
Database Tuning Advisor for Microsoft SQL Server 2005

Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe, Vivek Narasayya, Manoj Syamala

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052.
USA

{sagrawal,surajitc,lubork,arunma,viveknar,manojsy}@microsoft.com

Abstract

The Database Tuning Advisor (DTA) that is part of
Microsoft SQL Server 2005 is an automated physical
database design tool that significantly advances the
state-of-the-art in several ways. First, DTA is capable
to providing an integrated physical design
recommendation for horizontal partitioning, indexes,
and materialized views. Second, unlike today’s
physical design tools that focus solely on
performance, DTA also supports the capability for a
database administrator (DBA) to specify
manageability requirements while optimizing for
performance. Third, DTA is able to scale to large
databases and workloads using several novel
techniques including: (a) workload compression (b)
reduced statistics creation and (c) exploiting test
server to reduce load on production server. Finally,
DTA greatly enhances scriptability and customization
through the use of a public XML schema for input
and output. This paper provides an overview of
DTA’s novel functionality, the rationale for its
architecture, and demonstrates DTA’s quality and
scalability on large customer workloads.

1. Introduction

The performance of an enterprise database system can
depend crucially on its physical database design.
Automated tools for physical database design can help
reduce the total cost of ownership (TCO) of databases by
reducing the DBA’s burden in determining the
appropriate physical design. The past few years have seen
an emergence of such automated tools. Indeed, today’s
major commercial database systems include as part of

their product, automated tools such as [2,3,4,6,15,18,21]
that analyze a representative workload consisting of
queries and updates that run against the database, and
recommend appropriate changes to physical design for the
workload.

1.1 Requirements of a Physical Design Tool

While these state-of-the-art tools represent an
important step in the direction of reducing TCO, there are
a number of important requirements, described below, in
which currently available tools are still lacking that can
make it difficult to use in an enterprise environment.

Integrated selection of physical design features:
Today’s database engines offer a variety of physical
design features such as indexes, materialized views and
horizontal partitioning, each of which can have a
significant impact on the performance of the workload. A
physical design tool should ideally provide an integrated
“console” where DBAs can tune all physical design
features supported by the server. In supporting such a
console, it may appear natural (for scalability reasons) to
employ a staged solution to the physical design problem, -
- for example, first choose partitioning of tables only, then
pick indexes, then pick materialized views etc. However,
as shown in [3,4] (and discussed in Section 3), due to the
strong interaction among these features, such staging can
potentially lead to an inferior physical design. Thus, a tool
that is capable of making an integrated physical design
recommendation that takes into account the interactions
among all these features is important since otherwise: (a)
Ad-hoc choices need to be made on how to stage physical
design selection; and (b) It is difficult to quantify how
much performance is compromised for a given database
and workload as a result of staging. There are tools that
integrate tuning of certain physical design features, e.g.,
[3,21], but to the best of our knowledge, no tool until now
offers a fully integrated approach to tuning indexes,
materialized views and horizontal partitioning together.

Incorporating manageability aspects into physical
design: The focus of today’s physical design tools is on
improving performance. However, manageability of
physical design is often a key requirement. For example,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

1110

DBAs often use horizontal range partitioning to ensure
easy backup/restore, to add new data or remove old data.
In these scenarios, having a table and all of its indexes
aligned, i.e., partitioned identically makes these tasks
easier. On the other hand, the manner in which a table (or
an index) is partitioned can have significant impact on the
performance of queries against the table (using the index).
Therefore, it becomes important for an automated
physical design tool to allow DBAs the ability to specify
alignment requirements while optimizing for
performance.

Scaling to large databases and workloads:
Enterprise databases can be large and a typical
representative workload can also be large (e.g., number of
queries/updates that execute on a server in one day can
easily run into hundreds of thousands or more). Thus, to
be effective in an enterprise environment, these tools need
to be able to scale well, while maintaining good
recommendation quality.

Ability to tune a production database with very
little overhead: Consider a case where a DBA needs to
tune a large workload. Tuning such a workload can incur
substantial load on the production server. Therefore, there
is a need to tune these databases by imposing very little
overhead on production server. Sometimes test servers
exist, but it is often infeasible or undesirable to copy the
entire database to the test server for tuning. Moreover the
test server may have different hardware characteristics,
and thus the recommendations of the tool on the test
server may not be appropriate for the production server.

Scriptability and customization: As physical design
tools become more feature rich, and get increasingly used
in enterprises, the ability to script these tools for DBAs
and build value added tools on top by developers becomes
more important. Moreover different degrees of
customization are necessary for different scenarios. At
one extreme, the tool should be able to make all physical
recommendations on its own. At the other extreme, the
DBA should be able to propose a physical design that is
simply evaluated the tool. In between, the DBA should be
able to specify a physical design partially (e.g., clustering
or partitioning of a given table) and the tool should
complete the rest of the tuning. Such support is
inadequate in today’s physical design tools.

1.2 Advancements in DatabaseTuning Advisor

In this paper, we describe Database Tuning Advisor
(DTA), an automated physical design tool that is part of
Microsoft SQL Server 2005. DTA significantly advances
functionality, manageability, scalability, and scriptability
relative to the state-of-the-art physical design tools. DTA
is the next generation physical design tool that builds
upon the Index Tuning Wizard in Microsoft SQL Server
2000. First, DTA can provide integrated
recommendations for indexes, materialized views as well

as single-node horizontal partitioning for a given
workload (Section 3). DTA provides the user the ability to
specify the requirement that the physical database design
should be aligned, i.e., a table and its indexes should be
partitioned identically (Section 4). DTA scales to large
databases and workloads using several novel techniques
including: (a) workload compression that helps scaling to
large workloads; (b) reduced statistics creation that helps
to reduce time for creating statistics for large databases;
and (c) exploiting test server to reduce tuning load on
production server. These techniques for improving
scalability are discussed in Section 5. The input and
output to DTA conforms to a public XML schema
for physical database design which makes scripting and
customization easy, and enables other tools to build value-
added functionality on top of DTA. Such usability
enhancements in DTA are discussed
in Section 6. DTA exposes a novel feature called user
specified configuration that allows DBAs to specify the
desired physical design partially (without actual
materialization), while optimizing for performance. This
allows for greater customizability. These and other
important usability enhancements in DTA are discussed in
Section 6. In Section 7 we present results of extensive
experiments on several customer workloads and the TPC-
H 10GB benchmark workload that evaluates: (a) the
quality of DTA’s recommendation compared to a hand-
tuned physical design and (b) its scalability to large
databases and workloads. We summarize related work in
Section 8. We begin with an overview of DTA
functionality and its internal architecture in Section 2.

