
this print for content only—size & color not accurate trim = 7.5" x 9.25" spine = 0.000" 000 page count

Books for professionals By professionals®

 Cyan
 MaGenTa

 yelloW
 BlaCk

The experT’s VoiCe® in silVerliGhT

Beginning

Silverlight 3

Robert Lair

Learn to build state-of-the-art Silverlight
applications quickly and easily

Lair
Silverlight 3

Companion
eBook Available

Beginning
Beginning Silverlight 3
Dear Reader,

When Microsoft released the first version of Silverlight, it laid the foundation of
creating rich user-interfaces for the web. However it wasn’t until Silverlight 2 that
developers started to get really excited about the technology, primarily because
of the ability to write Silverlight applications using the .NET framework. This
allowed developers to start creating cross-platform, cross-browser, rich internet
applications.

Silverlight 3 further adds to the capabilities of Silverlight for the rich internet
application developer, including a new navigation framework that allows devel-
opers to create multi-page application scenarios in Silverlight, new controls that
help developers create rich user-interfaces, as well as improvements in runtime
performance, animation, caching and networking. In addition to these new
capabilities, Silverlight 3 applications can now escape the browser, allowing users
to install Silverlight applications locally. This provides a way for developers to
create cross-platform applications, without having to recompile source for each
platform.

Beginning Silverlight teaches the fundamental concepts and techniques that
lie at the heart of every successful Silverlight application through a number of
step-by-step walk-through tutorials, that will give you hands on experience with
the different topics and get you ready to start developing Silverlight applications
for your own.

Robert Lair

THE APRESS ROADMAP

Pro Business
Applications with

Silverlight 3

Pro Silverlight
for the Enterprise

Pro
Silverlight 3 in C#

Silverlight 3 Recipes

Beginning
Silverlight 3

Accelerated
Silverlight 3

ISBN 978-1-4302-2377-1

9 781430 223771

53999

Author of

Beginning Silverlight 2

Pure ASP.NET: A Code-
Intensive Premium
Reference

US $39.99

Shelve in
Web Development

User level:
Beginner-Intermediate

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

■ ■ ■

Beginning Silverlight 3: From Novice to Professional

Copyright © 2009 by Robert Lair

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any

means, electronic or mechanical, including photocopying, recording, or by any information storage

or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2377-1

ISBN-13 (electronic): 978-1-4302-2378-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every

occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit

of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning

Lead Editor: Ewan Buckingham

Technical Reviewer: Fabio Claudio Ferracchiati

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony

Campbell, Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey

Pepper, Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager:

Copy Editor: Katie Stence

Compositor: Mary Sudul

Indexer: John Collin

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th

Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-

ny@springer-sbm.com, or visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional

use. eBook versions and licenses are also available for most titles. For more information, reference

our Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every

precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have

any liability to any person or entity with respect to any loss or damage caused or alleged to be

caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to

answer questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

To my beautiful wife Debi, whom I love more and more each day, and to my son Max, who
has made me so proud. I love you guys more than anything on this earth.

■ CONTENTS

iv

Contents at a Glance

Contents... vi

About the Author ... xi

About the Technical Reviewer .. xii

Acknowledgments ... xiii

Introduction ... xiv

■Chapter 1: Welcome to Silverlight 3..1

■Chapter 2: Introduction to Visual Studio 2008 ..13

■Chapter 3: Layout Management in Silverlight 3 ..39

■Chapter 4: Silverlight 3 Controls ...65

■Chapter 5: Data Binding and Silverlight List Controls ...105

■Chapter 6: Data Access and Networking...137

■Chapter 7: Navigation Framework ..153

■Chapter 8: Local Storage in Silverlight..183

■Chapter 9: Introduction to Expression Blend...213

■Chapter 10: Styling in Silverlight ..235

■Chapter 11: Transformations and Animation ..267

■Chapter 12: Custom Controls ..289

■Chapter 13: Deployment ..311

Index...323

■ CONTENTS

v

Contents

Contents at a Glance.. iv

About the Author .. xii

About the Technical Reviewer ... xiii

Acknowledgments ... xiv

■Chapter 1: Welcome to Silverlight 3..1

The Evolution of the User Interface..1

Rich Internet Application Solutions..3

What Is Silverlight?..3

Benefits of Silverlight ..4
Cross-Platform/Cross-Browser Support ... 5

Cross-Platform Version of the .NET Framework ... 5

XAML, a Text-Based Markup Language ... 5

Use of Familiar Technologies ... 6

Small Runtime and Simple Deployment ... 6

The Silverlight Development Environment...8

New Features in Silverlight 3...10
Improved Performance ... 11

Summary ...11

■Chapter 2: Introduction to Visual Studio 2008 ..13

What Is Visual Studio? ...13

■ CONTENTS

vi

What’s New in Visual Studio 2008?...14
JavaScript IntelliSense and Debugging.. 14

Multi-Targeting Support ... 28

Transparent IntelliSense Mode... 30

Building Your First Silverlight Application in Visual Studio..31
Try It Out: Hello World in Silverlight 3... 31

Hosting Your Silverlight Application: Web Site or Web Application? .. 36

Summary ...37

■Chapter 3: Layout Management in Silverlight 3 ..39

Layout Management ..39

The Canvas Panel ..40
Try It Out: Using the Canvas Panel ... 41

Filling the Entire Browser Window with Your Application .. 44

The StackPanel Control ...45
Try It Out: Using the StackPanel Control... 45

Try It Out: Nesting StackPanel Controls.. 47

The Grid Control ...49
Try It Out: Using the Grid Control .. 49

Try It Out: Nesting a Grid and Spanning a Column ... 52

The WrapPanel Control ..56
Try It Out: Using the WrapPanel Control ... 56

The DockPanel Control ..59
Try It Out: Using the DockPanel Control.. 60

Summary ...63

■Chapter 4: Silverlight 3 Controls ...65

Setting Control Properties..65
Attribute Syntax .. 65

Element Syntax... 66

■ CONTENTS

vii

Type-Converter-Enabled Attributes .. 66

Attached Properties .. 66

Nesting Controls Within Controls ...67

Handling Events in Silverlight ..68
Try It Out: Declaring an Event in XAML... 68

Try It Out: Declaring an Event Handler in Managed Code... 72

The Border Control...76

User Input Controls ..80
Try It Out: Working with the TextBox Control.. 80

Try It Out: Working with the RadioButton and CheckBox Controls ... 84

Extended Controls..87
Adding an Extended Control ... 87

Try It Out: Using the GridSplitter... 88

AutoCompleteBox ..90

ViewBox ...92

Modal Windows ...93
Try It Out: Using the Modal Child Window .. 95

Summary ...103

■Chapter 5: Data Binding and Silverlight List Controls ...105

Data Binding ..105
The Binding Class ... 106

Try It Out: Simple Data Binding in Silverlight ... 106

Element to Element Binding ..114
Try It Out: Element to Element Binding... 114

The DataGrid Control..116
Try It Out: Building a Simple DataGrid .. 117

The Columns Collection .. 122

Try It Out: Building a DataGrid with Custom Columns .. 124

■ CONTENTS

viii

The ListBox Control..130
Default and Custom ListBox Items.. 131

Try It Out: Building a ListBox with Custom Content .. 133

Summary ...135

■Chapter 6: Data Access and Networking...137

Data Access in Silverlight Applications ...137

Accessing Data Through Web Services ...138
Try It Out: Accessing Data Through a WCF Service .. 138

Accessing Services from Other Domains...149

Accessing Data Through Sockets ..150

Summary ...152

■Chapter 7: Navigation Framework ..153

Frame and Page Object ...153
Try It Out: Creating a Silverlight Navigation Application... 153

Benefits of the Navigation Framework ..164
Deep Linking... 164

The NavigationService Object..165
Try it Out: Using the NavigationService Object... 166

Passing Data to Navigation Pages ...168
Try it Out: Passing Data to Navigation Pages ... 169

Uri Mapping ...172
Try it Out: Uri Mapping and the Navigation Framework ... 173

Silverlight Navigation Application Template ..175
Try it Out: Using the Silverlight Navigation Application Template .. 175

Using Multiple Frames...179
Try it Out: Using Multiple Frames ... 180

Summary ...182

■ CONTENTS

ix

■Chapter 8: Local Storage in Silverlight..183

Working with Isolated Storage...183
Using the Isolated Storage API ... 183

Try It Out: Creating a File Explorer for Isolated Storage ... 186

Managing Isolated Storage..207
Viewing and Clearing Isolated Storage... 207

Try It Out: Increasing the Isolated Storage Quota... 209

Summary ...212

■Chapter 9: Introduction to Expression Blend...213

Key Features in Expression Blend ...213
Visual XAML Editor ... 214

Visual Studio 2008 Integration ... 214

Split-View Mode ... 214

Visual State Manager and Template Editing Support ... 215

World-Class Timeline.. 215

Try It Out: Working with Projects in Expression Blend ... 216

Exploring the Workspace ...221
Toolbox ... 221

Project Panel .. 223

Properties Panel ... 223

Objects and Timeline Panel .. 225

Laying Out an Application with Expression Blend ...225
Working with the Grid Control in Expression Blend .. 225

Try It Out: Editing a Layout Grid with Expression Blend ... 225

Summary ...233

■Chapter 10: Styling in Silverlight ..235

Inline Properties...235
Try It Out: Setting Inline Properties with Visual Studio... 235

Try It Out: Setting Inline Properties with Expression Blend .. 243

■ CONTENTS

x

Silverlight Styles..251
Try It Out: Using Styles As Static Resources .. 253

Defining Styles at the Application Level ... 259

Merged Resource Dictionaries ... 261

Silverlight Style Hierarchy .. 262

Inheriting Styles Using BasedOn .. 264

Summary ...265

■Chapter 11: Transformations and Animation ..267

Introduction to Silverlight Animation ...267
Silverlight Storyboards ... 268

Types of Animation in Silverlight .. 269

Programmatically Controlling Animations ...271

Using Expression Blend to Create Animations...273
Viewing a Storyboard in the Expression Blend Timeline .. 273

Try It Out: Creating an Animation with Expression Blend ... 274

Creating Transformations in Silverlight ...282
Transformation Types... 283

Try It Out: Using Expression Blend to Transform Silverlight Objects .. 285

Summary ...288

■Chapter 12: Custom Controls ..289

When to Write Custom Controls...289

Silverlight Control Toolkit ..290

Silverlight Control Model ...291
Parts and States Model .. 291

Dependency Properties .. 292

Creating Custom Controls in Silverlight ...293
Implementing Custom Functionality ... 293

■ CONTENTS

xi

Try It Out: Building a Custom Control ... 294

Summary ...309

■Chapter 13: Deployment ..311

Deploying Silverlight Applications ...311
XAP Files... 311

Hosting Silverlight Content ... 311

Assembly Caching ...312
Try It Out: Exploring Assembly Caching.. 313

Out of Browser Support ...317
Customizing the Install Application Dialog ... 319

Out of Browser API ... 320

Removing Installed Applications .. 322

Summary ...322

Index ..323

■ CONTENTS

xii

About the Author

Robert Lair has been working with .NET technologies since prior to its alpha and
built the original IBuySpy E-Commerce and Portal applications that were used by
Microsoft to introduce ASP.NET to the development community. He is a
published author of many books and magazine articles including Beginning
Silverlight 2. Robert has also been a speaker at a number of .NET technical
conferences. Technologies in which Robert specializes include: Silverlight,

mainframe modernization to .NET, ASP.NET custom application development, Sharepoint development
and integration, and many related technologies. Today Robert works for T3 Technologies
(http://www.t3t.com), a company that offers mainframe alternatives on the Windows platform. Follow
Robert on twitter at http://www.twitter.com/robertlair and on the web at http://www.robertlair.net.

http://www.t3t.com
http://www.twitter.com/robertlair
http://www.robertlair.net

■ CONTENTS

xiii

About the Technical Reviewer

Fabio Claudio Ferracchiati is a prolific writer on cutting-edge technologies. Fabio has contributed to
more than a dozen books on .NET, C#, Visual Basic, and ASP.NET. He is a .NET Microsoft Certified
Solution Developer (MCSD) and lives in Rome, Italy. You can read his blog at

.

