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Abstract 

The Database Tuning Advisor (DTA) that is part of 
Microsoft SQL Server 2005 is an automated physical 
database design tool that significantly advances the 
state-of-the-art in several ways. First, DTA is capable 
to providing an integrated physical design 
recommendation for horizontal partitioning, indexes, 
and materialized views. Second, unlike today’s 
physical design tools that focus solely on 
performance, DTA also supports the capability for a 
database administrator (DBA) to specify 
manageability requirements while optimizing for 
performance. Third, DTA is able to scale to large 
databases and workloads using several novel 
techniques including: (a) workload compression (b) 
reduced statistics creation and (c) exploiting test 
server to reduce load on production server. Finally, 
DTA greatly enhances scriptability and customization 
through the use of a public XML schema for input 
and output. This paper provides an overview of 
DTA’s novel functionality, the rationale for its 
architecture, and demonstrates DTA’s quality and 
scalability on large customer workloads. 

1. Introduction 

The performance of an enterprise database system can 
depend crucially on its physical database design. 
Automated tools for physical database design can help 
reduce the total cost of ownership (TCO) of databases by 
reducing the DBA’s burden in determining the 
appropriate physical design. The past few years have seen 
an emergence of such automated tools. Indeed, today’s 
major commercial database systems include as part of 

their product, automated tools such as [2,3,4,6,15,18,21] 
that analyze a representative workload consisting of 
queries and updates that run against the database, and 
recommend appropriate changes to physical design for the 
workload.  

1.1   Requirements of a Physical Design Tool 

While these state-of-the-art tools represent an 
important step in the direction of reducing TCO, there are 
a number of important requirements, described below, in 
which currently available tools are still lacking that can 
make it difficult to use in an enterprise environment. 

Integrated selection of physical design features: 
Today’s database engines offer a variety of physical 
design features such as indexes, materialized views and 
horizontal partitioning, each of which can have a 
significant impact on the performance of the workload. A 
physical design tool should ideally provide an integrated 
“console” where DBAs can tune all physical design 
features supported by the server. In supporting such a 
console, it may appear natural (for scalability reasons) to 
employ a staged solution to the physical design problem, -
- for example, first choose partitioning of tables only, then 
pick indexes, then pick materialized views etc. However, 
as shown in [3,4] (and discussed in Section 3), due to the 
strong interaction among these features, such staging can 
potentially lead to an inferior physical design. Thus, a tool 
that is capable of making an integrated physical design 
recommendation that takes into account the interactions 
among all these features is important since otherwise: (a) 
Ad-hoc choices need to be made on how to stage physical 
design selection; and (b) It is difficult to quantify how 
much performance is compromised for a given database 
and workload as a result of staging. There are tools that 
integrate tuning of certain physical design features, e.g., 
[3,21], but to the best of our knowledge, no tool until now 
offers a fully integrated approach to tuning indexes, 
materialized views and horizontal partitioning together. 

Incorporating manageability aspects into physical 
design: The focus of today’s physical design tools is on 
improving performance. However, manageability of 
physical design is often a key requirement. For example, 
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DBAs often use horizontal range partitioning to ensure 
easy backup/restore, to add new data or remove old data. 
In these scenarios, having a table and all of its indexes 
aligned, i.e., partitioned identically makes these tasks 
easier. On the other hand, the manner in which a table (or 
an index) is partitioned can have significant impact on the 
performance of queries against the table (using the index). 
Therefore, it becomes important for an automated 
physical design tool to allow DBAs the ability to specify 
alignment requirements while optimizing for 
performance.  

Scaling to large databases and workloads: 
Enterprise databases can be large and a typical 
representative workload can also be large (e.g., number of 
queries/updates that execute on a server in one day can 
easily run into hundreds of thousands or more). Thus, to 
be effective in an enterprise environment, these tools need 
to be able to scale well, while maintaining good 
recommendation quality. 

Ability to tune a production database with very 
little overhead: Consider a case where a DBA needs to 
tune a large workload. Tuning such a workload can incur 
substantial load on the production server. Therefore, there 
is a need to tune these databases by imposing very little 
overhead on production server. Sometimes test servers 
exist, but it is often infeasible or undesirable to copy the 
entire database to the test server for tuning. Moreover the 
test server may have different hardware characteristics, 
and thus the recommendations of the tool on the test 
server may not be appropriate for the production server.  

Scriptability and customization: As physical design 
tools become more feature rich, and get increasingly used 
in enterprises, the ability to script these tools for DBAs 
and build value added tools on top by developers becomes 
more important. Moreover different degrees of 
customization are necessary for different scenarios. At 
one extreme, the tool should be able to make all physical 
recommendations on its own. At the other extreme, the 
DBA should be able to propose a physical design that is 
simply evaluated the tool. In between, the DBA should be 
able to specify a physical design partially (e.g., clustering 
or partitioning of a given table) and the tool should 
complete the rest of the tuning. Such support is 
inadequate in today’s physical design tools.  
 