2. Overview of Database Tuning Advisor

2.1 Functionality

Figure 1 shows an overview of the Database Tuning
Advisor (DTA) for Microsoft SQL Server 2005. DTA is a
client physical database design tuning tool. It can be run
either from a graphical user interface or using a
command-line executable.

Input: DTA takes the following inputs:
• A set of databases on a server. Many applications use

more than one database, and therefore, ability to tune
multiple databases simultaneously is important.

• A workload to tune. A workload is a set of SQL
statements that execute against the database server. A
workload can be obtained by using SQL Server
Profiler, a tool for logging events that execute on a
server. Alternatively, a workload can be a SQL file
containing an organization or industry benchmark,
for example.

1111

• Feature set to tune. Although DTA is capable of

tuning indexes, materialized views, and partitioning
together, DBAs may sometimes need to limit tuning
to subsets of these features. For example, a DBA of
an OLTP system may decide a priori to not include
any materialized views.

• Optional alignment constraint that a table and all its
indexes must be partitioned identically (although
different tables may be partitioned differently).

• User can specify a partial configuration (e.g.,
clustered index on a table, partitioning of a table or
materialized view), and constrain DTA’s
recommendation to honor this specification.

• An optional storage constraint: DTA allows
specifying a bound on the storage that the physical
design it recommends can consume.

• An optional time constraint: an upper bound on the
time that DTA is allowed to run. Although DTA’s
ability to perform tuning within a time bound is an
interesting technical problem in itself, in this paper
we do not focus on the problem of time-bound tuning
or on DTA’s specific solution.

Output: The output of DTA is a physical design
recommendation (which we refer to as a configuration)
consisting of indexes, materialized views, and a

recommendation on horizontal range partitioning of
tables, indexes, and materialized views.

2.2 Architecture

DTA extends the architecture developed in the context of
previous work for index and materialized view selection
[3] (used by Index Tuning Wizard in Microsoft SQL
Server 2000). DTA’s architecture is shown in Figure 1.
Several properties of this architecture should be noted: (a)
It is not specific to a particular physical design feature,
and in principle, requires little changes as new physical
design features are added; (b) It provides an integrated
physical design recommendation; (c) It is in-sync with the
query optimizer component of the database server. Below
we briefly summarize the salient aspects of this
architecture, and highlight extensions made compared to
[3], where appropriate.

DTA’s Cost Model: The basis of DTA’s

recommendations is the “what-if” analysis interfaces of
Microsoft SQL Server described in [9], which have been
extended to also support simulation of horizontally
partitioned tables, indexes and materialized views [4] (in
addition to non-partitioned indexes and materialized
views). Microsoft SQL Server 2005 supports single-
column range partitioning. Using these interfaces, for a
given query Q and a configuration C, DTA can obtain the

Microsoft SQL
Server

Tools,
Applications

DBA

Physical Design
Recommendation

Input in
XML

Output in
XML

Iterative
Tuning

Exploratory
Analysis

CANDIDATE
SELECTION

MERGING

ENUMERATION

Databases
Workload
Storage, Time, Manageability
constraints

QUERY
OPTIMIZER

COLUMN GROUP
RESTRICTION

Figure 1. Overview of Database Tuning Advisor

1112

optimizer-estimated cost of Q as if configuration C were
materialized in the database. Among all the configurations
that DTA explores for the given workload, it recommends
the one with the lowest optimizer-estimated cost for the
workload. There are several advantages of being “in-
sync” with the query optimizer: (a) The configuration
DTA recommends, if implemented, will in fact be used by
the query optimizer; (b) As query optimizer’s cost model
evolves over time, DTA is able to automatically benefit
from improvements to it; (c) DTA takes into account all
aspects of performance that the query optimizer can
model including the impact of multiple processors,
amount of memory on the server, and so on. It is
important to note, however, that query optimizers
typically do not model all the aspects of query execution
(e.g. impact of indexes on locking behavior, impact of
data layout etc.). Thus, DTA’s estimated improvement
may be different from the actual improvement in
execution time.

Column-Group Restriction: The space of all

physical design structures (indexes, materialized views,
partitioning) that need to be considered for a given
workload can be very large. The explosion in the number
of physical design structures that must be considered is a
result of the large number of column-groups (i.e., sets of
columns) that are, in principle, relevant for the workload.
Column-group restriction a pre-processing step that
eliminates from further consideration a large number of
column-groups that can at best have only a marginal
impact on the quality of the final recommendation (in
particular, column-groups that occur only in a small
fraction of the workload by cost). The output of this step
is a set of “interesting” column-groups for the workload.
Indexes and partitioning considered by DTA is limited
only to interesting column groups, thereby significantly
improving scalability with little impact on quality [4]. For
scalability, we construct the interesting column-groups for
a workload in a bottom-up manner leveraging the idea of
frequent itemsets [5]. This module is an extension of the
previous architecture presented in [3].