■ CONTENTS

xiv

Acknowledgments

There are a number of people to whom I would like to express my appreciation, people who have helped
me in many ways. This book proved to be a great challenge, with the short development cycles of
Silverlight 3. Without these people this book would never have been possible.
I would also like to thank my family for being patient and forgiving for the time this book took away from
our times together. A special thanks goes out to my wife Debi, who has always supported me, even when
it requires a sacrifice for her. Your support has gotten me through so many of life’s challenges. I never
could have done it without you.
I would like to thank the many people at Apress that made this book happen. I would especially like to
thank Anita Castro, Ewan Buckingham, Katie Stence, Dominic Shakeshaft and Fabio Claudio
Ferracchiati. Without all of your hard work, this book would never have happened, thank you all.
Finally I would like to thank my neighbors on Lexington Court for being such great friends. Their
friendship means so much to me and they helped me get through rough times. I am very lucky to have
such a great group of neighbors that I can call close friends.

C H A P T E R 1

■ ■ ■

1

Welcome to Silverlight 3

This chapter introduces Silverlight, a Microsoft cross-browser, cross-platform plug-in that allows you
to create rich interactive (or Internet) applications (RIAs) for the Web. It begins with a brief look at the
evolution of user interfaces, and then provides an overview of Silverlight. You’ll learn how Silverlight
fits into RIA solutions, the benefits it brings to developers, and the tools involved in developing
Silverlight-enabled applications.

The Evolution of the User Interface
Software user interfaces are constantly evolving and improving. I remember back when I was still
working with an early version of Windows and looking at Mac OS with envy. Then, I remember seeing
Linux systems with radical new desktop interfaces. More recently, I found myself looking again at the
Mac OS X Dock (see Figure 1-1) and wanting that for my Windows XP machine—to the point where I
purchased a product that mimicked it. I was dedicated to Windows through it all, but I was envious of
some of the user experiences the different environments offered.

Figure 1-1. The Mac OS Dock feature

The evolution of the user interface continues in the Windows Vista operating system. One
example is the interface for switching between applications. In past versions of Windows, when you
pressed Alt+Tab to switch from one program to another, you would see a rather ugly interface offering
nothing but icons. Today, when you press Alt+Tab in Vista, you get a much more user-friendly
interface, presenting a clipping of the content of each window as you tab through your choices, as
shown in Figure 1-2.

Figure 1-2. Windows Vista Alt+Tab user interface

CHAPTER 1 ■ WELCOME TO SILVERLIGHT 3

2

In addition, Vista offers an even cooler way to switch between applications using the Desktop
Window Manager. When you press the Windows key along with Tab, Vista displays all open windows
in a cascading shuffle effect, which allows you to see a large-scale version of each window (see Figure
1-3). If there is animated content in any of the windows, it actually shows up in the view! This means if
you have a video or a game playing in one of the windows, you will see that in action as you shuffle
through the windows.

Figure 1-3. Windows Vista Windows+Tab cascading windows shuffle effect

These features reflect how developers have built standard desktop applications, which are meant
to be installed and executed on individual client machines. Desktop applications allow for very rich
and responsive user interfaces and additional features, such as offline support. Performance of the
application depends on the machine on which it is installed. A challenge for desktop applications is
deployment. The application needs to have a code base for each target platform, and every machine
needs to have the application installed and maintained.

In contrast, we have web applications, which are HTML-focused programs designed to run within
a browser and across platforms. For the Microsoft-based developer, this has recently meant
developing with ASP.NET and building web services to offer services over the Internet. The focus of
most of the logic and code has been placed on the server for the benefit of application performance.
The price has been a poor user interface.

With recent technologies, the line between the desktop and web approaches for developing
applications has started to blur. As a result, a third approach has surfaced. This new approach is termed
RIA, which is defined as a web application that has the features and functionality found in traditional
desktop applications.

CHAPTER 1 ■ WELCOME TO SILVERLIGHT 3

3

Rich Internet Application Solutions
The concept of RIA has been around for quite some time, but the term rich Internet application was
first used in 2002 in a Macromedia white paper. Before then, the terms remote scripting and X Internet
were used to describe the concept.

Today, many different solutions fit the description of RIAs, but there is one consistent
characteristic: all RIA solutions involve a runtime that runs on the client machine and architecturally
sits between the user and the server.

In recent years, the technology that is most commonly used in RIAs is Flash. When Flash was
introduced, it brought to the Web rich user experiences never seen before. However, due to the lack of
tools allowing Microsoft .NET developers to integrate Flash into their applications, to those developers
Flash just seemed like a tool for adding some pretty effects to a web page, but nothing functional.

Then a wonderful thing happened when Adobe purchased Macromedia. All of the sudden, Flash
was married to some of the development tools offered by Adobe. Microsoft retaliated by announcing
Silverlight, formerly known as Windows Presentation Foundation Everywhere (WPF/E). Silverlight is
the technology that many .NET developers have been waiting for.

What exactly is Silverlight? And, what impact does Silverlight actually have on us as .NET
developers? Well, I’m glad you asked.

What Is Silverlight?
As I explained in the previous section, all RIAs have one characteristic in common: a client runtime
that sits between the user and the server. In the case of Microsoft’s RIA solution, Silverlight is this
client runtime. Specifically, Silverlight is a cross-platform, cross-browser plug-in that renders user
interfaces and graphical assets on a canvas that can be inserted into an HTML page.

The markup used to define a Silverlight canvas is called Extensible Application Markup Language
(XAML, pronounced “zammel”). XAML is an XML-based language that is similar to HTML in some
ways. Like HTML, XAML defines which elements appear, as well as the layout of those elements.
However, unlike HTML, XAML goes far beyond simple element definition and layout. Using XAML,
you can also specify timelines, transformations, animations, and events.

The following is an example of a Silverlight canvas defined in XAML:

<Canvas
 xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="640" Height="480"
 Background="White"
 x:Name="Page">
 <Rectangle
 RenderTransformOrigin="0.5,0.5"
 x:Name="rectangle"
 Width="292"
 Height="86"
 Fill="#FFFF0000"
 Stroke="#FF000000"
 StrokeThickness="3"
 Canvas.Left="115"
 Canvas.Top="70">
 </Rectangle>
</Canvas>

http://schemas.microsoft.com/client/2007
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 1 ■ WELCOME TO SILVERLIGHT 3

4

Figure 1-4 shows this canvas in Microsoft Expression Blend, the design tool used to edit and create
XAML for Silverlight applications. You can see that this XAML simply defines a rectangle on a canvas, as
well as the properties associated with that rectangle, including its name, location, size, color, and border.

This simple example is just intended to give you an idea of what XAML looks like. You’ll learn more
about XAML in upcoming chapters. For now, let’s continue by looking at the benefits of Silverlight.

Figure 1-4. A basic XAML canvas in Microsoft Expression Blend

Benefits of Silverlight
Naturally, Silverlight offers all of the same benefits of RIAs, but there are a few features that set it apart
from other RIA solutions, including the following:

• It offers cross-platform/cross-browser support.

• It provides a cross-platform version of the .NET Framework.

• XAML is a text-based markup language.

• Silverlight uses familiar technologies.

• It’s easy to deploy the Silverlight runtime to clients.

Let’s take a closer look at each of these benefits.

CHAPTER 1 ■ WELCOME TO SILVERLIGHT 3

5

Cross-Platform/Cross-Browser Support
When ASP.NET was released a number of years ago, one of the benefits touted was cross- browser
support. Developers would need to have only one code base, and that code base would work in all
modern browsers. For the most part, this is true. No matter which browser you are using, the
application will function. However, in order to receive all of the bells and whistles offered by the
ASP.NET controls, you must use the latest version of Internet Explorer. If you are using any other
browser, you actually get a downgraded version of the web site, which contains fewer features.

Validation controls are a prime example. If you are using a browser that ASP.NET recognizes as an
“upscale” browser, you can take advantage of client-side validation. If you are using any other
browser, the validation controls still function, but require a postback to the server to do the validation.
So, although ASP.NET is cross-browser, users can get different experiences, depending on which
browser they are using.

With Silverlight, this changes. Microsoft is once again pulling out the term cross-browser, and also
adding cross-platform, and this time they mean it. As a developer, you can create a Silverlight
application and rest assured that it will run exactly the same on all supported platforms and browsers.

Currently, two platforms are supported. Naturally, the first is Windows-based platforms, and the
second is Mac OS platforms. As for browser support, Internet Explorer and Firefox are currently
covered. Microsoft has committed support for Safari as well, so it may be on the list by the time you’re
reading this book.

This leaves one large platform unsupported: Linux. Although Microsoft does not have plans to
support Linux, others do. The Mono project, which is sponsored by Novell, is an open source initiative
to develop and run .NET client and server applications on Linux, Solaris, Mac OS X, Windows, and
Unix. The Mono team has indicated that it will soon have a Silverlight implementation, currently
called the Moonlight runtime. With this addition, developers will be able to develop Silverlight
applications for Windows, Macintosh, and Linux systems with one code base. Furthermore, the user
experience will be identical, no matter which platform you are using.

Cross-Platform Version of the .NET Framework
Silverlight 1.0 was released by Microsoft in the summer of 2007, but this version supported only Ecma
languages that are interpreted in the client. Although Silverlight 1.0 works well for developers who are
already familiar with client-side scripting, many developers have their eyes on the second release of
Silverlight, version 2. Silverlight 1.0 is more or less in direct competition with Flash—some have called
it Microsoft’s “Flash killer.” However, things really get exciting with Silverlight 2.

Silverlight 2 and beyond contains its own cross-platform version of the .NET Framework, which
means it has its own version of the common language runtime (CLR), the full type system, and a .NET
Framework programming library that you can use in Visual Studio 2008 to build rich user experiences
in the browser.

XAML, a Text-Based Markup Language
Another advantage to Silverlight is that its foundation is based on a text-based markup language. For
other RIA solutions such as Flash, the base is a compiled file. This is not nearly as friendly to
developers as a text-based format, for obvious reasons.

XAML is very easy to write and modify. As an example, let’s say you want to change the opacity of
an object. If you were using Flash to do this, you would need to open the Flash project file, find the right
layer and object, and then make the adjustment there. You then would need to recompile and republish

CHAPTER 1 ■ WELCOME TO SILVERLIGHT 3

6

the file. In contrast, with Silverlight, you simply open the XAML file, change the opacity property of the
object, and save the file.

Another advantage of XAML is that it can be created dynamically at runtime. If you think about it,
the implications of this are huge. Consider the similarities between HTML and XAML. Both are text-
based markup languages that have a decent similarity to XML. HTML is the base foundation of files
published on the Internet. Since HTML was introduced, a number of technologies have been built on
top of it. In the Microsoft camp, for example, Active Server Pages (ASP) was first introduced to allow
developers to dynamically modify HTML at runtime. Today, we have ASP.NET. XAML has the same
potential, since it is a text-based markup language on which developers can expand.

Use of Familiar Technologies
Microsoft is very good at creating tools that make application development easy. The Visual Studio
integrated development environment (IDE) has been around for quite some time, and although new
features are continually added to the tool, the environment itself has remained remarkably consistent.

Silverlight development is no different. At the core of developing Silverlightapplications is Visual
Studio 2008, the latest version in Visual Studio’s long history. This gives Silverlight a distinct
advantage, as developers do not need to learn how to use a new development environment.