1.2 Advancements in DatabaseTuning Advisor   

In this paper, we describe Database Tuning Advisor 
(DTA), an automated physical design tool that is part of 
Microsoft SQL Server 2005. DTA significantly advances 
functionality, manageability, scalability, and scriptability 
relative to the state-of-the-art physical design tools. DTA 
is the next generation physical design tool that builds 
upon the Index Tuning Wizard in Microsoft SQL Server 
2000. First, DTA can provide integrated 
recommendations for indexes, materialized views as well 

as single-node horizontal partitioning for a given 
workload (Section 3). DTA provides the user the ability to 
specify the requirement that the physical database design 
should be aligned, i.e., a table and its indexes should be 
partitioned identically (Section 4). DTA scales to large 
databases and workloads using several novel techniques 
including: (a) workload compression that helps scaling to 
large workloads; (b) reduced statistics creation that helps 
to reduce time for creating statistics for large databases; 
and (c) exploiting test server to reduce tuning load on 
production server. These techniques for improving 
scalability are discussed in Section 5. The input and 
output to DTA conforms to a public XML schema  
for physical database design which makes scripting and 
customization easy, and enables other tools to build value-
added functionality on top of DTA. Such usability 
enhancements in DTA are discussed  
in Section 6. DTA exposes a novel feature called user 
specified configuration that allows DBAs to specify the 
desired physical design partially (without actual 
materialization), while optimizing for performance. This 
allows for greater customizability. These and other 
important usability enhancements in DTA are discussed in 
Section 6. In Section 7 we present results of extensive 
experiments on several customer workloads and the TPC-
H 10GB benchmark workload that evaluates: (a) the 
quality of DTA’s recommendation compared to a hand-
tuned physical design and (b) its scalability to large 
databases and workloads. We summarize related work in 
Section 8. We begin with an overview of DTA 
functionality and its internal architecture in Section 2.  

2.   Overview of Database Tuning Advisor 

2.1   Functionality 

Figure 1 shows an overview of the Database Tuning 
Advisor (DTA) for Microsoft SQL Server 2005. DTA is a 
client physical database design tuning tool. It can be run 
either from a graphical user interface or using a 
command-line executable.  
 
Input: DTA takes the following inputs: 
• A set of databases on a server. Many applications use 

more than one database, and therefore, ability to tune 
multiple databases simultaneously is important.  

• A workload to tune. A workload is a set of SQL 
statements that execute against the database server. A 
workload can be obtained by using SQL Server 
Profiler, a tool for logging events that execute on a 
server. Alternatively, a workload can be a SQL file 
containing an organization or industry benchmark, 
for example. 
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• Feature set to tune. Although DTA is capable of 

tuning indexes, materialized views, and partitioning 
together, DBAs may sometimes need to limit tuning 
to subsets of these features. For example, a DBA of 
an OLTP system may decide a priori to not include 
any materialized views.  

• Optional alignment constraint that a table and all its 
indexes must be partitioned identically (although 
different tables may be partitioned differently).  

• User can specify a partial configuration (e.g., 
clustered index on a table, partitioning of a table or 
materialized view), and constrain DTA’s 
recommendation to honor this specification.  

• An optional storage constraint: DTA allows 
specifying a bound on the storage that the physical 
design it recommends can consume. 

• An optional time constraint: an upper bound on the 
time that DTA is allowed to run. Although DTA’s 
ability to perform tuning within a time bound is an 
interesting technical problem in itself, in this paper 
we do not focus on the problem of time-bound tuning 
or on DTA’s specific solution. 

 
Output: The output of DTA is a physical design 
recommendation (which we refer to as a configuration) 
consisting of indexes, materialized views, and a 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
recommendation on horizontal range partitioning of 
tables, indexes, and materialized views.  

2.2   Architecture  

DTA extends the architecture developed in the context of 
previous work for index and materialized view selection 
[3] (used by Index Tuning Wizard in Microsoft SQL 
Server 2000). DTA’s architecture is shown in Figure 1. 
Several properties of this architecture should be noted: (a) 
It is not specific to a particular physical design feature, 
and in principle, requires little changes as new physical 
design features are added; (b) It provides an integrated 
physical design recommendation; (c) It is in-sync with the 
query optimizer component of the database server. Below 
we briefly summarize the salient aspects of this 
architecture, and highlight extensions made compared to 
[3], where appropriate.  

 
DTA’s Cost Model: The basis of DTA’s 

recommendations is the “what-if” analysis interfaces of 
Microsoft SQL Server described in [9], which have been 
extended to also support simulation of horizontally 
partitioned tables, indexes and materialized views [4] (in 
addition to non-partitioned indexes and materialized 
views). Microsoft SQL Server 2005 supports single-
column range partitioning. Using these interfaces, for a 
given query Q and a configuration C, DTA can obtain the 
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optimizer-estimated cost of Q as if configuration C were 
materialized in the database. Among all the configurations 
that DTA explores for the given workload, it recommends 
the one with the lowest optimizer-estimated cost for the 
workload. There are several advantages of being “in-
sync” with the query optimizer: (a) The configuration 
DTA recommends, if implemented, will in fact be used by 
the query optimizer; (b) As query optimizer’s cost model 
evolves over time, DTA is able to automatically benefit 
from improvements to it; (c) DTA takes into account all 
aspects of performance that the query optimizer can 
model including the impact of multiple processors, 
amount of memory on the server, and so on. It is 
important to note, however, that query optimizers 
typically do not model all the aspects of query execution 
(e.g. impact of indexes on locking behavior, impact of 
data layout etc.). Thus, DTA’s estimated improvement 
may be different from the actual improvement in 
execution time. 

 
Column-Group Restriction: The space of all 

physical design structures (indexes, materialized views, 
partitioning) that need to be considered for a given 
workload can be very large. The explosion in the number 
of physical design structures that must be considered is a 
result of the large number of column-groups (i.e., sets of 
columns) that are, in principle, relevant for the workload. 
Column-group restriction a pre-processing step that 
eliminates from further consideration a large number of 
column-groups that can at best have only a marginal 
impact on the quality of the final recommendation (in 
particular, column-groups that occur only in a small 
fraction of the workload by cost). The output of this step 
is a set of “interesting” column-groups for the workload. 
Indexes and partitioning considered by DTA is limited 
only to interesting column groups, thereby significantly 
improving scalability with little impact on quality [4]. For 
scalability, we construct the interesting column-groups for 
a workload in a bottom-up manner leveraging the idea of 
frequent itemsets [5]. This module is an extension of the 
previous architecture presented in [3].  