Candidate Selection: The Candidate Selection step

selects for each query in the workload (in particular, one
query at a time), a set of very good configurations for that
query in a cost-based manner by consulting the query
optimizer component of the database system. A physical
design structure that is part of the selected configurations
of one or more queries in the workload is referred to as a
candidate. We use a greedy search strategy, called Greedy
(m,k) [8] to realize this task. To recap, Greedy (m,k)
algorithm guarantees an optimal answer when choosing
up to m physical design structures, and subsequently uses
a greedy strategy to add more (up to k) structures.

Merging: Since Candidate Selection operates only at

the level of an individual query, if we restrict the final

choice of physical design to only be a subset of the
candidates selected by the Candidate Selection step, we
can potentially end up with “over-specialized” physical
design structures that are good for individual queries, but
not good for the overall workload. Specifically, when
storage is limited or workload is update-intensive, this can
lead to poor quality of the final solution. The goal of the
Merging step is to consider new physical design
structures, based on candidates chosen in the Candidate
Selection step, which can benefit multiple queries in the
workload. The Merging step augments the set of
candidates with additional “merged” physical design
structures. The idea of merging physical design structures
has been studied in the context of un-partitioned indexes
[8], and materialized views [3]. Merging becomes a lot
harder with the inclusion of partitioning, and requires new
algorithmic techniques. Our techniques for merging
partitioned indexes and materialized views are described
in [4].

Enumeration: This step takes as input the union of

the candidates (including candidates from Merging), and
produces the final solution: a physical database design.
We use Greedy (m,k) search scheme. As shown in [4],
with the additional constraint that the physical design for
each table should be aligned, introducing new candidates
that are required (for alignment) eagerly can be
unscalable. In [4], we describe how it is possible to delay
the introduction of additional candidates that need to be
introduced to satisfy the alignment constraint lazily,
thereby greatly improving the scalability of the
enumeration step.

3. Integrated Physical Design
Recommendations

An important challenge in physical design tuning is being
able to judiciously deal with the tradeoffs in performance
of various physical design features available (indexes,
materialized views, partitioning etc.). This tradeoff is
challenging for the following two reasons. First, for a
given query, different features can overlap in their ability
to reduce the cost of execution for query.

Example 1. Consider the query: Select A, COUNT(*)
FROM T WHERE X < 10 GROUP BY A. For this query
several different physical design structures can reduce its
execution cost: (i) A clustered index on (X); (ii) Table
range partitioned on X; (iii) A non-clustered, “covering”
index on (X, A); (iv) A materialized view that matches the
query, and so on.

Second, these features can have widely varying
storage and update characteristics. Thus in the presence of
storage constraints or for a workload containing updates,
making a global choice for a workload is difficult. For
example, a clustered index on a table and horizontal
partitioning of a table are both non-redundant structures

1113

(incur negligible additional storage overhead); whereas
non-clustered indexes and materialized views can
potentially be storage intensive (similarly their update
costs can be higher). However, non-clustered indexes
(e.g., “covering” indexes) and materialized views can
often be much more beneficial than a clustered index or a
horizontally partitioned table.

Thus, a physical design tool that can give an integrated
physical design recommendation can greatly
reduce/eliminate the need for a DBA to make ad-hoc
decisions such as: (a) how to stage tuning, e.g., pick
partitioning first, then indexes, and finally materialized
views; (b) How to divide up the overall storage to allocate
for each step in this staged solution, etc. The following
example (showing the interaction between indexes and
horizontal partitioning) illustrates the pitfalls of a staged
solution.
Example 2. Consider the query from Example 1 and
suppose that we wish to consider only clustered indexes
and horizontal range partitioning of the table. We
compare two approaches for the query above. (1) A
staged solution that first selects the best clustered index,
and in the next step considers horizontal range
partitioning of the table. (2) An integrated solution that
considers both features together. Observe that both a
clustered index on column X or a range partitioning on
column X can help reduce the selection cost, whereas a
clustered index on column A is likely to be much more
beneficial than a horizontal range partitioning on A as far
as the grouping is concerned. Thus, if in the first step of
the staged solution we recommend a clustered index on X,
then we can never expect to find the optimal solution for
the query: a clustered index on A and horizontal range
partitioning of the table on X. On the other hand, an
integrated solution is capable of finding this solution since
it considers these features together.

As noted earlier, DTA can recommend indexes,
materialized views, and horizontal partitioning in an
integrated manner. Although doing so is important for the
reasons described above, when all of the physical design
features are considered together, the space of
configurations that need to be considered for a given
workload can become very large. The techniques that
DTA uses to reduce the space of configurations that are
explored without impacting the quality of
recommendations significantly have been summarized in
Section 2.2 and are described in greater detail in [4].

Finally, we note that DTA allows DBAs to choose
only a subset of the available physical design features
should they wish to do so. For example, in certain
environments, a DBA may not wish to consider
materialized views. In this case, the DBA can specify that
DTA should only consider indexes and partitioning as the
physical design options.

4. Aligned Partitioning

As discussed earlier, DBAs often require the physical
design to be aligned (i.e., a table and all of its indexes are
partitioned identically) so that it is easy to add, remove,
backup, and restore data partitions. Horizontal range
partitioning is important for manageability reasons, but it
can also have a significant impact on performance of the
workload. Therefore, DTA allows users the option of
specifying that the physical design should be aligned.
Choosing this option implies that the physical design
recommended by DTA will satisfy the property of
alignment for each table. The impact of specifying the
alignment requirement on DTA is that it constrains the
overall search space that DTA needs to traverse. The key
technical challenge arising out of alignment is that
different queries that reference a given table T may
benefit from different ways of partitioning T or indexes
on T. Thus, efficiently finding a compromise that works
well across all queries in the workload is difficult. DTA
efficiently incorporates alignment constraints into its
search algorithm by exploiting the fact that in many cases,
it is sufficient to introduce new candidates for the
purposes of satisfying alignment lazily. Such lazy
introduction of candidates during the Enumeration step
(Section 2.2), can significantly improve scalability. The
details of this technique are described in [4].