In addition to Visual Studio, Microsoft has released a suite of tools called Expression Studio.
Included in this suite is Microsoft Expression Blend, which is used to edit and create XAML for
Silverlight applications. While Expression Blend looks completely different, it still has many of the
same elements as Visual Studio. In addition, Expression Blend works off of the same project as Visual
Studio. This means that as you make changes in each of the editors—opening a project in Visual Studio,
and then opening the same project in Expression Blend to edit the XAML—the edited files will request
to be refreshed when opened again in the other tool.

Small Runtime and Simple Deployment
Since Silverlight requires that a client runtime be installed on the client machine, it is vital that this
runtime has a small footprint and downloads quickly. Microsoft worked very hard to get the
installation size as small as possible. The developers clearly succeeded with Silverlight 1.0, as the
download size is a tiny 1MB. For Silverlight 2, however, they had a harder chore ahead of them, since
Silverlight 2 contains its own .NET Framework and object library. Microsoft went to each .NET
Framework team and allocated it a size to fit its portion. The end result is astonishing—Silverlight 2 is
approximately 4MB in size. In Silverlight 3, even with the large amount of new features that have been
added to the Silverlight runtime, the file size is still under 5MB.

As for pushing the Silverlight runtime out to clients, Microsoft has provided a very easy detection
mechanism. If the client does not have the proper Silverlight runtime installed, it will display a logo, as
shown in Figure 1-5.

CHAPTER 1 ■ WELCOME TO SILVERLIGHT 3

7

Figure 1-5. Silverlight runtime required logo

When users click the icon in the logo, they are taken to a web page that walks them through the
process of installing the Silverlight runtime. Once the runtime is finished installing, the Silverlight
application is immediately available to the user, as shown in the example in Figure 1-6.

Figure 1-6. Silverlight application after installation of runtime

CHAPTER 1 ■ WELCOME TO SILVERLIGHT 3

8

The Silverlight Development Environment
In the past, setting up an environment to work with Microsoft’s latest and greatest has been relatively
straightforward, typically involving only the setup of the latest version of Visual Studio and the
appropriate software development kit. However, with Silverlight, the situation is quite a bit different
due to the introduction of many new tools. Let’s look at the tools involved in setting up a Silverlight 3
development environment.

1. Visual Studio 2008 and SP1: As noted, this is the latest version of Microsoft’s
IDE, the successor to Visual Studio 2005 (see Figure 1-7). For your Silverlight
environment you should install Visual Studio 2008 along with Service Pack 1.
Installing Visual Studio 2008 automatically installs Microsoft .NET
Framework 3.5. Chapter 2 covers Visual Studio 2008 in more depth.

Figure 1-7. Microsoft Visual Studio 2008

2. Silverlight Tools for Visual Studio 2008: This is basically a package that adds
the necessary items to Visual Studio to teach it how to handle Silverlight
projects. The packages includes a number of items, some of which are listed
below:

• Silverlight 3 Runtime: Required on every computer that wishes to view a
Silverlight-enabled web application.

CHAPTER 1 ■ WELCOME TO SILVERLIGHT 3

9

• Silverlight 3 Software Development Kit: This SDK is a collection of
samples, Silverlight QuickStarts, documentation, and controls that are
used to develop Silverlight applications.

• Silverlight Project Templates for Visual Studio 2008: This adds the
Silverlight templates in Visual Studio. As an example, it will add the
template that enable you to create a Silverlight project from the “Add New
Project” in Visual Studio.

3. Expression Blend 3: The next thing to install for your Silverlight
development environment is Expression Blend (see Figure 1-8). Expression
Blend a design tool for building XAML based interfaces including Windows
Presentation Foundation (WPF) and Silverlight. Expression Blend is not
required for creating Silverlight solutions, but is the only designer that
provides design-mode WYSIWYG functionality until Visual Studio 2010 is
released (currently expected to hit mid-2010). Expression Blend 3 is covered
in detail in Chapter 11.

Figure 1-8. Microsoft Expression Blend 2

CHAPTER 1 ■ WELCOME TO SILVERLIGHT 3

10

4. Silverlight 3 Toolkit. The Silverlight Toolkit is an open source CodePlex
project whose goal is to develop additional controls for Silverlight
applications. Controls within the toolkit are assigned a status that describes
their maturity as controls and the controls are supported by the open source
community. You can download the toolkit for Silverlight 3 at
http://www.codeplex.com/silverlight.

New Features in Silverlight 3
Silverlight continues to evolve and Microsoft continues to add new features to Silverlight in each
version. There are many new features introduced in Silverlight 3. This section will go over some of
those new features and will indicate where those features are discussed in this book.

• Navigation Framework: The Navigation Framework provides developers with a
way to build Silverlight applications that have multiple page views that integrate
with browser history and provide support for deep linking allowing users to
enter a URL that will take them to a specific state in the Silverlight application.
The Navigation Framework is discussed in Chapter 8.

• New Controls: With each new version of Silverlight, more and more controls are
added. This is no different with Silverlight 3, which has added a number of new
controls such as the WrapPanel, DockPanel, TreeView, Label, ViewBox and
AutoCompleteBox. These controls are discussed in Chapters 3 to 5.

• Modal Window Support: Anyone that has developed applications for windows
desktop is familiar with the modal popup window. This is a window that pops up
and disables the rest of the application until it is closed. Using modal window
support is discussed in Chapter 4.

• Element to Element Binding: When binding target UI elements are bound to a
source. In previous versions of Silverlight the only options for the source was
data. In Silverlight 3, elements can be bound to other elements allowing for the
property of a control to be bound to another controls property. Element to
Element binding is discussed in Chapter 5.

• Data Validation: Silverlight 3 contains some new data validation features that
help developers handle validation exceptions in their applications. In previous
versions of Silverlight, the validation exceptions were more or less swallowed up
by the framework and therefore there was no way to easily report these errors to
the user interface.

• Local Networking: In some scenarios you may need to have multiple Silverlight
applications contained within an HTML or ASP.NET screen. Perhaps you need to
have some HTML content between the two Silverlight applications and you
didn’t want to include that content within a single Silverlight application. This is
easily accomplished, but if you need those two Silverlight applications to be able
to communicate with each other, you will need a way to send messages back and
forth. Silverlight 3 introduces a new API called LocalConnection that allows you
to add local networking between your Silverlight applications. You can have one
application send a message that is then received from the second application.

• Perspective 3D: Silverlight 3 adds the ability to simulate an object in 3D space
with perspective 3D.

http://www.codeplex.com/silverlight

CHAPTER 1 ■ WELCOME TO SILVERLIGHT 3

11

• New Features in Transformation and Animation: A number of new
transformation and animation features have been added with Silverlight 3.
Some of these include adding blur and drop shadow effects as well as animation
easing for smoother and more realistic animations such as bounce and elastic
effects.

• Assembly Caching: Silverlight 3 now has the ability to cache assemblies locally
on a client machine. This means that you can create a Silverlight package
without including all the Silverlight assemblies and utilize them from the client
machine. If the desired assembly is not present on the client machine, it is
simply downloaded from Microsoft’s web site and cached for future use.
Assembly Caching is discussed in Chapter 13.

• Out of Browser Support: A very commonly requested feature of Silverlight 2 was
to add the ability for Silverlight applications to be run outside the browser. This
feature is now present in Silverlight 3, and allows for users to install Silverlight
applications directly to their machine and run them without a browser. Out of
Browser support is discussed in Chapter 13.

Improved Performance
In addition to these new features, there has also been an improvement in the performance of
Silverlight 3 applications. First of all, the Silverlight application packages (XAP Files, refer to Chapter
13) have improved compression. This means that your Silverlight application’s output filesize will be
smaller. Smaller file size means faster downloads and less of a wait for users wanting to run your
application. In addition to improved compression, Silverlight 3 introduces Assembly Caching, which
allows your applications to utilize assemblies cached on a user’s end machine. This means that your
applications will be even smaller in size since the packages do not require you to include these
assemblies. In addition to the Silverlight packages themselves, a number of performance
improvements have been made throughout Silverlight features, such as improved font animations and
support for additional http bindings for WCF web services including Binary message encoding.

Summary
In this chapter, you looked at the evolution of user interfaces in applications, as well as the history of
RIAs. I then introduced Silverlight, talked about the benefits it brings to developers today, and how it
fits into RIA solutions. Finally, you learned about the tools involved in developing Silverlight-enabled
applications.

Now it is time to get your hands dirty and start building some Silverlight applications! In the next
chapter, I will provide an introduction to Microsoft Visual Studio 2008, one of the primary tools used to
build Silverlight applications.

C H A P T E R 2

■ ■ ■

13

Introduction to Visual Studio 2008

The previous chapter mentioned the tools required to develop RIAs that utilize the Silverlight
technology. At the core of all of these tools is Microsoft’s flagship development product, Visual Studio.
This chapter provides an introduction to Visual Studio 2008, the latest version. You will learn about
some of the new features that are particularly helpful for developers building RIAs with Silverlight,
and then work through an exercise to try out Visual Studio 2008’s enhanced JavaScript IntelliSense
and debugging support. Finally, you will have an opportunity to create your first Silverlight
application using Visual Studio 2008. Let’s get started with a brief introduction to the Visual Studio IDE.

What Is Visual Studio?
Any developer who has developed applications using technologies related to Microsoft’s Visual Basic,
ASP, or .NET has used some version of Visual Studio on a regular basis. This is because Visual Studio is
Microsoft’s primary development product. Whether you are developing desktop applications, web
applications, mobile applications, web services, or just about any other .NET solution, Visual Studio is
the environment you will be using.

Visual Studio is an IDE that allows .NET developers to implement a variety of .NET solutions
within the confines of one editor. An IDE is a software application that contains comprehensive
facilities to aid developers in building applications. Visual Studio fits this description for a number of
reasons. First, Visual Studio offers a very rich code-editing solution. It includes features such as source
code color-coding and code completion. Second, it offers an integrated debugger, which allows you to
place breakpoints in your source code to stop execution at any given point, as well as step through the
source line by line, analyzing the state of objects and fields at any given point in the execution. Add to
these features rich support for application deployment, installation, and integration with database
services, and you can understand how Visual Studio is an extremely valuable tool for developers.

■ Note This book assumes a basic understanding of Visual Studio. If you’re new to Visual Studio, I recommend

that you get started with a book devoted to the subject, such as Beginning C# 2008, Second Edition by Christian

Gross (Apress, 2008).

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

14

The History of Visual Studio

Visual Studio has quite a history. The first version was called Visual Studio 97, which was most commonly
known for Visual Basic 5.0. In 1998, Microsoft released Visual Studio 6.0. That version included Visual
Basic 6.0, as well as Microsoft’s first web-based development tool, Visual InterDev 1.0, which was used to
develop ASP applications.

Next came the introduction of Microsoft .NET and ASP.NET 1.0, prompting Visual Studio.NET. As Microsoft
was enhancing and releasing new versions of Microsoft .NET and ASP.NET, it also continued enhancing
Visual Studio by releasing Visual Studio 2003 and then Visual Studio 2005. In addition, Microsoft has
introduced a line of free development tools known as the Visual Studio Express tools, as well as the Visual
Studio Team System, which can be used by large programming teams to build enterprise-level systems.

This brings us to the latest version of Visual Studio, which Microsoft developed under the code name Orcas
and has now dubbed Visual Studio 2008.

What’s New in Visual Studio 2008?
Microsoft has introduced a variety of new features in Visual Studio 2008, many of which are geared
toward helping developers build RIAs with Silverlight and related Microsoft technologies, such as the
Windows Communication Foundation (WCF), ADO.NET Data Services, and Ajax. Let’s look at some of the
new features in Visual Studio 2008 that are particularly helpful to Silverlight application developers.