 
Candidate Selection: The Candidate Selection step 

selects for each query in the workload (in particular, one 
query at a time), a set of very good configurations for that 
query in a cost-based manner by consulting the query 
optimizer component of the database system. A physical 
design structure that is part of the selected configurations 
of one or more queries in the workload is referred to as a 
candidate. We use a greedy search strategy, called Greedy 
(m,k) [8] to realize this task. To recap, Greedy (m,k) 
algorithm guarantees an optimal answer when choosing 
up to m physical design structures, and subsequently uses 
a greedy strategy to add more (up to k) structures.  

 
Merging: Since Candidate Selection operates only at 

the level of an individual query, if we restrict the final 

choice of physical design to only be a subset of the 
candidates selected by the Candidate Selection step, we 
can potentially end up with “over-specialized” physical 
design structures that are good for individual queries, but 
not good for the overall workload. Specifically, when 
storage is limited or workload is update-intensive, this can 
lead to poor quality of the final solution. The goal of the 
Merging step is to consider new physical design 
structures, based on candidates chosen in the Candidate 
Selection step, which can benefit multiple queries in the 
workload. The Merging step augments the set of 
candidates with additional “merged” physical design 
structures. The idea of merging physical design structures 
has been studied in the context of un-partitioned indexes 
[8], and materialized views [3]. Merging becomes a lot 
harder with the inclusion of partitioning, and requires new 
algorithmic techniques. Our techniques for merging 
partitioned indexes and materialized views are described 
in [4]. 

 
Enumeration: This step takes as input the union of 

the candidates (including candidates from Merging), and 
produces the final solution: a physical database design. 
We use Greedy (m,k)  search scheme. As shown in [4], 
with the additional constraint that the physical design for 
each table should be aligned, introducing new candidates 
that are required (for alignment) eagerly can be 
unscalable. In [4], we describe how it is possible to delay 
the introduction of additional candidates that need to be 
introduced to satisfy the alignment constraint lazily, 
thereby greatly improving the scalability of the 
enumeration step. 

3.   Integrated Physical Design 
Recommendations 

An important challenge in physical design tuning is being 
able to judiciously deal with the tradeoffs in performance 
of various physical design features available (indexes, 
materialized views, partitioning etc.). This tradeoff is 
challenging for the following two reasons. First, for a 
given query, different features can overlap in their ability 
to reduce the cost of execution for query. 
 
Example 1. Consider the query: Select A, COUNT(*) 
FROM T WHERE X < 10 GROUP BY A. For this query 
several different physical design structures can reduce its 
execution cost: (i) A clustered index on (X); (ii) Table 
range partitioned on X; (iii) A non-clustered, “covering” 
index on (X, A); (iv) A materialized view that matches the 
query, and so on.  

Second, these features can have widely varying 
storage and update characteristics. Thus in the presence of 
storage constraints or for a workload containing updates, 
making a global choice for a workload is difficult. For 
example, a clustered index on a table and horizontal 
partitioning of a table are both non-redundant structures 
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(incur negligible additional storage overhead); whereas 
non-clustered indexes and materialized views can 
potentially be storage intensive (similarly their update 
costs can be higher). However, non-clustered indexes 
(e.g., “covering” indexes) and materialized views can 
often be much more beneficial than a clustered index or a 
horizontally partitioned table.  

Thus, a physical design tool that can give an integrated 
physical design recommendation can greatly 
reduce/eliminate the need for a DBA to make ad-hoc 
decisions such as: (a) how to stage tuning, e.g., pick 
partitioning first, then indexes, and finally materialized 
views; (b) How to divide up the overall storage to allocate 
for each step in this staged solution, etc. The following 
example (showing the interaction between indexes and 
horizontal partitioning) illustrates the pitfalls of a staged 
solution.  
Example 2. Consider the query from Example 1 and 
suppose that we wish to consider only clustered indexes 
and horizontal range partitioning of the table. We 
compare two approaches for the query above. (1) A 
staged solution that first selects the best clustered index, 
and in the next step considers horizontal range 
partitioning of the table. (2) An integrated solution that 
considers both features together. Observe that both a 
clustered index on column X or a range partitioning on 
column X can help reduce the selection cost, whereas a 
clustered index on column A is likely to be much more 
beneficial than a horizontal range partitioning on A as far 
as the grouping is concerned. Thus, if in the first step of 
the staged solution we recommend a clustered index on X, 
then we can never expect to find the optimal solution for 
the query: a clustered index on A and horizontal range 
partitioning of the table on X. On the other hand, an 
integrated solution is capable of finding this solution since 
it considers these features together.   

As noted earlier, DTA can recommend indexes, 
materialized views, and horizontal partitioning in an 
integrated manner. Although doing so is important for the 
reasons described above, when all of the physical design 
features are considered together, the space of 
configurations that need to be considered for a given 
workload can become very large. The techniques that 
DTA uses to reduce the space of configurations that are 
explored without impacting the quality of 
recommendations significantly have been summarized in 
Section 2.2 and are described in greater detail in [4].  

Finally, we note that DTA allows DBAs to choose 
only a subset of the available physical design features 
should they wish to do so. For example, in certain 
environments, a DBA may not wish to consider 
materialized views. In this case, the DBA can specify that 
DTA should only consider indexes and partitioning as the 
physical design options. 

