_{C} = \frac{V_{CC} - V_{CE}}{I_{C}}$$

- Circuito de polarização EC com corrente de base constante
 - Para eliminar a fonte de alimentação da base V_{BB} , pode-se utilizar somente a fonte V_{CC} .
 - Para garantir as tensões corretas para o funcionamento do transistor R_B deve ser maior que R_C .

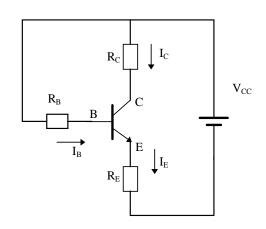
Circuito de polarização EC com corrente de base constante

$$R_{B} = \frac{V_{CC} - V_{BE}}{I_{B}}$$


$$R_{C} = \frac{V_{CC} - V_{CE}}{I_{C}}$$


Circuito de Polarização EC com corrente de emissor constante.

■ Neste circuito de polarização é inserido um resistor RE entre o emissor e a fonte de


alimentação

A idéia é compensar possíveis variações de ganho devido a mudanças de temperatura.
36

 Circuito de Polarização EC com corrente de emissor constante

$$R_{B} = \frac{V_{CC} - V_{BE} - R_{E}.I_{E}}{I_{B}}$$

$$R_{C} = \frac{V_{CC} - V_{CE} - R_{E}.I_{E}}{I_{C}}$$

Adota-se $V_{RE} = V_{CC} / 10$