5. Improved Scalablity

5.1 Scaling to Large Workloads

One of the key factors that affect the scalability of
physical design tools is the size of the workload, i.e., the
number of statements (queries, updates) in the workload.
As explained earlier, the workload given to DTA for
tuning can be very large. In such cases, a natural question
to ask is whether tuning a much smaller subset of the
workload would be sufficient to give a recommendation
with approximately the same reduction in cost as the
recommendation obtained by tuning the entire workload.

Two obvious strategies for determining a subset of the
workload to tune have significant drawbacks. The
approach of sampling the workload uniformly at random
ignores valuable information about queries in the
workload (such as cost and structural properties), and thus
may end up tuning a lot more queries than necessary. The
other strategy of tuning the top k queries by cost, such
that at least a pre-defined percentage of the total cost of
the workload is covered, suffers from a different problem.
Queries in the workload are often templatized (e.g.,
invoked via stored procedures). In such cases, often all
queries belonging to one template may have higher cost
than any query belonging to another template. Thus, the
above strategy can end up tuning a disproportionate
number of queries from one template, while never tuning
queries from a different template.

1114

The technique of workload compression in the context
of physical design tuning has been studied in [7]. The
idea behind workload compression is to exploit the
inherent templatization in workloads by partitioning the
workload based on the “signature” of each query, i.e., two
queries have same signature if they are identical in all
respects except for the constants referenced in the query.
The technique picks a subset from each partition using a
clustering based method. We have adapted the above
technique and integrated it into DTA, which allows us to
dramatically reduce the amount of time spent in tuning
without significantly compromising the quality of
physical design recommendation. We demonstrate the
effectiveness of this technique on large workloads in
Section 7.4.

5.2 Reduced Statistics Creation

As part of its tuning, DTA needs to consider indexes that
may not exist in the current database, i.e., “what-if”
indexes [9]. To simulate the presence of such a what-if
index to the query optimizer, DTA needs to create the
necessary statistics that would have been included in that
index had it been actually created. Thus for a given set of
indexes, there is a corresponding set of statistics that DTA
needs to create. This is achieved using the standard
“create statistics” interface available in SQL Server (using
the sampling option of create statistics for scalability).
The problem is that despite the use of sampling, the naïve
strategy of creating all statistics can become very
expensive, particularly on large databases,, because each
“create statistics” statement incurs I/Os for sampling the
pre-defined number of pages from the table, sorting it, and
creating the summary statistics.

When SQL Server creates a statistic on columns
(A,B,C), it generates a histogram on the leading column
only (i.e., column A) and computes density information
for each leading prefix (i.e., (A), (A,B), (A,B,C)). The
density of a set of columns is a single number that
captures the average number of duplicates of that set of
columns. Since density is defined on a set of columns, it is
not dependent on the order of the columns, i.e., Density
(A,B) = Density (B,A).

Example 3. Suppose that DTA needs to consider indexes
on (A), (B), (A,B), (B,A) and (A,B,C). Using the naïve
approach, we would need to create all five statistics.
However, it is easy to see that if we only create statistics
on (A,B,C) and (B), these two statistics contain the same
information (histograms and density) as when all five
statistics are created.

Thus our problem can be stated more formally as
follows:

Note that we seek to minimize cardinality of S’ rather

than to minimize the time to create S’. In reality, this
simplification is reasonable since for a large table, the
cost of creating a statistic is typically dominated by the
I/O cost of sampling the table, which is independent of the
specific statistic being created.

DTA’s solution to the above problem is outlined
below.

Step 1. Using S, create two lists: H-List and D-List. The
H-List is a list of columns over which histograms need to
be built. The D-List is the set of column groups over
which density information needs to be obtained. In
essence, the H-List and D-List identify the distinct
statistical information that still needs to be created. In
Example 3 above, the H-List is {(A), (B)} and the D-List
is {(A), (B), (A,B), (A,B,C)}. Note that we do not need
(B,A) in the D-List since Density (A,B) = Density (B,A).
Step 2. From the remaining statistics in S, pick the one
(say s) whose creation “covers” as many elements of H-
list and D-List as possible. In the above example, we pick
(A,B,C) and create statistics on it.
Step 3. Remove all elements from the H-List and D-List
which have been covered by the creation of s in Step 2
above. Remove s from S. In our example, we would
remove (A) from the H-List and (A), (A,B), (B,A) and
(A,B,C) from the D-List., and (A, B, C) from S.
Step 4. Repeat 2-3 until both H-List and D-List are empty.
In our example, we would end up creating {(A,B,C},
(B}}.

The above greedy algorithm works well in practice
(see Section 7.5 for an experimental evaluation) since the
cost of creating a statistic depends mainly on the table
size and not much on how many columns are present in
the statistic. Thus it is usually beneficial to pick the
largest remaining statistic to create, which contains the
most statistical information. A more formal treatment of
this problem is an interesting area of future work.

We note that the technique presented above simply
reduces redundant statistical information that DTA
creates. This is orthogonal to the techniques presented in
[10] for determining whether or not a particular statistic
actually impacts the plan chosen (or cost of plan chosen)
by the query optimizer. Thus both of these techniques can
be applied to reduce creation of unnecessary statistics.
Finally, we note that the technique presented in this

Given a set of statistics S = {s1, … sn} where each si
contains a histogram on its leading column and
density information on each leading prefix; find a
subset S’ of S of smallest cardinality such that it
contains the same histogram and density
information as S does.

1115

section will need to be modified if the database server
uses different statistical information, for example, multi-
column histograms.