 

4.   Aligned Partitioning 

As discussed earlier, DBAs often require the physical 
design to be aligned (i.e., a table and all of its indexes are 
partitioned identically) so that it is easy to add, remove, 
backup, and restore data partitions. Horizontal range 
partitioning is important for manageability reasons, but it 
can also have a significant impact on performance of the 
workload. Therefore, DTA allows users the option of 
specifying that the physical design should be aligned.  
Choosing this option implies that the physical design 
recommended by DTA will satisfy the property of 
alignment for each table. The impact of specifying the 
alignment requirement on DTA is that it constrains the 
overall search space that DTA needs to traverse. The key 
technical challenge arising out of alignment is that 
different queries that reference a given table T may 
benefit from different ways of partitioning T or indexes 
on T. Thus, efficiently finding a compromise that works 
well across all queries in the workload is difficult. DTA 
efficiently incorporates alignment constraints into its 
search algorithm by exploiting the fact that in many cases, 
it is sufficient to introduce new candidates for the 
purposes of satisfying alignment lazily. Such lazy 
introduction of candidates during the Enumeration step 
(Section 2.2), can significantly improve scalability. The 
details of this technique are described in [4]. 

5.   Improved Scalablity 

5.1   Scaling to Large Workloads 

One of the key factors that affect the scalability of 
physical design tools is the size of the workload, i.e., the 
number of statements (queries, updates) in the workload. 
As explained earlier, the workload given to DTA for 
tuning can be very large.  In such cases, a natural question 
to ask is whether tuning a much smaller subset of the 
workload would be sufficient to give a recommendation 
with approximately the same reduction in cost as the 
recommendation obtained by tuning the entire workload.  

Two obvious strategies for determining a subset of the 
workload to tune have significant drawbacks. The 
approach of sampling the workload uniformly at random 
ignores valuable information about queries in the 
workload (such as cost and structural properties), and thus 
may end up tuning a lot more queries than necessary. The 
other strategy of tuning the top k queries by cost, such 
that at least a pre-defined percentage of the total cost of 
the workload is covered, suffers from a different problem.  
Queries in the workload are often templatized (e.g., 
invoked via stored procedures). In such cases, often all 
queries belonging to one template may have higher cost 
than any query belonging to another template. Thus, the 
above strategy can end up tuning a disproportionate 
number of queries from one template, while never tuning 
queries from a different template.  
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The technique of workload compression in the context 
of physical design tuning has been studied in [7].  The 
idea behind workload compression is to exploit the 
inherent templatization in workloads by partitioning the 
workload based on the “signature” of each query, i.e., two 
queries have same signature if they are identical in all 
respects except for the constants referenced in the query. 
The technique picks a subset from each partition using a 
clustering based method. We have adapted the above 
technique and integrated it into DTA, which allows us to 
dramatically reduce the amount of time spent in tuning 
without significantly compromising the quality of 
physical design recommendation. We demonstrate the 
effectiveness of this technique on large workloads in 
Section 7.4. 

5.2   Reduced Statistics Creation  

As part of its tuning, DTA needs to consider indexes that 
may not exist in the current database, i.e., “what-if” 
indexes [9]. To simulate the presence of such a what-if 
index to the query optimizer, DTA needs to create the 
necessary statistics that would have been included in that 
index had it been actually created. Thus for a given set of 
indexes, there is a corresponding set of statistics that DTA 
needs to create. This is achieved using the standard 
“create statistics” interface available in SQL Server (using 
the sampling option of create statistics for scalability). 
The problem is that despite the use of sampling, the naïve 
strategy of creating all statistics can become very 
expensive, particularly on large databases,, because each 
“create statistics” statement incurs I/Os for sampling the 
pre-defined number of pages from the table, sorting it, and 
creating the summary statistics.  

When SQL Server creates a statistic on columns 
(A,B,C), it generates a histogram on the leading column 
only (i.e., column A) and computes density information 
for each leading prefix (i.e., (A), (A,B), (A,B,C)). The 
density of a set of columns is a single number that 
captures the average number of duplicates of that set of 
columns. Since density is defined on a set of columns, it is 
not dependent on the order of the columns, i.e., Density 
(A,B) = Density (B,A).  
 
Example 3. Suppose that DTA needs to consider indexes 
on (A), (B), (A,B), (B,A) and (A,B,C). Using the naïve 
approach, we would need to create all five statistics. 
However, it is easy to see that if we only create statistics 
on (A,B,C) and (B), these two statistics contain the same 
information (histograms and density) as when all five 
statistics are created. 
 

Thus our problem can be stated more formally as 
follows: 

 
 
Note that we seek to minimize cardinality of S’ rather 

than to minimize the time to create S’. In reality, this 
simplification is reasonable since for a large table, the 
cost of creating a statistic is typically dominated by the 
I/O cost of sampling the table, which is independent of the 
specific statistic being created.  

DTA’s solution to the above problem is outlined 
below.  
 
Step 1. Using S, create two lists: H-List and D-List. The 
H-List is a list of columns over which histograms need to 
be built. The D-List is the set of column groups over 
which density information needs to be obtained. In 
essence, the H-List and D-List identify the distinct 
statistical information that still needs to be created. In 
Example 3 above, the H-List is {(A), (B)} and the D-List 
is {(A), (B), (A,B), (A,B,C)}. Note that we do not need 
(B,A) in the D-List since Density (A,B) = Density (B,A). 
Step 2. From the remaining statistics in S, pick the one 
(say s) whose creation “covers” as many elements of H-
list and D-List as possible. In the above example, we pick 
(A,B,C) and create statistics on it.  
Step 3. Remove all elements from the H-List and D-List 
which have been covered by the creation of s in Step 2 
above. Remove s from S. In our example, we would 
remove (A) from the H-List and (A), (A,B), (B,A) and 
(A,B,C) from the D-List., and (A, B, C) from S. 
Step 4. Repeat 2-3 until both H-List and D-List are empty. 
In our example, we would end up creating {(A,B,C}, 
(B}}. 
 