JavaScript IntelliSense and Debugging
Client-side scripting is a major component of developing RIAs. With the adoption of technologies like
Ajax and Silverlight, developers can integrate client-side scripting into applications to enhance the
user experience.

In response to the growing necessity for integrating client-side scripting into ASP.NET
applications, Microsoft has implemented an extensive upgrade to Visual Studio’s JavaScript
IntelliSense and debugging support. Here, you’ll look at the IntelliSense and debugging
improvements, and then try a test run to see them in action.

IntelliSense Improvements
The first major improvement of JavaScript IntelliSense in Visual Studio 2008 is type inference. Since
JavaScript is a dynamic language, a variable can be one of many different types, depending on its
current state. For example, in the following code snippet, the variable x represents a different type
each time it is assigned.

function TypeInference()
{
 var x;
 x = document.getElementById("fieldName");
 // x is now an HTML element
 alert(x.tagName);
 x = 10;

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

15

 // x is now an integer
 alert(x.toFixed());
 x = new Date();
 // x is now a date
 alert(x.getDay());
}

In this example, the variable x represents three different types during the execution of the
function:

• First, it represents an HTML element. When the user types x followed by a
period, the code-completion choices will be specific to an HTML element, as
shown in Figure 2-1.

Figure 2-1. Code completion with type inference for an HTML element

• In the next line, x is assigned to the value 10. At this point, x has become an
integer, and the code-completion choices that appear are specific to an integer,
as shown in Figure 2-2.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

16

Figure 2-2. Code completion with type inference for an integer

• Finally, x is assigned to a date type. At this point, x represents a date type, and
the code-completion choices include date-specific properties and methods.

The second notable enhancement to JavaScript IntelliSense in Visual Studio 2008 is the support
for IntelliSense in external script files. In fact, there are many levels to this enhancement. First,
developers will have IntelliSense while they are editing the external script files. Second, by adding a
reference to other external script files, developers can get IntelliSense for functions and fields from
other script files. Finally, developers will receive IntelliSense in the actual pages that reference the
external script files.

Another new feature of JavaScript IntelliSense is the ability to add XML comments to your code,
which will provide additional information in the IntelliSense display. These are similar to standard C#
XML comments, which have been available in C# since it was initially released. The following
example shows some XML comments added to a JavaScript function.

function HelloWorld(FirstName, LastName)
{
 /// <summary>Returns a hello message to the given name</summary>

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

17

 /// <param name="FirstName">Person's First Name</param>
 /// <param name="LastName">Person's Last Name</param>
 /// <returns>string</return>
 return ("Hello " + FirstName + " " + LastName);
}

This is a function called HelloWorld, which simply accepts a first and last name and returns a hello
message customized for that person. This function is located in a file called JScripts.js. Notice the four
XML comments added to the start of the function. These provide a summary of the function, give a
description of the function’s parameters, and indicate the value returned by the function. With these
extra lines in place, when you add the function in your code, IntelliSense will now display this
additional information. First, when you start typing HelloWorld, Visual Studio’s JavaScript IntelliSense
will help you complete the method call. After you have typed HelloWorld and the opening parenthesis,
it will display the two parameters and their descriptions, as shown in Figure 2-3.

Figure 2-3. IntelliSense for a JavaScript function with parameter tags

Now that you have reviewed the JavaScript IntelliSense features added to Visual Studio 2008, let’s
take a look at the new JavaScript debugging features, which are equally as useful and long-awaited.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

18

New Debugging Features
In previous versions of Visual Studio, ASP.NET developers were severely limited in the debugging they
could do in client-side scripting. Some of the more industrious developers would find a third-party
JavaScript debugging tool to assist them. However, the majority of developers would simply use hacks,
such as adding alerts throughout their client-side scripting. When an alert was not hit, they could identify
where the error had occurred and at least determine the basic location where attention was required.

In Visual Studio 2008, JavaScript debugging is now integrated directly into the IDE, and believe it
or not, it actually works!

Figure 2-4 shows an example where a breakpoint was placed on a line of code in a local script
section of an ASP.NET page. At this point, you are in Visual Studio’s JavaScript debugger, and you can
step through the code one line at a time. If a line of code references a function in an external script file
(as in the example), that script file will be opened, and you will be able to debug that script file as well.
In addition, you can hover the mouse over code and see the current value of the objects while you are
debugging your application.

Figure 2-4. JavaScript debugging in Visual Studio 2008

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

19

As if that were not enough, Visual Studio’s JavaScript debugging also allows you to use the
Immediate window to enter JavaScript code directly while you are debugging. This is extremely
powerful, because it allows you to evaluate a line of code at any point in the process—your entries will
be processed immediately.

To get started debugging JavaScript in Visual Studio, there is only one setting that you need to
confirm within your browser to make certain that client-side debugging is enabled. In Internet
Explorer, choose View ~TRA Internet Options. This will display the Internet Options dialog box. Select
the Advanced tab and find the two entries “Disable script debugging (Internet Explorer)” and “Disable
script debugging (Other).” Make certain both of these options are unchecked, as shown in Figure 2-5,
and click the OK button to close the dialog box.

Figure 2-5. Uncheck the “Disable script debugging” boxes in the Internet Explorer Internet Options dialog
box.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

20

Try It Out: JavaScript IntelliSense and Debugging
Now that we have looked at some of the new JavaScript IntelliSense and debugging features in Visual
Studio 2008, let’s take them for a test drive.

1. Start Visual Studio 2008 and select File ~TRA New ~TRA Project from the
main menu, as shown in Figure 2-6.

Figure 2-6. Selecting to create a new project

2. In the New Project dialog box, select Visual C# as the project type and
ASP.NET Web Application as the template. Name the project
Ch2_JavaScriptOverview, as shown in Figure 2-7.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

21

Figure 2-7. Selecting to create an ASP.NET Web Application project

3. A new Web Application project will now be created for you, with the
Default.aspx file open. Select Project ~TRA Add New Item from the main
menu.

4. In the Add New Item dialog box, make sure that the Visual C# category is
selected on the left and select JScript File in the Templates pane. Name the
file HelloWorld.js, as shown in Figure 2-8. Then click the Add button.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

22

Figure 2-8. Adding a JavaScript file to a project

5. The JavaScript file will be added to the project and opened by default. In this
file, add a new function called HelloWorld(), as follows:

function HelloWorld(FirstName, LastName)
{
 return ("Hello " + FirstName + " " + LastName);
}

6. As you typed the function, you got some IntelliSense assistance. Also notice
the color-coding of the JavaScript.

7. Now insert some XML comments to display some additional IntelliSense
information when the function is used. Add the following comments (shown
in bold):

function HelloWorld(FirstName, LastName)
{
 /// <summary>Returns a hello message to the given name</summary>
 /// <param name="FirstName">Person's First Name</param>
 /// <param name="LastName">Person's Last Name</param>
 /// <returns>string</return>
 return ("Hello " + FirstName + " " + LastName);
}

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

23

8. Once again, select Project ~TRA Add New Item. This time, select Web Form as
the template and name the file JSIntellisense.aspx.

9. In this new file, add a script reference to your HelloWorld.js script file. You
can either drag the script file to the page header or simply edit the HTML of
the form manually so that it appears as follows:

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title></title>
 <script src="HelloWorld.js" type="text/javascript"></script>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 </div>
 </form>
</body>
</html>

10. Next, add a local function that will run when the page loads. To do this, add a
new <SCRIPT> section and call the function in the page body’s onload event so
that the method is called when the page is loaded, as follows:

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
 <script src="HelloWorld.js" type="text/javascript"></script>
 <script type="text/javascript" language="javascript">
 function load()
 {

 }
 </script>
</head>
<body onload="load()">
 <form id="form1" runat="server">
 <div>

 </div>
 </form>
</body>
</html>

11. Now call the HelloWorld() method. Go ahead and start typing the boldfaced
line of code in the load function:

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
 <script src="HelloWorld.js" type="text/javascript"></script>
 <script type="text/javascript" language="javascript">
 function load()

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

24

 {
 var message = HelloWorld("Bob", "Lair");
 alert(message);
 }
 </script>
</head>
<body onload="load()">
 <form id="form1" runat="server">
 <div>

 </div>
 </form>
</body>
</html>

12. You will see that Visual Studio’s IntelliSense tries to help you, as shown in
Figure 2-9. With HelloWorld selected in the IntelliSense box, you can simply
press the Tab key, and Visual Studio will automatically finish the function
name. As you continue typing, you will also notice that the XML comments
you added for the function appear (see Figure 2-3).

Figure 2-9. HelloWorld appears in the JavaScript IntelliSense box.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

25

13. When you are finished, press F5 to start the project. If you are prompted with a
Debugging Not Enabled dialog box, choose “Modify the Web.config file to
enable debugging,” as shown in Figure 2-10, and then click OK to continue.

Figure 2-10. VisualStudio will display this dialog box if debugging is not enabled.

14. When the page is loaded, you will see an alert box appear with your message,
as shown in Figure 2-11. Click OK to close the alert box.

Figure 2-11. Customized hello message

15. Next, let’s give JavaScript debugging a try. Stop the project and return to your
Visual Studio project.

16. In the JSIntellisense.aspx file, add a breakpoint by clicking in the gray area
to the left of the line calling the HelloWorld() function. In design mode, the
breakpoint will show up as a red dot with a white diamond, as shown in
Figure 2-12.

17. Press F5 to restart the project. Visual Studio will appear in debug mode, with
execution stopped on your line with the breakpoint. The breakpoint will show
up as a red dot with a yellow arrow, indicating the application process has
been halted at the breakpoint, as shown in Figure 2-13.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

26

Figure 2-12. Adding a breakpoint

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

27

Figure 2-13. Debugging stopped at the inserted breakpoint.

18. Press F10 to step to the next line. If you hover your mouse over the variable
message, you will see its value is currently set to "Hello Bob Lair". You can
also see the value of message in the Locals window.

19. Let’s change the value of message. In the Immediate window, type in the
following line of code and press Enter to execute it.

message = HelloWorld("Robert", "Lair")

20. The Immediate window will change the value of message to the output of the
new call to the HelloWorld method, as shown in Figure 2-14.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

28

Figure 2-14. Using the Immediate window to change a value

This example gave you an idea of the new JavaScript IntelliSense and debugging features in
Visual Studio 2008, which are far more advanced than anything ASP.NET developers have had with
previous versions. These should prove to be very valuable tools in your client-side scripting tool belt.

Now, let’s continue lookingat other new features in the latest version of Visual Studio.

Multi-Targeting Support
My company builds ASP.NET solutions for clients, and each time a new version of the .NET Framework
is released, we face a maintenance problem. Naturally, we would like to take advantage of the new
features of Visual Studio and the latest .NET Framework in our new projects, but we must also be able
to support the existing client base.

In the past versions of Visual Studio, projects were tied to a specific version of the .NET
Framework. For example, applications written in ASP.NET 1.0 needed to be upgraded to ASP.NET 1.1 in
order to take advantage of Visual Studio 2005.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

29

An associated problem is how to handle existing systems that you only want to maintain, and have
no intention of upgrading to a newer .NET Framework. For developers to support such systems, while
still taking advantage of newer Visual Studio features for other projects, they would need to run
different versions of Visual Studio side by side. From a personal perspective, my worst situation was
when I had Visual Studio 6.0, Visual Studio .NET (2002), Visual Studio 2003, and Visual Studio 2005
installed on my laptop at the same time. What a pain!

Microsoft has helped alleviate this problem by adding multi-targeting support to Visual Studio
2008. This allows you to use Visual Studio 2008 for a specific targeted version of the .NET Framework.
Therefore, your Visual Studio 2005 projects that are using .NET 2.0 or .NET 3.0 can be edited with
Visual Studio 2008, without being forced to upgrade to .NET 3.5. In addition, you can create new
projects for a targeted platform. When you create a new project in Visual Studio, you will notice a new
drop-down menu at the top-right corner of the New Project dialog box. As shown in Figure 2-15, this
lists the different .NET Frameworks. If you change the selection here, the new project will be targeted
to that version of the .NET Framework.