5.3 Tuning in Production/Test Server Scenario

The process of tuning a large workload can impose
significant overhead on the server being tuned since DTA
needs to potentially make many “what-if” calls to the
query optimizer component. In enterprise databases, it is
common for DBAs to use test servers in addition to the
production server(s). A test server can be used for a
variety of purposes including performance tuning, testing
changes before they are deployed on the production server
and so on. A straightforward way of reducing the impact
of tuning on a production server is to use a test server as
follows:
• Step 1: Copy the databases one wants to tune from

the production server to the test server.
• Step 2: Tune the workload on the test server.
• Step 3: Apply the recommendation that one gets on

the test server to the production server.

The advantage of such a simplistic approach is that once
the databases are copied out to the test server, then there
is no tuning overhead imposed on the production server.
However, the approach suffers from many drawbacks that
severely limit its applicability. First, the databases can be
large (production databases can run into hundreds of
gigabytes or more) or changing frequently. In such
situations, copying large amounts of data from production
to test server for the purposes of tuning can be time
consuming and resource intensive. Second, the hardware
characteristics of test and production servers can be very
different. Production servers tend to be much more
powerful than test servers in terms of processors, memory
etc. Since the tuning process relies on the optimizer to
arrive at a recommendation and that in turn is tied to the
underlying hardware, this can lead to vastly different
results on the test server.

DTA provides the novel capability of exploiting a test
server, if available, to tune a database on a production
server without copying the data itself. The key
observation that enables this functionality is that the query
optimizer relies fundamentally on the metadata and
statistics when generating a plan for a query. We leverage
this observation to enable tuning on the test server as
outlined in Figure 2.

The steps in the tuning process are as follows:

• Step 1: Copy the metadata of the databases one wants
to tune from the production server to the test server..
We do not import the actual data from any tables.
Note that this requires not only importing the (empty)
tables, and indexes, but also all views, stored
procedures, triggers etc. This is necessary since the
queries in workload may reference these objects. The

metadata can be imported using the scripting
capability that is available in today’s database
systems. This is generally a very fast operation as it
requires working with system catalog entries and
does not depend on data size.

• Step 2: Tune the workload on the test server. For

getting the same plan on the test server as we would
have got on the production server, we need two
important functionalities from the database server. (1)
During the tuning process, DTA may determine that
certain statistics may need to be present (on the test
server) so that the query optimizer can optimize the
query accurately. However the statistics creation
requires access to the actual data, and that is present
only on production server. When that happens, DTA
imports statistics from the production server (creating
the statistics on the production server if necessary)
and into the test server. (2) The hardware parameters
of production server that are modeled by the query
optimizer when it generates a query plan need to be
appropriately “simulated” on the test server. For
example, since query optimizer’s cost model
considers the number of CPUs and the available
memory, these parameters need to be part of the
interface that DTA uses to make a “what-if” call to
the query optimizer. Microsoft SQL Server 2005 has
been extended to provide us with both of these
functionalities.

• Step 3: Apply the recommendation that one gets on
the test server to the production server.

Note that the only overhead introduced on the production
server during tuning is the creation of additional statistics
(if any) that are necessary as tuning progresses (Step 2).
The rest of the tasks that include simulating what-if
interfaces, optimizing queries under different physical
designs etc. are all performed on the test server. In

DTA

Perform
Tuning

Create
statistics

DTA recommendations

Import metadata
and statistics

Figure 2. Tuning in a Production/Test Server Scenario.

Production
Server

Test
Server

1116

Section 7.3, we present experimental results that quantify
the reduction in overhead on the production server as a
result of exploiting this feature in DTA.

6. Enhanced Usability

6.1 Scriptabilty

As described in the introduction, tools for automated
physical database design have emerged over the past few
years and become part of commercial database systems.
As such physical database design tools become more
widely used, it can be advantageous to define a public
XML schema for physical database design that forms the
basis of input and output to such tools. First, having a
public schema facilitates development of other tools that
can program against the schema. Moreover, scriptability
of the physical design tool can become much easier once
such a schema is available. Second, as physical design
tools evolve over time, having an XML schema makes it
easy to extend it to meet the changing input/output needs
of physical design tools. Finally, an XML schema makes
it possible for different users/tools to interchange and
communicate physical database design information within
and across organization boundaries. We have defined
such an XML schema for physical database design that is
used by DTA, and that will be made public with the
release of Microsoft SQL Server 2005 at [11]. The
schema is described using the “XML Schema” schema
definition language [19,20]. The schema defines elements
to describe the common entities in physical database
design, for example, databases (and tables within them),
workloads, configurations, and reports.

6.2 Customizability via Partial Specification of
Physical Design

In certain cases, DBAs may need to tune workload while
being able to specify the physical design partially.
Consider the following scenario where the DBA needs to
decide whether a large table T (e.g., a fact table) should
be range partitioned by month or quarter. Although either
form of partitioning may be acceptable from a
manageability standpoint, the DBA would prefer the
option that results in better performance for the workload.

DTA allows the user to provide as (an optional) input
a user specified configuration. A user specified
configuration is a set of physical design structures that is
valid, i.e. all physical design structures specified must be
realizable in the database. An example of a physical
design that is not valid is when there are more than one
ways of clustering specified on the same table as a part of
the same user specified configuration. DTA tunes the
given workload and provides a recommendation while
honoring the constraint that the user specified
configuration is included in the recommendation provided

by DTA. Thus in the above scenario, the DBA can first
invoke DTA with a user specified configuration C1 in
which T is partitioned by month, and have DTA
recommend the best physical design while honoring the
constraint. The DBA can then run DTA again, this time
with a user specified configuration C2 in which T is
partitioned by quarter. Finally, the DBA can compare the
two recommendations and pick the one with better overall
performance.

Since DTA never needs to physically alter the
partitioning of the table, a DBA can try out various
physical design alternatives efficiently without interfering
with the normal database operations. In the scenario
mentioned above, the DBA never needs to physically alter
the partitioning of the large table (which can be an
expensive operation) while making the decision of which
partitioning to pick.