The above greedy algorithm works well in practice 
(see Section 7.5 for an experimental evaluation) since the 
cost of creating a statistic depends mainly on the table 
size and not much on how many columns are present in 
the statistic. Thus it is usually beneficial to pick the 
largest remaining statistic to create, which contains the 
most statistical information. A more formal treatment of 
this problem is an interesting area of future work.  

We note that the technique presented above simply 
reduces redundant statistical information that DTA 
creates. This is orthogonal to the techniques presented in 
[10] for determining whether or not a particular statistic 
actually impacts the plan chosen (or cost of plan chosen) 
by the query optimizer. Thus both of these techniques can 
be applied to reduce creation of unnecessary statistics. 
Finally, we note that the technique presented in this 

Given a set of statistics S = {s1, … sn} where each si 
contains a histogram on its leading column and 
density information on each leading prefix; find a 
subset S’ of S of smallest cardinality such that it 
contains the same histogram and density 
information as S does. 
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section will need to be modified if the database server 
uses different statistical information, for example, multi-
column histograms.  

5.3   Tuning in Production/Test Server Scenario 

The process of tuning a large workload can impose 
significant overhead on the server being tuned since DTA 
needs to potentially make many “what-if” calls to the 
query optimizer component. In enterprise databases, it is 
common for DBAs to use test servers in addition to the 
production server(s). A test server can be used for a 
variety of purposes including performance tuning, testing 
changes before they are deployed on the production server 
and so on. A straightforward way of reducing the impact 
of tuning on a production server is to use a test server as 
follows:   
• Step 1: Copy the databases one wants to tune from 

the production server to the test server. 
• Step 2: Tune the workload on the test server. 
• Step 3: Apply the recommendation that one gets on 

the test server to the production server. 
 
The advantage of such a simplistic approach is that once 
the databases are copied out to the test server, then there 
is no tuning overhead imposed on the production server. 
However, the approach suffers from many drawbacks that 
severely limit its applicability. First, the databases can be 
large (production databases can run into hundreds of 
gigabytes or more) or changing frequently. In such 
situations, copying large amounts of data from production 
to test server for the purposes of tuning can be time 
consuming and resource intensive. Second, the hardware 
characteristics of test and production servers can be very 
different. Production servers tend to be much more 
powerful than test servers in terms of processors, memory 
etc. Since the tuning process relies on the optimizer to 
arrive at a recommendation and that in turn is tied to the 
underlying hardware, this can lead to vastly different 
results on the test server. 

DTA provides the novel capability of exploiting a test 
server, if available, to tune a database on a production 
server without copying the data itself.  The key 
observation that enables this functionality is that the query 
optimizer relies fundamentally on the metadata and 
statistics when generating a plan for a query. We leverage 
this observation to enable tuning on the test server as 
outlined in Figure 2. 

The steps in the tuning process are as follows: 
 

• Step 1: Copy the metadata of the databases one wants 
to tune from the production server to the test server.. 
We do not import the actual data from any tables. 
Note that this requires not only importing the (empty) 
tables, and indexes, but also all views, stored 
procedures, triggers etc. This is necessary since the 
queries in workload may reference these objects. The 

metadata can be imported using the scripting 
capability that is available in today’s database 
systems. This is generally a very fast operation as it 
requires working with system catalog entries and 
does not depend on data size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
• Step 2: Tune the workload on the test server. For 

getting the same plan on the test server as we would 
have got on the production server, we need two 
important functionalities from the database server. (1) 
During the tuning process, DTA may determine that 
certain statistics may need to be present (on the test 
server) so that the query optimizer can optimize the 
query accurately. However the statistics creation 
requires access to the actual data, and that is present 
only on production server. When that happens, DTA 
imports statistics from the production server (creating 
the statistics on the production server if necessary) 
and into the test server. (2) The hardware parameters 
of production server that are modeled by the query 
optimizer when it generates a query plan need to be 
appropriately “simulated” on the test server. For 
example, since query optimizer’s cost model 
considers the number of CPUs and the available 
memory, these parameters need to be part of the 
interface that DTA uses to make a “what-if” call to 
the query optimizer. Microsoft SQL Server 2005 has 
been extended to provide us with both of these 
functionalities. 

• Step 3: Apply the recommendation that one gets on 
the test server to the production server. 

 
Note that the only overhead introduced on the production 
server during tuning is the creation of additional statistics 
(if any) that are necessary as tuning progresses (Step 2). 
The rest of the tasks that include simulating what-if 
interfaces, optimizing queries under different physical 
designs etc. are all performed on the test server. In 

DTA 

Perform 
Tuning  

Create 
statistics 

DTA recommendations 

Import metadata 
and statistics 

Figure 2. Tuning in a Production/Test Server Scenario.  

Production 
Server 

Test 
Server 
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Section 7.3, we present experimental results that quantify 
the reduction in overhead on the production server as a 
result of exploiting this feature in DTA. 
 