Figure 2-15. Muti-targeting support in Visual Studio 2008

If you open a Visual Studio 2005 project in Visual Studio 2008, you will be prompted to upgrade the
project by default. If you choose not to upgrade the project, the project will be opened as a Visual Studio
2005 project within Visual Studio 2008.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

30

■ Note If you open a project using a version of the .NET Framework prior to 2.0, you will be forced to upgrade.
There is no support for these earlier versions in Visual Studio’s 2008’s multi-targeting feature. That said, Microsoft
is committed to keeping this feature working for future versions of Visual Studio. Consequently, it seems safe to

say that developers will need only the latest version of Visual Studio installed from this point forward.

Transparent IntelliSense Mode
One of the problems with IntelliSense in past versions of Visual Studio was that the pop-up window hid
the source code. You would need to close the pop-up window to see the source code beneath it, and then
start typing again.

A new feature in Visual Studio 2008 is the semitransparent IntelliSense pop-up window. When the
IntelliSense window appears, you can press the Ctrl key to make the pop-up window semitransparent,
allowing you to see the source code under the window. Figures 2-16 and 2-17 illustrate this feature.

Figure 2-16. Default IntelliSense pop-up window

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

31

This feature works in all languages across Visual Studio, including the JavaScript IntelliSense
covered earlier in this chapter.

Figure 2-17. Press the Ctrl key to make the IntelliSense pop-up window transparent.

Building Your First Silverlight Application in Visual Studio
The best way to explore the Visual Studio IDE is to get your hands dirty and play around with it. Let’s
build a Silverlight application.

Try It Out: Hello World in Silverlight 3
In this exercise, you’ll build the Hello World Silverlight 3 application. I personally hate the Hello World
sample, but it is used often because it is so simple and provides a good introduction. Who am I to break
with tradition? Let’s get started.

1. Start Visual Studio 2008 and Select File ~TRA New ~TRA Project from the main menu.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

32

2. In the New Project dialog box, select Visual C# as the project type, and in the
list under that type, choose Silverlight. Select Silverlight Application as the
template and name the project Ch2_HelloWorld, as shown in Figure 2-18.
Then click OK.

Figure 2-18. Creating a new Silverlight project

3. Visual Studio will display the Add Silverlight Application dialog box,
informing you that your Silverlight application needs to be hosted in an
HTML web page. It offers the choices of hosting the Silverlight application in
a web site or within a project. For this exercise, select Web Application Project
and stick with the default name of Ch2_HelloWorld.Web, as shown in Figure 2-
19. Then click OK. See the next section for more information about choosing
whether to use a Web Site or Web Application project for your own Silverlight
applications.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

33

Figure 2-19. The Add Silverlight Application dialog box

4. Visual Studio will now create the base project for you. Notice that there are
two projects created within your solution: one called Ch2_HelloWorld.Web and
one called Ch2_HelloWorld, as shown in Figure 2-20.

Figure 2-20. The default Silverlight project created in Visual Studio 2008

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

34

5. Visual Studio has already opened the MainPage.xaml file, which is where you
will start working. Let’s begin by adding a TextBlock control, which will
display our “Hello World!” message. Add the TextBlock within your Canvas
object, as follows:

<UserControl x:Class="Ch2_HelloWorld.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <TextBlock x:Name="HelloMessage" Text="Hello World!" FontSize="30" />
 </Grid>
</UserControl>

6. Save the project and run it by pressing F5. If you see the Debugging Not
Enabled dialog box (as shown in Figure 2-10), select “Modify the Web.config
to enable debugging” and click OK. The result should be as shown in Figure
2-21.

Figure 2-21. Your first Silverlight application in Visual Studio 2008

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

35

7. I know this isn’t very interesting, so let’s change things up a bit by setting the
display message in the MainPage.xaml.cs code behind. In the code behind, you
will notice a constructor for your Page class, which contains one method called
InitializeComponent(). Under that method, change the Text property of your
TextBlock as follows (the line shown in bold):

namespace Ch2_HelloWorld
{
 public partial class Page : UserControl
 {
 public Page()
 {
 InitializeComponent();
 this.HelloMessage.Text = "Hello Universe!";
 }
 }
}

8. Rebuild the application and run it again. Your result should look like Figure
2-22.

Figure 2-22. The final result from our first Silverlight Application in Visual Studio 2008

9. Close the application.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

36

There you go! You have built your first Silverlight application. Of course, this application is
extremely simple, but you did get an idea of how things work in Visual Studio 2008.

Hosting Your Silverlight Application: Web Site or Web Application?
In Visual Studio 2008, should you use a Web Site project or a Web Application project to host your
Silverlight application? The main difference between a Web Site and a Web Application project is how
the files are compiled and deployed. Each has its advantages and disadvantages. In the end, the choice
pretty much comes down to user preference. Let’s take a quick look at each approach.

Using a Visual Studio Web Site
A Visual Studio web site is nothing more than a group of files and folders in a folder. There is no
project file. Instead, the site simply contains all the files under the specific folder, including all text
files, images, and other file types.

A Visual Studio wsite is compiled dynamically at runtime. An assembly will not be created, and
you won’t have a bin directory.

The following are some advantages of using a Visual Studio web site:

• You don’t need a project file or virtual directory for the site.

• The site can easily be deployed or shared by simply copying the folder
containing the site.

The following are some disadvantages of this approach:

• There is no project file that you can double-click to open the site in Visual Studio.
Rather, you must browse to the folder after opening Visual Studio.

• By default, all files within the site’s directory are included in the Web Site
project. If there are files within the site’s directory that you do not wish to be a
part of the web site, you must rename the file, adding the extension .exclude.

Using a Visual Studio Web Application Project
A Visual Studio Web Application project is the more traditional type of web project used prior to Visual
Studio 2005. When Microsoft developers introduced the “Web Site” concept, they did not take into
account the many developers who were comfortable with the project- based solution approach. To
accommodate those developers, Microsoft announced the Visual Studio 2005 Web Application project
as an add-on to Visual Studio 2005. In Visual Studio 2008, this project type is once again a part of Visual
Studio.

The following are some of the advantages of using a Web Application project:

• All of the code files are compiled into a single assembly, placed in the bin
directory.

• You can easily exclude files from a project, since all files within the project are
defined within the project file.

• It’s easier to migrate from older versions of Visual Studio.

CHAPTER 2 ■ INTRODUCTION TO VISUAL STUDIO 2008

37

A disadvantage is that it can be more difficult to share your solution with others, if that is your
intent.

In the end, both approaches have their pros and cons. You need to determine which one is more
suitable for your application, depending on your specific purpose and goals. For more information
about these project types, refer to the MSDN documentation.

Summary
This chapter introduced Visual Studio 2008 and some of the new features offered in this version,
including the new JavaScript IntelliSense features, additional JavaScript debugging support, and
multi-targeting support. In addition, you built your very first Silverlight application.

In the next chapter, you are going to start to dive into some of the Silverlight controls, beginning
with the layout management controls. These controls enable you to lay out your Silverlight
applications.

C H A P T E R 3

■ ■ ■

39

Layout Management in
Silverlight 3

The previous chapter provided an overview of Visual Studio 2008, one of the primary tools used in
developing Silverlight applications. In this chapter, you are going to start to dive into some Silverlight 3
development by looking at the layout management controls.

As you have learned, Silverlight applications consist of a number of Silverlight objects that are
defined by XAML. Layout management involves describing the way that these objects are arranged in
your application. Silverlight 3 includes five layout management controls: Canvas, StackPanel, Grid,
WrapPanel, and DockPanel. You will take a look at each of these in-depth. By the end of this chapter, you
should have a good understanding of when to use which layout control.

Layout Management
Silverlight provides a very flexible layout management system that lets you specify how controls will
appear in your Silverlight application. You can use a static layout as well as a liquid layout that allows
your layout to automatically adjust as your Silverlight application is resized in the browser.

Each of the five layout controls provided in Silverlight 3 has its advantages and disadvantages, as
summarized in Table 3-1.

Let’s begin by looking at the most basic layout control: the Canvas panel.

Table 3-1. Layout Control Pros and Cons

Control Description Pros Cons

Canvas Based on absolute
position of controls.

Very simple layout. Requires that every control have a
Canvas.Top and Canvas.Left
property attached to define its
position on the canvas.

StackPanel Based on horizontal
or vertical “stacks”
of controls.

Allows for a quick
dynamic layout. Nesting
StackPanel controls can
provide some interesting
layouts.

The layout is limited to stacks of
items. Spacing is limited to adding
margins to the individual controls
and to adjusting the alignment (with
the VerticalAlignment and
HorizontalAlignment properties).

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

40

Grid Mimics using table
elements in HTML
to lay out controls.

The most flexible and
powerful layout control.
You can define just
about any type of layout
using the Grid control.

Grid definitions can get somewhat
complex at times. Nesting Grid
components can be confusing.

WrapPanel Based on horizontal
or vertical “stacks”
of controls
wrapping to a
second row or
column when width
or height is reached.

Very similar to the
StackPanel, except the
WrapPanel automatically
wraps items to a second
row or column so it is
ideal for layouts
containing an unknown
number of items.

Limited control of layout as
wrapping is automatic when items
reach maximum width or height.

DockPanel Layout is based on
“docked” horizontal
or vertical panels.

Provides an easy way to
create basic layout,
consuming the entire
application space in
vertical or horizontal
panels.

Layout is limited to horizontal or
vertical “fill” panels, often used in
conjunction with other nested layout
controls.

The Canvas Panel
The Canvas panel is a basic layout control that allows you to position Silverlight objects using explicit
coordinates relative to the canvas location. You can position an object within the Canvas panel by using
two XAML attached properties: Canvas.Left and Canvas.Top. Figure 3-1 shows how the object’s position
is affected by these properties.

Figure 3-1. The XML attached properties Canvas.Top and Canvas.Left allow you to position the Canvas.

The objects within a Canvas panel have no layout policies placed on them by the layout control and
will not resize automatically when your application is resized within the browser.

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

41

Try It Out: Using the Canvas Panel
Let’s try out a quick example of using the Canvas panel.

1. Open Visual Studio 2008 and create a new Silverlight application called
Ch3_CanvasPanel. Allow Visual Studio to create a Web Site project to host the
application.

2. When the project is created, you should be looking at the MainPage.xaml file. If
you do not see the XAML source, switch to that view so you can edit the XAML.
Within the main Grid element, add a Canvas element. Assign it a Width property
of 300 and a Height property of 300. In order to see the Canvas panel in the
application, also set the background color to green. The following XAML adds
this Canvas:

<UserControl x:Class="Ch3_CanvasPanel.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">

 <Canvas Background="Green" Width="300" Height="200">
 </Canvas>

 </Grid>
</UserControl>

3. At this point, your Silverlight application doesn’t look that exciting. It contains
only a single green rectangle positioned at the very center of your application,
as shown in Figure 3-2.

Figure 3-2. Default Canvas with an empty background

4. Let’s add a button to this Canvas panel. Add the following code to place the
button, which has the label Button1, a Width property of 100, and a Height
property of 30. (The Button control is covered in detail in Chapter 4.)