6.3 Exploratory Analysis and Iterative Tuning

A common scenario that DBAs encounter is the need to
perform exploratory or “what-if” physical design analysis
to get answers to question of the following type: What is
the performance impact on a given set of queries and
updates if I add a particular index or change the
partitioning of a particular table? DTA enables this
functionality through the user specified configuration
mechanism described earlier (see Section 4.2). In
particular, the user can specify a configuration, i.e., a
valid physical design consisting of existing or
hypothetical objects, and request DTA to evaluate the
configuration for a given workload. DTA exploits the
“what-if” interfaces of Microsoft SQL Server [9] to
simulate the given configuration, and it evaluates each
statement in the workload for the given configuration.
DTA returns as output the expected percentage change in
the workload cost compared to the existing configuration
in the database. In addition, DTA provides a rich set of
analysis reports that provides details about changes in cost
of individual statements in the workload, usage of indexes
and materialized views, and so on.

Another common scenario that DBAs face is the need
for iterative tuning and refinement. For example, a DBA
obtains a recommendation from DTA for a particular
workload, and wishes to modify the recommendation and
re-evaluate the modified configuration for the same
workload. The DBA may repeat such evaluation until she
is satisfied with the performance/impact of the
configuration. Once again, such a scenario becomes
simple via the user specified configuration feature of
DTA. Moreover, given that the DTA input and output
conform to an XML schema, it is easy for users or other
automated tools to take the output configuration from one
run of DTA and feed a modified version of it as input into
a subsequent run of DTA.

1117

7. Experiments

In this section, we present results of experiments that
evaluate:
• Quality of recommendations by DTA on several

customer workloads, by comparing it to a hand-tuned
physical design.

• Quality of DTA on TPC-H 10GB benchmark
workload.

• Impact on production server overhead because of
DTA’s ability to exploit a test server for tuning.

• Impact of workload compression technique (Section
5.1) on quality and scalability of DTA.

• Effectiveness of technique for reduced statistics
creation (Section 5.2).

• An end-to-end comparison of DTA with Index
Tuning Wizard for SQL Server 2000.

7.1 Quality of DTA vs. hand-tuned design on
customer workloads

In this experiment, we compare the quality of DTA’s
physical design recommendation with a manually-tuned
physical design. The databases and workloads used in this
experiment were obtained from internal customers of
Microsoft SQL Server. The methodology we adopt for
this experiment is as follows. For each workload, we
obtain the optimizer estimated cost of the workload for
the current physical design (put in place by the DBA of
that database). We refer to this cost as CCurrent. We then
drop all physical design structures (except those that
enforce referential integrity constraints) and once again
obtain the cost of the workload. We refer to this cost as
Craw. We then tune the workload using DTA, and obtain
the cost of the workload for DTA’s recommended
configuration. We refer to this cost as CDTA. We define
the quality of DTA as (Craw – CDTA)/Craw and the quality
of the hand-tuned design as (Craw – CCurrent)/Craw, i.e., the
percentage reduction relative to Craw.

A brief overview of each customer database/workload
used in this experiment in shown in Table 1. We note that
depending on the type of application, the amount of
updates in these workloads varies (higher for CUST3).

Database

Total
size
(GB)

#DBs #Tables

CUST1 10.7 31 4374
CUST2 1.4 6 48
CUST3 105.9 23 1624
CUST4 0.06 2 11

As can be seen from Table 2, in all the customer

workloads, the quality of DTA is comparable to the hand-

tuned physical design for the CUST 1 workload. DTA is
significantly better for CUST2 and CUST4. In CUST4
(which is a small database), the hand-tuned design
consisted of only the primary-key and unique indexes,
whereas DTA was able to considerably improve upon that
design. In CUST3, the hand-tuned design was worse than
the raw configuration due to presence of updates. For this
workload, DTA correctly recommended no new physical
design structures to be created. This experiment
demonstrates DTA’s ability to effectively tune real-world
workloads. Finally, we note that the tuning time of DTA
can vary depending on the complexity of queries in the
workload. For example, in this experiment DTA tuned
anywhere between 134 events/min (CUST4) to about 500
events/min (CUST2).

Workload Quality

of hand-
tuned
design

Quality
of
DTA

#events
tuned

Tuning
time
(hr:min)

CUST1 82% 87% 15K 0:35
CUST2 6% 41% 252K 8:21
CUST3 -5% 0% 176K 15:14
CUST4 0% 50% 9K 1:07

7.2 Evaluation on TPC-H 10GB benchmark
workload

In this experiment, we evaluate DTA on the TPC-H 10GB
benchmark workload [17]. We start with a raw database
(i.e., consisting of only indexes that enforce referential
integrity constraints), and tune the benchmark workload
consisting of 22 queries. The size of the raw database is
about 12.8 GB. The expected improvement reported by
DTA for this workload is 88% (the total storage space
allotted was three times the raw data size). We
implemented DTA’s recommendations and executed the
queries (warm runs). For each query, we conduct 5 warm
runs, discard the highest and lowest readings and take the
average of the remaining 3 readings. The actual
improvement in execution time for the workload is 83%.
This experiment shows that (a) DTA is able to achieve
significant improvements on a workload containing
complex queries; and (b) the query optimizer’s estimates
are reasonably accurate for this workload.

7.3 Production/Test Server Scenario

The following experiment illustrates the impact of
DTA’s ability to use a test server for tuning purposes. The
database used for this experiment is TPC-H [17], the 1
GB configuration. TPCHQ1-I (and TPCH22-I) denotes
the first query (resp. 22 queries) in TPC-H benchmark and
only indexes are selected for tuning. TPCHQ1-A (and

Table 1: Overview of customer databases
and workloads.

Table 2: Quality of DTA vs. hand-tuned
design on customer workloads.