6.   Enhanced Usability 

6.1   Scriptabilty  

As described in the introduction, tools for automated 
physical database design have emerged over the past few 
years and become part of commercial database systems. 
As such physical database design tools become more 
widely used, it can be advantageous to define a public 
XML schema for physical database design that forms the 
basis of input and output to such tools. First, having a 
public schema facilitates development of other tools that 
can program against the schema. Moreover, scriptability 
of the physical design tool can become much easier once 
such a schema is available. Second, as physical design 
tools evolve over time, having an XML schema makes it 
easy to extend it to meet the changing input/output needs 
of physical design tools. Finally, an XML schema makes 
it possible for different users/tools to interchange and 
communicate physical database design information within 
and across organization boundaries.  We have defined 
such an XML schema for physical database design that is 
used by DTA, and that will be made public with the 
release of Microsoft SQL Server 2005 at [11]. The 
schema is described using the “XML Schema” schema 
definition language [19,20]. The schema defines elements 
to describe the common entities in physical database 
design, for example, databases (and tables within them), 
workloads, configurations, and reports.  

6.2   Customizability via Partial Specification of 
Physical Design 

In certain cases, DBAs may need to tune workload while 
being able to specify the physical design partially. 
Consider the following scenario where the DBA needs to 
decide whether a large table T (e.g., a fact table) should 
be range partitioned by month or quarter. Although either 
form of partitioning may be acceptable from a 
manageability standpoint, the DBA would prefer the 
option that results in better performance for the workload.  

DTA allows the user to provide as (an optional) input 
a user specified configuration. A user specified 
configuration is a set of physical design structures that is 
valid, i.e. all physical design structures specified must be 
realizable in the database. An example of a physical 
design that is not valid is when there are more than one 
ways of clustering specified on the same table as a part of 
the same user specified configuration. DTA tunes the 
given workload and provides a recommendation while 
honoring the constraint that the user specified 
configuration is included in the recommendation provided 

by DTA. Thus in the above scenario, the DBA can first 
invoke DTA with a user specified configuration C1  in 
which T is partitioned by month, and have DTA 
recommend the best physical design while honoring the 
constraint. The DBA can then run DTA again, this time 
with a user specified configuration C2 in which T is 
partitioned by quarter. Finally, the DBA can compare the 
two recommendations and pick the one with better overall 
performance.  

Since DTA never needs to physically alter the 
partitioning of the table, a DBA can try out various 
physical design alternatives efficiently without interfering 
with the normal database operations. In the scenario 
mentioned above, the DBA never needs to physically alter 
the partitioning of the large table (which can be an 
expensive operation) while making the decision of which 
partitioning to pick. 

6.3   Exploratory Analysis and Iterative Tuning 

A common scenario that DBAs encounter is the need to 
perform exploratory or “what-if” physical design analysis 
to get answers to question of the following type: What is 
the performance impact on a given set of queries and 
updates if I add a particular index or change the 
partitioning of a particular table? DTA enables this 
functionality through the user specified configuration 
mechanism described earlier (see Section 4.2). In 
particular, the user can specify a configuration, i.e., a 
valid physical design consisting of existing or 
hypothetical objects, and request DTA to evaluate the 
configuration for a given workload. DTA exploits the 
“what-if” interfaces of Microsoft SQL Server [9] to 
simulate the given configuration, and it evaluates each 
statement in the workload for the given configuration. 
DTA returns as output the expected percentage change in 
the workload cost compared to the existing configuration 
in the database. In addition, DTA provides a rich set of 
analysis reports that provides details about changes in cost 
of individual statements in the workload, usage of indexes 
and materialized views, and so on.  

Another common scenario that DBAs face is the need 
for iterative tuning and refinement. For example, a DBA 
obtains a recommendation from DTA for a particular 
workload, and wishes to modify the recommendation and 
re-evaluate the modified configuration for the same 
workload. The DBA may repeat such evaluation until she 
is satisfied with the performance/impact of the 
configuration. Once again, such a scenario becomes 
simple via the user specified configuration feature of 
DTA. Moreover, given that the DTA input and output 
conform to an XML schema, it is easy for users or other 
automated tools to take the output configuration from one 
run of DTA and feed a modified version of it as input into 
a subsequent run of DTA. 
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7.   Experiments 

In this section, we present results of experiments that 
evaluate: 
• Quality of recommendations by DTA on several 

customer workloads, by comparing it to a hand-tuned 
physical design. 

• Quality of DTA on TPC-H 10GB benchmark 
workload. 

• Impact on production server overhead because of 
DTA’s ability to exploit a test server for tuning. 

• Impact of workload compression technique (Section 
5.1) on quality and scalability of DTA. 

• Effectiveness of technique for reduced statistics 
creation (Section 5.2). 

• An end-to-end comparison of DTA with Index 
Tuning Wizard for SQL Server 2000.  

 

7.1   Quality of DTA vs. hand-tuned design on 
customer workloads 

In this experiment, we compare the quality of DTA’s 
physical design recommendation with a manually-tuned 
physical design. The databases and workloads used in this 
experiment were obtained from internal customers of 
Microsoft SQL Server. The methodology we adopt for 
this experiment is as follows. For each workload, we 
obtain the optimizer estimated cost of the workload for 
the current physical design (put in place by the DBA of 
that database). We refer to this cost as CCurrent. We then 
drop all physical design structures (except those that 
enforce referential integrity constraints) and once again 
obtain the cost of the workload. We refer to this cost as 
Craw. We then tune the workload using DTA, and obtain 
the cost of the workload for DTA’s recommended 
configuration. We refer to this cost as CDTA. We define 
the quality of DTA as (Craw – CDTA)/Craw and the quality 
of the hand-tuned design as (Craw – CCurrent)/Craw, i.e., the 
percentage reduction relative to Craw. 