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

42

<UserControl x:Class="Ch3_CanvasPanel.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">

 <Canvas Background="Green" Width="300" Height="200">
 <Button Width="100" Height="30" Content="Button 1" />
 </Canvas>

 </Grid>
</UserControl>

5. Figure 3-3 shows the button within the canvas.

Figure 3-3. Single button within the canvas

6. Let’s add another button to the Canvas, but this time position it below and a bit
to the right of the first button by setting its Canvas.Top and Canvas.Left as
attached properties. Give this button the label Button 2, as follows:

<Grid x:Name="LayoutRoot" Background="White">

 <Canvas Background="Green" Width="300" Height="200">
 <Button Width="100" Height="30" Content="Button 1" />
 <Button Width="100" Height="30" Content="Button 2"
 Canvas.Left="10" Canvas.Top="40" />
 </Canvas>

</Grid>

7. At this point, you now have two buttons within the canvas, but at different
locations, as shown in Figure 3-4. This is still not very exciting, but this is about
as cool as it gets with the Canvas.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

43

Figure 3-4. Two buttons positioned relative to the canvas

8. Go ahead and run the solution to see the end result as it will appear in the
browser. The output is shown in Figure 3-5.

Figure 3-5. The canvas and two buttons as seen in a browser

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

44

Filling the Entire Browser Window with Your Application
By default, in a new Silverlight project, the root UserControl object is set to a width of 400 and a height of
300. In some cases, you may wish to set the width and height of your Silverlight application within the
browser. At other times, however, you will want your Silverlight application to take up the entire window of
your browser, and to resize as the browser is resized. This is done very easily within Silverlight. When you
wish for the width and height to be set to 100%, simply omit the element’s Height and Width attributes.

As an example, the following source has been adjusted for the Canvas panel and the Silverlight
application to take up the entire browser:

<UserControl x:Class="Ch3_CanvasPanel.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid x:Name="LayoutRoot" Background="White">

 <Canvas Background="Green">
 </Canvas>

 </Grid>
</UserControl>

With the omission of the Height and Width declarations for UserControl and Canvas, when you run
the Silverlight application, you will see that the canvas takes up 100% of the browser window, as shown
in Figure 3-6. It will resize as the browser resizes.

Figure 3-6. Silverlight application taking up the entire browser

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

45

As you’ve seen, the Canvas panel is a simple layout control. It can be used very effectively in a fixed
layout. However, in most cases, you will want to use a static layout for your applications. The StackPanel
control provides a more fluid layout control.

The StackPanel Control
The StackPanel provides developers with a quick layout option for positioning objects. The StackPanel
control allows you to position Silverlight objects in more of a flow layout, stacking objects either
horizontally or vertically. Figure 3-7 shows the basic concept of this layout control.

Figure 3-7. The StackPanel control orientations

Try It Out: Using the StackPanel Control
To better understand the StackPanel control, let’s run through an exercise.

1. In Visual Studio 2008, create a new Silverlight application named
Ch3_StackPanel and allow Visual Studio to create a Web Site project to host the
application.

2. When the project is created you should be looking at the MainPage.xaml file. If
you do not see the XAML source, switch so that you can edit the XAML. Within
the main Grid element, add a StackPanel control and also three buttons with
the labels Button 1, Button 2, and Button 3. Give all three buttons a width of
100 and a height of 30. The following XAML adds the StackPanel control and
buttons (the new code is highlighted in bold in all the exercises):

<UserControl x:Class="Ch3_StackPanel.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

46

 <Grid x:Name="LayoutRoot" Background="White">
 <StackPanel>
 <Button Width="100" Height="30" Content="Button 1"></Button>
 <Button Width="100" Height="30" Content="Button 2"></Button>
 <Button Width="100" Height="30" Content="Button 3"></Button>
 </StackPanel>
 </Grid>
</UserControl>

3. At this point, your application should appear as shown in Figure 3-8. Notice
that the buttons are stacked vertically. This is because the default stacking
orientation for the StackPanel control is vertical.

Figure 3-8. The StackPanel control with its default orientation

4. Change the orientation of the StackPanel control to be horizontal by setting
the Orientation property to Horizontal, as follows:

<Grid x:Name="LayoutRoot" Background="White">
 <StackPanel Orientation="Horizontal" >
 <Button Width="100" Height="30" Content="Button 1"></Button>
 <Button Width="100" Height="30" Content="Button 2"></Button>
 <Button Width="100" Height="30" Content="Button 3"></Button>
 </StackPanel>
</Grid>

5. With this simple change, the buttons are now stacked horizontally, as shown in
Figure 3-9.

Figure 3-9. The StackPanel control with horizontal orientation

6. Notice that all the buttons are touching each other, which is unattractive. You
can easily space them out by using their Margin property. In addition, you can
center the buttons by setting the StackPanel control’s HorizontalAlignment
property to Center. Other options for HorizontalAlignment include Left, Right,
and Stretch (which stretches the content to the left and right). Make the
following changes to adjust the buttons:

<Grid x:Name="LayoutRoot" Background="White">
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
 <Button Width="100" Height="30" Content="Button 1" Margin="5"></Button>

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

47

 <Button Width="100" Height="30" Content="Button 2" Margin="5"></Button>
 <Button Width="100" Height="30" Content="Button 3" Margin="5"></Button>
 </StackPanel>
</Grid>

7. After you have made these changes, your buttons are spaced out nicely in the
center of the application, as shown in Figure 3-10.

Figure 3-10. The StackPanel control with buttons spaced apart and centered

Try It Out: Nesting StackPanel Controls
Microsoft designed the control framework so that any object can be contained within another object.
One way you can enhance your layout is by nesting a layout control within another layout control. In
this example, you will nest a StackPanel control within another StackPanel control, but realize that you
can nest any layout control within any other layout control to get the exact layout functionality you are
seeking.

1. In Visual Studio 2008, create a new Silverlight application named
Ch3_NestedStackPanel and allow Visual Studio to create a Web Site project to
host the application.

2. In the MainPage.xaml file, add the following items:

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

48

• A StackPanel control to the root Grid with its Orientation property set to
Horizontal and the HorizontalAlignment property set to Center.

• Within that StackPanel, add two buttons with the labels Button Left and
Button Right.

• In between the two buttons, add another StackPanel with Orientation set
to Vertical and VerticalAlignment set to Center.

• Within that nested StackPanel, include three buttons with the labels Button
Middle 1, Button Middle 2, and Button Middle 3.

• All buttons should have a Margin property set to 5, and should have Height
set to 30 and Width set to 100.

3. Here is what the updated source looks like:

<Grid x:Name="LayoutRoot" Background="White">
 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
 <Button Width="100" Height="30" Content="Button Left" Margin="5" />
 <StackPanel VerticalAlignment="Center">
 <Button Width="100" Height="30" Content="Button Middle 1"
 Margin="5"></Button>
 <Button Width="100" Height="30" Content="Button Middle 2"
 Margin="5"></Button>
 <Button Width="100" Height="30" Content="Button Middle 3"
 Margin="5"></Button>
 </StackPanel>
 <Button Width="100" Height="30" Content="Button Right"
Margin="5"></Button>
 </StackPanel>
</Grid>

4. The cool result of this code is shown in Figure 3-11.

Figure 3-11. Nested StackPanel controls

5. Run the application to see the results.

As you can see from these two exercises, the StackPanel control is a very useful layout option, and
you will probably use it often in your Silverlight applications. By nesting Silverlight controls, you have a
lot of flexibility when designing your applications. However, in the event that you want more control of
the positioning of items in your application, without needing to resort to the absolute positioning used
by the Canvas control, the Grid control may be just the layout option you need.

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

49

The Grid Control
The Grid control provides more fine-tuned layout in Silverlight applications. As a comparison, you can
think of using the Grid layout control as similar to using table elements to position items in HTML, only
more flexible. With the Grid control, you can define rows and columns, thus creating grid cells, and then
add objects to individual cells in the grid or to multiple cells, by using spanning.

To specify in which cell to place an object, you use the Grid.Column and Grid.Row attached
properties. Note that these properties are base zero, so the top-left cell it is row 0 and column 0. Figure 3-
12 illustrates the row and column locations for the grid.

Figure 3-12. Row and column grid cell locations in the Grid control layout

For most developers, the Grid control will most likely be the layout option of choice, due to its
flexibility. At the same time, the Grid control is significantly more complex than the others, as you’ll see
in the following exercises.

Try It Out: Using the Grid Control
Let’s try out a simple Grid panel with four buttons.

1. In Visual Studio 2008, create a new Silverlight application named
Ch3_GridPanel and allow Visual Studio to create a Web Site project to host the
application.

2. For this example, you are going to need a bit more space in which to work. In
the MainPage.xaml file, start out by changing the UserControl’s Width to 600 and
Height to 400, as follows:

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

50

<UserControl x:Class="Ch3_GridPanel.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="600" Height="400">
 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>
</UserControl>

3. Add a new Grid control to the Silverlight application. In order to better see
what is going on, turn on the display of grid lines by setting the ShowGridLines
property to true. The following code shows these additions. Keep in mind that
since you have not designated a size for the grid, it will automatically take up
the entire size of the parent, and in this case, the entire Silverlight application.

<UserControl x:Class="Ch3_GridPanel.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="600" Height="400">
 <Grid x:Name="LayoutRoot" Background="White">
 <Grid ShowGridLines="True">

 </Grid>
 </Grid>
</UserControl>

4. Next, define the rows and columns in the Grid control. You do this using the
XAML property elements Grid.RowDefinitions and Grid.ColumnDefinitions.
Add the following XAML to your new grid:

<Grid x:Name="LayoutRoot" Background="White">
 <Grid ShowGridLines="True">

 <Grid.RowDefinitions>
 <RowDefinition Height="70" />
 <RowDefinition Height="*" />
 <RowDefinition Height="70" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="150" />
 </Grid.ColumnDefinitions>

 </Grid>
</Grid>

5. Notice that for the center row and column, you are setting the Height and
Width properties to "*". The asterisk tells the row and column to take up all
available space. As the Grid control is resized with the browser window, those
columns will be resized to take up all the space not consumed by the fixed-
sized columns. After you have added these row and column definitions, your
canvas should appear as shown in Figure 3-13.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

51

Figure 3-13. Grid with columns and rows

6. You can now add objects to the different grid cells. Place a button in each of
the four corner cells, giving the buttons the corresponding labels Top Left, Top
Right, Bottom Left, and Bottom Right. To place the buttons, add the following
code:

<Grid x:Name="LayoutRoot" Background="White">
 <Grid ShowGridLines="True">

 <Grid.RowDefinitions>
 <RowDefinition Height="70" />
 <RowDefinition Height="*" />
 <RowDefinition Height="70" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="150" />
 </Grid.ColumnDefinitions>

 <Button Width="100" Height="30" Content="Top Left"
 Margin="5" Grid.Row="0" Grid.Column="0"></Button>
 <Button Width="100" Height="30" Content="Top Right"
 Margin="5" Grid.Row="0" Grid.Column="2"></Button>
 <Button Width="100" Height="30" Content="Bottom Left"
 Margin="5" Grid.Row="2" Grid.Column="0"></Button>

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

52

 <Button Width="100" Height="30" Content="Bottom Right"
 Margin="5" Grid.Row="2" Grid.Column="2"></Button>

 </Grid>
</Grid>

 After the buttons are added, your application should look like Figure 3-14.

Figure 3-14. The grid with buttons in the four corners

Try It Out: Nesting a Grid and Spanning a Column
Next, you will nest another Grid control in the center cell of the Grid control you just added. This will
make the application layout somewhat complex, but it will also serve to show how Grid panels are
defined using XAML.