1118

TPCH22-A) denotes the first query (resp. all 22 queries)
in TPC-H benchmark and both indexes and materialized
views are considered during the process of tuning. We use
a test server to tune the production server and compare the
overhead on the production server to the case where we
had no test server. The overhead is measured as the total
duration (i.e., elapsed time) of all statements that were
submitted to the production server by DTA. No other
queries were running on the test and production servers
during the period of the experiment.

Figure 3 shows that even in the simplest case of single
query tuning and only indexes are considered, TPCHQ1-I,
during tuning, the overhead on the production server is
reduced by about 60%. For TPCH22-A the reduction is
significant (90%). Note that as the complexity of tuning
increases (e.g., larger workload, or more physical design
features to consider) we expect the reduction in overhead
to become more significant (as seen in Figure 3). We have
observed similar benefits of reduced overhead for several
customer workloads as well.

Reduction in Production Server Overhead

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TPCHQ1-I TPCHQ1-A TPCH22-I TPCH22-A

Workloads

%
R

ed
u

ct
io

n

7.4 Effectiveness of Workload Compression

The following experiment illustrates the impact of
workload compression (see Section 5.1) on the quality of
DTA’s recommendations as well on its running time for a
few real and synthetic workloads. We use three database
and workloads for this comparing (a) TPCH22 queries on
TPC-H 1GB data; (b) PSOFT is a customer database (a
PeopleSoft application) where the workload consists of
about 6000 queries, inserts, updates and deletes, the
database is about .75 GB; and (c) SYNT1 is a synthetic
database that conforms to the well known SetQuery
benchmark schema, and contains 8000 queries in the
workload. The queries are SPJ queries with grouping and
aggregation, with approximately 100 distinct “templates.”
Each query was generated by randomly selecting selection

columns, grouping columns, aggregation
columns/functions, etc.

Table 3 summarizes the results of this experiment. For
TPCH22 (which contains only 22 queries), the queries in
the workload are all very different and no workload
compression is possible using our technique. The benefits
of workload compression are much larger when we have
larger workloads and this is reflected in PSOFT and
SYNT1. We observe a speed up of more than a factor of
5x for the PSOFT workload and more than 40x for
SYNT1. This is because these workloads have many
queries but relatively few distinct templates (see Section
5.1). For PSOFT, DTA tunes about 10% of the number of
queries in the workload, whereas for SYNT1 this was
about 2%. Thus, by leveraging the ideas of workload
compression, we are able to significantly improve the
performance of DTA with almost no adverse impact on
the quality of recommendations.

7.5 Impact of Reduced Statistics Creation

In this experiment we measure the reduction in statistics
creation time using techniques described in Section 5.2
for two different workloads, TPC-H 10GB and PSOFT.
We measure: (a) reduction in number of statistics created
(b) reduction in statistics creation time. The number of
statistics created was reduced by 55% for TPC-H and
about 24% PSOFT. Similarly, the reduction in statistics
creation time was 62% and 31%, respectively. In both of
these cases there was no difference in the quality of
DTA’s recommendation since the above technique only
reduces creation of redundant statistical information.

7.6 End-to-End comparision against ITW in SQL
Server 2000 (SS2K)

The Index Tuning Wizard (ITW) in Microsoft SQL
Server 2000 is one of the currently available physical
design tools for Microsoft SQL Server. In this section, we
conduct an end-to-end comparison of the quality and
running time of DTA compared to ITW in Microsoft SQL
Server 2000. We compare the overall quality of the
recommendation produced by the tools, and running time
of DTA compared to that of Index Tuning Wizard in
Microsoft SQL Server 2000. We measure the quality by

Database and
Workloads

% Decrease in
Quality
compared to no
workload
compression

Reduction in
Running Time
of DTA
compared to no
workload
compression

TPCH22 0 -1%
PSOFT 0.5% 5.8x
SYNT1 1% 43x

Figure 3. Reducing load on production
server by exploiting test server

Table 3: Impact of Workload Compression
on Quality and Running Time of DTA.

1119

the percentage improvement in the optimizer estimated
cost for the workload.

The experiments below compare the running time and
quality. We use the three databases and workloads
TPCH22, PSOFT and SYNT1 described in Section 7.4.
To ensure a fair comparison, in this experiment, we
consider only indexes and materialized views (since ITW
is not capable of recommending partitioning). The
comparisons were performed by running both the tools
against the same server (a Microsoft SQL Server 2000
server). Figures 4 (and 5) compare the quality (resp.
running time) of DTA compared to ITW in SQL Server
2000. We observe that for the same database/workload,
we get comparable recommendation qualities for
TPCH22, PSOFT and SYNT1 (DTA is slightly better in
all cases), and DTA is significantly faster for the large
workloads.

Quality Comparison w ith SQL2K Index Tuning
Wizard

70%

75%

80%

85%

90%

95%

100%

TPCH22 PSOFT SYNT1

Workload

E
xp

ec
te

d
 im

p
ro

ve
m

en
t

fo
r

w
o

rk
lo

ad

DTA Quality

SS2K ITW
Quality

Running time comparison w ith SQL2K Index
Tuning Wizard

0%

20%

40%

60%

80%

100%

TPCH22 PSOFT SYNT1

Workload

R
ed

u
ct

io
n

 in
 r

u
n

n
in

g

ti
m

e

8. Related Work

There are currently several automated physical design
tools developed by commercial database vendors

themselves, and by third-party tool vendors. To the best
of our knowledge, the Database Tuning Advisor (DTA)
for Microsoft SQL Server 2005 is the first tool with the
capability of providing a fully integrated recommendation
for indexes, materialized views and horizontal range
partitioning, i.e., DBAs do not need to stage the selection
of different physical design features.

Today’s tools support tuning of different sets of
physical design features. Index Tuning Wizard in
Microsoft SQL Server 2000 [2] was the first tool to
recommend indexes and materialized views in an
integrated manner. DTA builds upon the Index Tuning
Wizard and significantly advances upon it in several
aspects including functionality, scalability and
manageability. The algorithmic techniques underlying
DTA were developed in the context of the AutoAdmin
project [1] at Microsoft, whose goal is to reduce TCO by
making database systems more self-tuning and self-
managing.