A brief overview of each customer database/workload 
used in this experiment in shown in Table 1. We note that 
depending on the type of application, the amount of 
updates in these workloads varies (higher for CUST3).  

 
Database 
 

Total 
size 
(GB) 

#DBs #Tables 

CUST1 10.7 31 4374 
CUST2 1.4 6 48 
CUST3 105.9 23 1624 
CUST4 0.06 2 11 

 
 

 
As can be seen from Table 2, in all the customer 

workloads, the quality of DTA is comparable to the hand-

tuned physical design for the CUST 1 workload. DTA is 
significantly better for CUST2 and CUST4. In CUST4 
(which is a small database), the hand-tuned design 
consisted of only the primary-key and unique indexes, 
whereas DTA was able to considerably improve upon that 
design. In CUST3, the hand-tuned design was worse than 
the raw configuration due to presence of updates. For this 
workload, DTA correctly recommended no new physical 
design structures to be created. This experiment 
demonstrates DTA’s ability to effectively tune real-world 
workloads. Finally, we note that the tuning time of DTA 
can vary depending on the complexity of queries in the 
workload. For example, in this experiment DTA tuned 
anywhere between 134 events/min (CUST4) to about 500 
events/min (CUST2).  

 
Workload Quality 

of hand-
tuned 
design 

Quality 
of 
DTA 

#events 
tuned 

Tuning 
time 
(hr:min) 

CUST1 82% 87% 15K 0:35 
CUST2 6% 41% 252K 8:21 
CUST3 -5% 0% 176K 15:14 
CUST4 0% 50% 9K 1:07 

 

 

7.2   Evaluation on TPC-H 10GB benchmark 
workload 

In this experiment, we evaluate DTA on the TPC-H 10GB 
benchmark workload [17]. We start with a raw database 
(i.e., consisting of only indexes that enforce referential 
integrity constraints), and tune the benchmark workload 
consisting of 22 queries. The size of the raw database is 
about 12.8 GB. The expected improvement reported by 
DTA for this workload is 88% (the total storage space 
allotted was three times the raw data size).  We 
implemented DTA’s recommendations and executed the 
queries (warm runs). For each query, we conduct 5 warm 
runs, discard the highest and lowest readings and take the 
average of the remaining 3 readings. The actual 
improvement in execution time for the workload is 83%. 
This experiment shows that (a) DTA is able to achieve 
significant improvements on a workload containing 
complex queries; and (b) the query optimizer’s estimates 
are reasonably accurate for this workload.  
 

7.3   Production/Test Server Scenario 

The following experiment illustrates the impact of 
DTA’s ability to use a test server for tuning purposes. The 
database used for this experiment is TPC-H [17], the 1 
GB configuration.  TPCHQ1-I (and TPCH22-I) denotes 
the first query (resp. 22 queries) in TPC-H benchmark and 
only indexes are selected for tuning. TPCHQ1-A (and 

Table 1: Overview of  customer databases 
and workloads. 

Table 2: Quality of DTA vs. hand-tuned 
design on customer workloads. 
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TPCH22-A) denotes the first query (resp. all 22 queries) 
in TPC-H benchmark and both indexes and materialized 
views are considered during the process of tuning. We use 
a test server to tune the production server and compare the 
overhead on the production server to the case where we 
had no test server. The overhead is measured as the total 
duration (i.e., elapsed time) of all statements that were 
submitted to the production server by DTA. No other 
queries were running on the test and production servers 
during the period of the experiment.  

Figure 3 shows that even in the simplest case of single 
query tuning and only indexes are considered, TPCHQ1-I, 
during tuning, the overhead on the production server is 
reduced by about 60%. For TPCH22-A the reduction is 
significant (90%). Note that as the complexity of tuning 
increases (e.g., larger workload, or more physical design 
features to consider) we expect the reduction in overhead 
to become more significant (as seen in Figure 3). We have 
observed similar benefits of reduced overhead for several 
customer workloads as well. 
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7.4  Effectiveness of Workload Compression 

The following experiment illustrates the impact of 
workload compression (see Section 5.1) on the quality of 
DTA’s recommendations as well on its running time for a 
few real and synthetic workloads. We use three database 
and workloads for this comparing (a) TPCH22 queries on 
TPC-H 1GB data; (b) PSOFT is a customer database (a 
PeopleSoft application) where the workload consists of 
about 6000 queries, inserts, updates and deletes, the 
database is about .75 GB; and (c) SYNT1 is a synthetic 
database that conforms to the well known SetQuery 
benchmark schema, and contains 8000 queries in the 
workload. The queries are SPJ queries with grouping and 
aggregation, with approximately 100 distinct “templates.” 
Each query was generated by randomly selecting selection 

columns, grouping columns, aggregation 
columns/functions, etc.  

Table 3 summarizes the results of this experiment. For 
TPCH22 (which contains only 22 queries), the queries in 
the workload are all very different and no workload 
compression is possible using our technique. The benefits 
of workload compression are much larger when we have 
larger workloads and this is reflected in PSOFT and 
SYNT1. We observe a speed up of more than a factor of 
5x for the PSOFT workload and more than 40x for 
SYNT1. This is because these workloads have many 
queries but relatively few distinct templates (see Section 
5.1). For PSOFT, DTA tunes about 10% of the number of 
queries in the workload, whereas for SYNT1 this was 
about 2%. Thus, by leveraging the ideas of workload 
compression, we are able to significantly improve the 
performance of DTA with almost no adverse impact on 
the quality of recommendations. 