1. In the MainPage.xaml within the Ch3_GridPanel project, add the following
items:

• A Grid control positioned at Grid.Column=1 and Grid.Row=1

• Three RowDefinition and two ColumnDefinition elements

• Buttons in the four corners of the new Grid control, as you just did in the
outer Grid panel

2. The source code should look like the following:

<Grid x:Name="LayoutRoot" Background="White">

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

53

 <Grid ShowGridLines="True">

 <Grid.RowDefinitions>
 <RowDefinition Height="70" />
 <RowDefinition Height="*" />
 <RowDefinition Height="70" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="150" />
 </Grid.ColumnDefinitions>

 <Button Width="100" Height="30" Content="Top Left"
 Margin="5" Grid.Row="0" Grid.Column="0"></Button>
 <Button Width="100" Height="30" Content="Top Right"
 Margin="5" Grid.Row="0" Grid.Column="2"></Button>
 <Button Width="100" Height="30" Content="Bottom Left"
 Margin="5" Grid.Row="2" Grid.Column="0"></Button>
 <Button Width="100" Height="30" Content="Bottom Right"
 Margin="5" Grid.Row="2" Grid.Column="2"></Button>

 <Grid Grid.Column="1" Grid.Row="1" ShowGridLines="True">

 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Button Width="100" Height="30" Content="Nested Top Left"
 Margin="5" Grid.Row="0" Grid.Column="0"></Button>
 <Button Width="100" Height="30" Content="Nested Top Right"
 Margin="5" Grid.Row="0" Grid.Column="2"></Button>
 <Button Width="100" Height="30" Content="Nested B. Left"
 Margin="5" Grid.Row="2" Grid.Column="0"></Button>
 <Button Width="100" Height="30" Content="Nested B. Right"
 Margin="5" Grid.Row="2" Grid.Column="2"></Button>

 </Grid>

 </Grid>
</Grid>

3. At this point, your application should look like Figure 3-15. Now, this is a pretty
cool layout.

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

54

Figure 3-15. Nested grid with buttons

4. Notice that you have not placed anything in the two columns in the middle
row of the new grid. Here, you’re going to add a button that spans these two
columns, so the button will appear in the center of the row. In order to do this,
add the new button to the Grid control with the Grid.ColumnSpan attached
property set to 2. The source changes to the innermost Grid control are as
follows:

<Grid Grid.Column="1" Grid.Row="1" ShowGridLines="True">

 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Button Width="100" Height="30" Content="Nested Top Left"
 Margin="5" Grid.Row="0" Grid.Column="0"></Button>
 <Button Width="100" Height="30" Content="Nested Top Right"
 Margin="5" Grid.Row="0" Grid.Column="2"></Button>
 <Button Width="100" Height="30" Content="Nested B. Left"
 Margin="5" Grid.Row="2" Grid.Column="0"></Button>

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

55

 <Button Width="100" Height="30" Content="Nested B. Right"
 Margin="5" Grid.Row="2" Grid.Column="2"></Button>

 <Button Width="100" Height="30" Content="Nested Center"
 Margin="5" Grid.Row="1" Grid.Column="0"
 Grid.ColumnSpan="2"></Button>

</Grid>

5. Now that you have added the button to the center column, your application
should look like Figure 3-16. Notice how the button spans the two columns
and appears in the center. For experienced HTML developers who are used to
laying out their forms with tables, this approach should be very comfortable,
as it closely mimics using the colspan attribute for a <TD> tag.

Figure 3-16. Final application with a nested grid and buttons

In this example, you saw how to create a relatively complex layout using the Grid control. As you can
see, this is a very powerful and flexible layout tool for your Silverlight applications.

The WrapPanel Control
The WrapPanel control is a new control in Silverlight 3 that was previously available through the
Silverlight Toolkit. It is very similar to the StackPanel control with one major difference: when items in a
WrapPanel will not fit within the width or height of the control, they automatically wrap to a new row (if

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

56

horizontal orientation) or column (if vertical orientation). This makes the WrapPanel ideal for laying out
an unknown number of items as they will automatically wrap to take up the entire space of the control.

As an example, if you look at Figure 3-17 you will see how the WrapPanel will handle placing six items
when set to horizontal and vertical orientation. Horizontally, the WrapPanel will place the items one after
the other to the right, until no other items can fit within the width of the control. At that time, it will start
to place the items in a new row directly below the first row. The same is true for vertical orientation
except the items are stacked below the previous item until new items cannot fit within the height of the
control, at which time they will be place directly to the right of the previous row.

Figure 3-17. The WrapPanel control orientations

Try It Out: Using the WrapPanel Control
In this exercise, we will explore the WrapPanel control and how it can be used to display an unknown
number of items in stacks vertically and horizontally. Let’s get started.

1. Open Visual Studio 2008 and create a new Silverlight application called
Ch3_WrapPanel. Allow Visual Studio to create a web application to host the
application.

2. When the project is created, the file MainPage.xaml will be automatically
created and will be opened in the XAML designer. We are going to add two
rows to the root Grid control and then we will place a WrapPanel in the first row
and a button with the label Add New Item in the second row.

In order to get the proper XML namespace added for the WrapPanel, add it by
double-clicking on the control from the Toolbox in Visual Studio. That way
Visual Studio will automatically add the Xml namespace to the page. Once the
panel has been added, you can then modify the tag however you would like.

When you are finished adding the controls, your XAML should look like the
following code:

<UserControl
 x:Class="Ch3_WrapPanel.MainPage"
 xmlns:controls="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

57

 <RowDefinition />
 <RowDefinition Height="50" />
 </Grid.RowDefinitions>

 <controls:WrapPanel x:Name="wrapPanel" />

 <Button x:Name="addItem"
 Click="addItem_Click"
 Content="Add New Item"
 Grid.Row="1" />

 </Grid>
</UserControl>

3. Now we need to add the code behind the button click event. Right click on
addItem_Click in the XAML and choose “Navigate to Event Handler.” This will
take you to the code behind of MainPage.xaml. Add the following code within
the addItem_Click event handler.

private void addItem_Click(object sender, RoutedEventArgs e)
{
 Rectangle newRect = new Rectangle();
 newRect.Width = 50;
 newRect.Height = 50;
 newRect.Margin = new Thickness(5);
 newRect.Fill = new SolidColorBrush(Color.FromArgb(255, 0, 0, 0));

 wrapPanel.Children.Add(newRect);
}

4. We can now test the application. Once the application appears, start pressing
the Add New Item button and watch the items appear horizontally as well as
wrap to a new row when a new item cannot fit within the width of the control
(see Figure 3-18).

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

58

Figure 3-18. Completed Horizontal WrapPanel

5. At this point, you can then go into the XAML designer for MainPage.xaml, add
the property Orientation="Vertical" to the WrapPanel, and test the application
once again. This time you will notice that the items appear vertically and wrap
to new columns once they reach the maximum height, as shown in Figure 3-
19.

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

59

Figure 3-19. Completed Vertical WrapPanel

The DockPanel Control
The DockPanel control is also a new control in Silverlight 3 that was previously available through the
Silverlight Toolkit. It provides the ability to dock controls in all four directions: top, bottom, right, and left.
Consider Figure 3-20, which is a possible layout with the DockPanel control involving five controls. The first
two controls are docked in the left panel; the third control is docked in the top-center panel; the fourth
control is docked in the bottom-center panel; and the fifth control is docked in the right panel.

Figure 3-20. Possible layout with the DockPanel

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

60

To achieve this layout without the DockPanel would involve nested layout controls or a fairly complex
Grid control. The point is that the for certain situations the DockPanel can definitely be a very effective
control.

Try It Out: Using the DockPanel Control
In this exercise, we will explore the DockPanel control and how it can be used to layout controls docked
in different directions.

1. Open Visual Studio 2008 and create a new Silverlight application called
Ch3_DockPanel. Allow Visual Studio to create a web application to host the
application.

2. When the project is created, the file MainPage.xaml will be automatically
created and will be opened in the XAML designer. We will add a DockPanel to
the root Grid and then add buttons that are docked in different positions.

In order to get the proper XML namespace added for the DockPanel, add it by
double-clicking on the control from the Toolbox in Visual Studio. That way
Visual Studio will automatically add the Xml namespace and assembly
reference to the page. Once the panel has been added, you can then modify
the tag how you would like.

The default dock behavior is to dock the control left. However, if you want to
change that you can use the Dock extended property to change this behavior.
As an example to dock a control to the right, you would add the property
controls:DockPanel.Dock="Right" to the control. (Note that we included the
xmlns, attribute, which is required.)

When you are finished adding the controls, your XAML should look like the
following:

<UserControl
 x:Class="Ch3_DockPanel.MainPage"
 xmlns:controls="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <controls:DockPanel>
 <Button Content="Left Button" controls:DockPanel.Dock="Left" />
 <Button Content="Right Button" controls:DockPanel.Dock="Right" />
 <Button Content="Bottom Button" controls:DockPanel.Dock="Bottom" />
 </controls:DockPanel>
 </Grid>
</UserControl>

3. The result of this code should appear as shown in Figure 3-21.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

61

Figure 3-21. Buttons placed in the DockPanel

4. Notice that the last button placed in the DockPanel automatically fills the
remaining space. This is the default behavior of the DockPanel. However, if
you do not want the DockPanel to do this, simply add the LastChildFill
property set to False to the DockPanel.

<Grid x:Name="LayoutRoot" Background="White">
 <controls:DockPanel LastChildFill="False">
 <Button Content="Left Button" controls:DockPanel.Dock="Left" />
 <Button Content="Right Button" controls:DockPanel.Dock="Right" />
 <Button Content="Bottom Button" controls:DockPanel.Dock="Bottom" />
 </controls:DockPanel>
</Grid>

Once you have added this property, the result should appear as shown in
Figure 3-22.

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

62

Figure 3-22. Buttons placed in the DockPanel Without LastChildFill

5. The order in which you place the controls in the DockPanel determines how
they are docked with the other controls. For example, notice that button
labeled Bottom Button is docked around the left and right button, because they
were added earlier in the DockPanel. However, if we add another button to the
first button in the DockPanel and dock it to the top it will occupy the entire
width of the control.

<Grid x:Name="LayoutRoot" Background="White">
 <controls:DockPanel LastChildFill="False">
 <Button Content="Top Button" controls:DockPanel.Dock="Top" />
 <Button Content="Left Button" controls:DockPanel.Dock="Left" />
 <Button Content="Right Button" controls:DockPanel.Dock="Right" />
 <Button Content="Bottom Button" controls:DockPanel.Dock="Bottom" />
 </controls:DockPanel>
</Grid>

Once you have added this control, the result should appear as shown in Figure
3-23.

CHAPTER 3 ■ LAYOUT MANAGEMENT IN SILVERLIGHT 3

63

Figure 3-23. Buttons placed in the DockPanel with Top Dock

Summary
In this chapter, we explored the three layout controls that are available out of the box in Silverlight 3. We
looked at the Canvas, StackPanel, and Grid, WrapPanel, and DockPanel controls. In the next chapter, we
will take an in-depth look at the form controls that come bundled with Silverlight 3.

C H A P T E R 4

■ ■ ■

65

Silverlight 3 Controls

For those who have worked with Silverlight 1.0, one of the first observations you most likely made was
the lack of common controls such as the Button, TextBox, and ListBox. In fact, Silverlight 1.0 provided
only two basic controls: Rectangle and TextBlock. From these, the developers were expected to
implement all of the rich controls they needed. As you can imagine, it was quite a bit of work to create
all of the form controls using just these two base controls.

Since then, Microsoft’s vision of Silverlight has gone beyond basic animations to spark up your
applications and into the realm of feature-rich user interfaces (UIs). To this end, Silverlight 3 includes
a strong base of controls that you can use within your Silverlight applications.

In this chapter, you will first look at the Silverlight controls in general by examining control
properties and events. You will then take a brief tour of some of the more common form controls
included in Silverlight 3. This chapter is meant to provide a high-level introduction to these common
Silverlight controls. You will continue to work with the controls throughout the remainder of the book,
so you will see more specific usage scenarios.

Setting Control Properties
The most straightforward and simple way to set a property is by using attribute syntax. However, in
some cases, you will use element syntax.