IBM’s DB2 Advisor [21] recommends indexes and
materialized views, and IBM’s Partition Advisor [11]
recommends horizontal hash partitioning in a shared-
nothing parallel database. Oracle’s Index Tuning Wizard
[12] and BMC’s Index Advisor [6] recommend indexes.
Leccotech [13] provides tools for tuning a SQL statement
by recommending indexes, and also by suggesting
rewritten SQL that can obtain a potentially better
execution plan.

The idea of workload compression as a technique to
improve scalability of workload based tuning tools was
first presented in [7]. We have adapted these ideas and
implemented them in the context of DTA, to obtain
significant improvement in scalability for large workloads
(see Section 5.1). The technique presented in Section 5.2
for reducing the redundant statistical information from a
given set of statistics is complementary to the techniques
presented in [10] for determining whether or not a
particular statistic actually affects the plan chosen (or cost
of plan chosen) by the query optimizer. Thus both of these
techniques can be applied to reduce creation of
unnecessary statistics. The techniques of pruning column-
groups based on frequency of occurrence in the workload
and cost, and algorithmic techniques for handling
alignment requirements inside a physical database design
tool as well as merging in the presence of horizontal
partitioning were developed in the context of DTA and
have been presented in [4].

Finally, there are several aspects of DTA’s
functionality which are the first for any physical database
design tool. These include: (a) the ability to specify an
alignment constraint as well as a partially specified
configuration; (b) an XML schema for input/output that
enhances scriptability and customizability of the tool; and
(c) efficient tuning in production/test server scenarios.

Figure 4. Quality of recommendation of DTA
compared to Index Tuning Wizard for
Microsoft SQL Server 2000.

Figure 5. Running time of DTA compared to Index
Tuning Wizard for Microsoft SQL Server 2000

1120

9. Conclusion

As tuning tools continue to encompass more features, it is
important to keep the usage of these tools simple for
DBAs by providing integrated recommendations for
various features when possible. Database Tuning Advisor
for Microsoft SQL Server 2005 is built around a scalable
architecture that makes it easy to incorporate new
physical design features, while ensuring integrated
recommendations. In the future, we will continue to
expand the scope of DTA to include other important
aspects of performance tuning.

10. Acknowledgements

We are grateful to Alex Boukouvalas, Campbell Fraser,
Florian Waas, and Cesar Galindo-Legaria for helping with
necessary extensions to Microsoft SQL Server 2005 for
DTA. We thank Djana Milton, Maciek Sarnowicz, and
Dima Sonkin who developed the GUI component of
DTA.

11. References
[1] The AutoAdmin project.

http://research.microsoft.com/dmx/AutoAdmin .
[2] Agrawal S., Chaudhuri S., Kollar L., and Narasayya V.

Index Tuning Wizard for Microsoft SQL Server 2000.
White paper.
http://msdn.microsoft.com/library/techart/itwforsql.htm

[3] Agrawal, S., Chaudhuri, S., and Narasayya, V. Automated
Selection of Materialized Views and Indexes for SQL
Databases. Proceedings of VLDB 2000.

[4] Agrawal, S., Narasayya, V., and Yang., B. Integrating
Vertical and Horizontal Partitioning Into Automated
Physical Database Design. In Proceedings of ACM
SIGMOD 2004.

[5] Agrawal R., and Ramakrishnan S. Fast Algorithms for
Mining Association Rules for Large Databases.
Proceedings of VLDB 1994.

[6] BMC Index Advisor. http://www.bmc.com .
[7] Chaudhuri S., Gupta A., and Narasayya V. Workload

Compression. Proceedings of ACM SGMOD 2002.
[8] Chaudhuri, S., and Narasayya, V. An Efficient Cost-Driven

Index Selection Tool for Microsoft SQL Server. VLDB
1997.

[9] Chaudhuri, S., and Narasayya, V. AutoAdmin “What-If”
Index Analysis Utitlity. Proceedings of ACM SIGMOD
1998.

[10] Chaudhuri S., and Narasayya V. Automating Statistics
Management for Query Optimizers. Proceedings of ICDE
2000.

[11] http://schemas.microsoft.com/sqlserver/2004/07/dta/ XML
schema for physical database design used by DTA.

[12] http://otn.oracle.com/products/oracle9i/index.html.
[13] LeccoTech’s Performance Optimization Solutions for

Oracle. White Paper. LeccoTech Inc.
http://www.leccotech.com

[14] Program for TPC-D data generation with Skew.
ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew
.

[15] Rao, J., Zhang, C., Lohman, G., and Megiddo, N.
Automating Physical Database Design in a Parallel
Database. Proceedings of the ACM SIGMOD 2002.

[16] Stohr T., Martens H.., and Rahm E.. Multi-Dimensional
Aware Database Allocation for Parallel Data Warehouses.
Proceedings of VLDB 2000.

[17] TPC Benchmark H. Decision Support. http://www.tpc.org
[18] Valentin, G., Zuliani, M., Zilio, D., and Lohman, G. DB2

Advisor: An Optimizer That is Smart Enough to
Recommend Its Own Indexes. Proceedings of ICDE 2000.

[19] World Wide Web Consortium. Extensible Markup
Language (XML). W3C Recommendation (October 2000).
http://www.w3.org/XML/. Web-page, 2003.

[20] World Wide Web Consortium. XML Schema. W3C
Recommendation (May 2001).
http://www.w3.org/XML/Schema. Web-page, 2003.

[21] Zilio D. et al. Recommending Materialized Views and
Indexes with IBM’s DB2 Design Advisor. Proceedings of
International Conference on Autonomic Computing, 2004.

1121