 
 

7.5  Impact of Reduced Statistics Creation 

In this experiment we measure the reduction in statistics 
creation time using techniques described in Section 5.2 
for two different workloads, TPC-H 10GB and PSOFT. 
We measure: (a) reduction in number of statistics created 
(b) reduction in statistics creation time.  The number of 
statistics created was reduced by 55% for TPC-H and 
about 24% PSOFT. Similarly, the reduction in statistics 
creation time was 62% and 31%, respectively. In both of 
these cases there was no difference in the quality of 
DTA’s recommendation since the above technique only 
reduces creation of redundant statistical information. 

7.6   End-to-End comparision against ITW in SQL 
Server 2000 (SS2K) 

The Index Tuning Wizard (ITW) in Microsoft SQL 
Server 2000 is one of the currently available physical 
design tools for Microsoft SQL Server. In this section, we 
conduct an end-to-end comparison of the quality and 
running time of DTA compared to ITW in Microsoft SQL 
Server 2000. We compare the overall quality of the 
recommendation produced by the tools, and running time 
of DTA compared to that of Index Tuning Wizard in 
Microsoft SQL Server 2000. We measure the quality by 

Database and 
Workloads 

% Decrease in 
Quality 
compared to no 
workload 
compression 

Reduction in 
Running Time 
of DTA 
compared to no 
workload 
compression 

TPCH22 0 -1% 
PSOFT 0.5% 5.8x 
SYNT1 1% 43x 

Figure 3. Reducing load on production 
server by exploiting test server 

Table 3: Impact of Workload Compression 
on Quality and Running Time of DTA. 
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the percentage improvement in the optimizer estimated 
cost for the workload. 

The experiments below compare the running time and 
quality. We use the three databases and workloads 
TPCH22, PSOFT and SYNT1 described in Section 7.4. 
To ensure a fair comparison, in this experiment, we 
consider only indexes and materialized views (since ITW 
is not capable of recommending partitioning). The 
comparisons were performed by running both the tools 
against the same server (a Microsoft SQL Server 2000 
server). Figures 4 (and 5) compare the quality (resp. 
running time) of DTA compared to ITW in SQL Server 
2000. We observe that for the same database/workload, 
we get comparable recommendation qualities for 
TPCH22, PSOFT and SYNT1 (DTA is slightly better in 
all cases), and DTA is significantly faster for the large 
workloads. 
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8.   Related Work 

There are currently several automated physical design 
tools developed by commercial database vendors 

themselves, and by third-party tool vendors.  To the best 
of our knowledge, the Database Tuning Advisor (DTA) 
for Microsoft SQL Server 2005 is the first tool with the 
capability of providing a fully integrated recommendation 
for indexes, materialized views and horizontal range 
partitioning, i.e., DBAs do not need to stage the selection 
of different physical design features.  

Today’s tools support tuning of different sets of 
physical design features. Index Tuning Wizard in 
Microsoft SQL Server 2000 [2] was the first tool to 
recommend indexes and materialized views in an 
integrated manner. DTA builds upon the Index Tuning 
Wizard and significantly advances upon it in several 
aspects including functionality, scalability and 
manageability. The algorithmic techniques underlying 
DTA were developed in the context of the AutoAdmin 
project [1] at Microsoft, whose goal is to reduce TCO by 
making database systems more self-tuning and self-
managing.  

IBM’s DB2 Advisor [21] recommends indexes and 
materialized views, and IBM’s Partition Advisor [11] 
recommends horizontal hash partitioning in a shared-
nothing parallel database. Oracle’s Index Tuning Wizard 
[12] and BMC’s Index Advisor [6] recommend indexes. 
Leccotech [13] provides tools for tuning a SQL statement 
by recommending indexes, and also by suggesting 
rewritten SQL that can obtain a potentially better 
execution plan.  

The idea of workload compression as a technique to 
improve scalability of workload based tuning tools was 
first presented in [7]. We have adapted these ideas and 
implemented them in the context of DTA, to obtain 
significant improvement in scalability for large workloads 
(see Section 5.1). The technique presented in Section 5.2 
for reducing the redundant statistical information from a 
given set of statistics is complementary to the techniques 
presented in [10] for determining whether or not a 
particular statistic actually affects the plan chosen (or cost 
of plan chosen) by the query optimizer. Thus both of these 
techniques can be applied to reduce creation of 
unnecessary statistics. The techniques of pruning column-
groups based on frequency of occurrence in the workload 
and cost, and algorithmic techniques for handling 
alignment requirements inside a physical database design 
tool as well as merging in the presence of horizontal 
partitioning were developed in the context of DTA and 
have been presented in [4].  

Finally, there are several aspects of DTA’s 
functionality which are the first for any physical database 
design tool. These include: (a) the ability to specify an 
alignment constraint as well as a partially specified 
configuration; (b) an XML schema for input/output that 
enhances scriptability and customizability of the tool; and 
(c) efficient tuning in production/test server scenarios.  

Figure 4. Quality of recommendation of DTA 
compared to Index Tuning Wizard for 
Microsoft SQL Server 2000.  

Figure 5. Running time of DTA compared to Index 
Tuning Wizard for Microsoft SQL Server 2000 
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9.   Conclusion 

As tuning tools continue to encompass more features, it is 
important to keep the usage of these tools simple for 
DBAs by providing integrated recommendations for 
various features when possible. Database Tuning Advisor 
for Microsoft SQL Server 2005 is built around a scalable 
architecture that makes it easy to incorporate new 
physical design features, while ensuring integrated 
recommendations. In the future, we will continue to 
expand the scope of DTA to include other important 
aspects of performance tuning.  
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