Attribute Syntax
Most properties that can be represented as a simple string can be set using attribute syntax. Setting an
attribute in XAML is just like setting an attribute in XML. An XML element contains a node and
attributes. Silverlight controls are defined in the same way, where the control name is the node, and
the properties are defined as attributes.

As an example, you can easily use attribute syntax to set the Width, Height, and Content properties
of a Button control, as follows:

<Button Width="100" Height="30" Content="Click Me!"></Button>

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

66

Element Syntax
Element syntax is most commonly used when a property cannot be set using attribute syntax because
the property value cannot be represented as a simple string. Again, this is very similar to using
elements in XML. The following is an example of setting the background color of a button:

<Button Width="100" Height="30" Content="Click Me!">
 <Button.Background>
 <SolidColorBrush Color="Blue"/>
 </Button.Background>
 <Button.Foreground>
 <SolidColorBrush Color="Red"/>
 </Button.Foreground>
</Button>

Type-Converter-Enabled Attributes
Sometimes when defining a property via an attribute, the value cannot be represented as a simple
string—rather, it is converted to a more complex type. A common usage of a type- converter-enabled
attribute is Margin. The Margin property can be set as a simple string, such as in the following:

<Button Width="100" Content="Click Me!" Margin="15"></Button>

When you set the Margin property in this fashion, the left, right, top, and bottom margins are all set
to 15 pixels. What if you want to set the top margin to 15 pixels, but you want the other three margins to
be 0? In order to do that, you would set the Margin property as follows:

<Button Width="100" Content="Click Me!" Margin="0,15,0,0"></Button>

In this case, Silverlight takes the string "0,15,0,0" and converts it into a more complex type. The
string is converted to four values: left margin = 0, top margin = 15, right margin = 0, and bottom
margin = 0.

This type-conversion concept is not new to Silverlight. For those of you familiar with Cascading
Style Sheets (CSS), the same sort of structure exists. As an example, when you are defining a border
style, within the simple string value for a border, you are actually setting the thickness, color, and line
style. The following border assignment in CSS will set the border thickness to 1 pixel, the line style to
be solid, and the color to #333333 (dark gray):

border: 1px solid #333333;

Attached Properties
In Chapter 3, you learned how to set a control’s position within a Canvas panel by using attached
properties. An attached property is a property that is attached to parent control. In the Chapter 3’s
example, you specified the Button control’s position within the Canvas object by setting two attached
properties: Canvas.Top and Canvas.Left. These two properties reference the Button control’s parent,
which is the Canvas.

<Canvas>
 <Button Width="100" Content="Click Me!"
 Canvas.Top="10" Canvas.Left="13" />
</Canvas>

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

67

Nesting Controls Within Controls
When you first look at the controls included in Silverlight 2, you will probably feel pretty comfortable,
as they seem what would be expected. However, when you dig a bit deeper into the control features,
you will find that the controls are much more flexible and powerful than they first appear.

One of the key features of controls in Silverlight 2 is the ability to put just about anything within a
control. A Button control can contain a StackPanel, which can contain an Ellipse control and a
TextBlock control. There really are few limitations as to what the contents of a control can be. Figure
4-1 shows an example of a standard Silverlight 2 Button control containing a StackPanel, a nested
StackPanel, an Ellipse, a TextBlock, and a ListBox.

Figure 4-1. A Button control with nested controls

The following code was used to produce the control in Figure 4-1:

<Button Height="180" Width="200">
 <StackPanel Orientation="Vertical">
 <StackPanel Margin="5"
 VerticalAlignment="Center"
 Orientation="Horizontal">

 <Ellipse Fill="Yellow" Width="25" />
 <TextBlock VerticalAlignment="Center"
 Margin="5" Text="Check Forecast" />

 </StackPanel>
 <ListBox FontSize="11" Opacity="0.5"
 Margin="2" x:Name="lstForecastGlance">
 <ListBoxItem>
 <TextBlock VerticalAlignment="Center"
 Text="Mon: Sunny (85)" />
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock VerticalAlignment="Center"
 Text="Tue: Partly Cloudy (89)" />
 </ListBoxItem>

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

68

 <ListBoxItem>
 <TextBlock VerticalAlignment="Center"
 Text="Wed: Thunderstorms (78)" />
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock VerticalAlignment="Center"
 Text="Thu: Thunderstorms (76)" />
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock VerticalAlignment="Center"
 Text="Fri: Partly Cloudy (71)" />
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock VerticalAlignment="Center"
 Text="Sat: Mostly Sunny (74)" />
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock VerticalAlignment="Center"
 Text="Sun: Sunny (80)" />
 </ListBoxItem>
 </ListBox>
 </StackPanel>
</Button>

As the code shows, the example simply nests additional content within the Button control. As you
can imagine, this can be a very powerful feature.

Handling Events in Silverlight
As with other Microsoft programming frameworks, Silverlight provides an event mechanism to track
actions that take place within Silverlight 3 applications. Two types of actions are tracked within
Silverlight:

• Actions that are triggered based on some input from the user. Input actions are
handled and “bubbled” up from the browser to the Silverlight object model.

• Actions that are triggered based on a change of state of a particular object,
including the object’s state in the application. These actions are handled directly
from the Silverlight object model.

Event handlers are methods that are executed when a given event is triggered. You can define
event handlers either in the XAML markup itself or in managed code. The following exercises will
demonstrate how to define event handlers in both ways.

Try It Out: Declaring an Event in XAML
Let’s get started by defining event handlers within the XAML markup.

1. Open Visual Studio 2008 and create a new Silverlight project called
Ch4_EventHandlers. Allow Visual Studio to create a Web Site project to host the
application.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

69

2. When the project is created, you should be looking at the MainPage.xaml file. If
you do not see the XAML source, switch to that view so that you can edit the
XAML. Within the root Grid of the Silverlight page, add grid row and column
definitions (as explained in Chapter 3) to define four rows and two columns,
as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 <Grid.RowDefinitions>
 <RowDefinition Height="70" />
 <RowDefinition Height="70" />
 <RowDefinition Height="70" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
</Grid>

3. Next, add a Button control to the upper-left grid cell and a TextBlock control
in the upper-right cell.

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 <Grid.RowDefinitions>
 <RowDefinition Height="70" />
 <RowDefinition Height="70" />
 <RowDefinition Height="70" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <Button Width="125" Height="35" Content="XAML Event"></Button>
 <TextBlock Text="Click the XAML Event!" Grid.Column="1"
 VerticalAlignment="Center" HorizontalAlignment="Center" />
</Grid>

4. Add the Click property to the button. When you type Click=, Visual Studio
2008 will prompt you with the option of automatically creating a new event
handler, as shown in Figure 4-2. When the <New Event Handler> option is
displayed, simply press Enter, and Visual Studio will complete the Click
property, as follows:

<Button Width="125" Height="35"
 Content="XAML Event" Click="Button_Click" />

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

70

Figure 4-2. Visual Studio’s automatic creation of an event handler

In addition, Visual Studio automatically adds an event handler called
Button_Click to the code-behind class for the Silverlight application, as
follows:

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 }

 private void Button_Click(object sender, RoutedEventArgs e)
 {

 }
}

5. For this example, you will change the Text property within the TextBlock. In
order to do this, you first need to give the TextBlock a name so you can access
it from the code behind. Add the following code.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

71

<TextBlock Text="Click the XAML Event!" Grid.Column="1"
 VerticalAlignment="Center" HorizontalAlignment="Center"
 x:Name="txtXAMLEventText" />

6. Now change the Text property of the TextBlock within the Button_Click event,
as follows:

private void Button_Click(object sender, RoutedEventArgs e)
{
 txtXAMLEventText.Text = "Thank you for clicking!";
}

7. Run the application and click the XAML Event button. The text to the right of
the button will change to “Thank you for clicking.” Figures 4-3 and 4-4 show
the application before and after clicking the XAML Event button.

Figure 4-3. The TextBlock before the button is clicked

Now that you have seen how to define an event handler in the XAML markup, in the next exercise,
you will continue by adding another event handler using managed code.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

72

Figure 4-4. The TextBlock after the button is clicked

Try It Out: Declaring an Event Handler in Managed Code
Let’s continue with the project named Ch4_EventHandlers from the previous exercise. You’ll add
another button and wire up its event handler using managed code.

1. Add another button and TextBlock in the second row of the Grid, as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 <Grid.RowDefinitions>
 <RowDefinition Height="70" />
 <RowDefinition Height="70" />
 <RowDefinition Height="70" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

73

 <Button Width="125" Height="35" Content="XAML Event"
 Click="Button_Click"></Button>
 <TextBlock Text="Click the XAML Event!" Grid.Column="1"
 VerticalAlignment="Center" HorizontalAlignment="Center"
 x:Name="txtXAMLEventText" />

 <Button Width="125" Height="35" Content="Managed Event"
 Grid.Row="1" ></Button>
 <TextBlock Text="Click the Managed Event!" Grid.Column="1"
 VerticalAlignment="Center" HorizontalAlignment="Center"
 Grid.Row="1" />
</Grid>

2. In order to reference the new Button control in managed code, you must give
it and the TextBlock control a name, as shown in the following snippet:

 <Button Width="125" Height="35" Content="Managed Event"
 Grid.Row="1" x:Name="btnManaged" ></Button>
 <TextBlock Text="Click the Managed Event!" Grid.Column="1"
 VerticalAlignment="Center" HorizontalAlignment="Center"
 Grid.Row="1" x:Name="txtManagedEventText" />

Your page should now appear as shown in Figure 4-5.

Figure 4-5. The updated Silverlight page

Next, you need to add the event handler. Right-click the Silverlight page and
select View Code. This will switch to the code behind of the page.

From here, you will use the standard CLR language-specific syntax for adding
event handlers. Since you are using C#, the syntax is to use the += operator
and assign it to a new EventHandler. Visual Studio 2008 will help you with this.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

74

3. After the InitializeComponent() method call in the Page constructor, start typing
"this.btnManaged.Click +=". At this point, Visual Studio will display the message
“new RoutedEventHandler(bntManaged_Click); (Press TAB to insert),” as
shown in Figure 4-6. Press Tab to complete the event handler definition.

Figure 4-6. Visual Studio assisting with wiring up an event handler in managed code

4. Visual Studio will once again prompt you for the name of the event handler.
Go ahead and press Tab again to accept the default name. At this point, your
source should look like this:

namespace Ch4_EventHandlers
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 this.btnManaged.Click += new RoutedEventHandler(btnManaged_Click);
 }

 void btnManaged_Click(object sender, RoutedEventArgs e)

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

75

 {
 throw new NotImplementedException();
 }

 private void Button_Click(object sender, RoutedEventArgs e)
 {
 txtXAMLEventText.Text = "Thank you for clicking!";
 }
 }
}

5. Now the only thing left to do is add the code to the event handler. You will
notice that, by default, Visual Studio added code to automatically throw a
NotImplementedException. Remove that line and replace it with the following
line to change the TextBlock control’s text.

void btnManaged_Click(object sender, RoutedEventArgs e)
{
 txtManagedEventText.Text = "Thank you for clicking";
}

6. Run the application and click the Managed Event button. You will see the text
for the second TextBlock is updated to say “Thank you for clicking,” as shown
in Figure 4-7.

Figure 4-7. The result of the managed code event handler

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

76

This exercise demonstrated how to wire up an event handler using C# and managed code.
In the remainder of the chapter, we will take a tour of the more commonly used form controls in

Silverlight 2. Let’s start off by looking at the Border control.

The Border Control
The Border control provides a way to add a border and background to any one control in Silverlight.
Even though a border is applied to only one control, you can always place a border around a
StackPanel or Grid, and as a result include many controls within a border.

The syntax to add a Border control to your Silverlight project is very simple, as you can see from
the following example:

<UserControl x:Class="Ch4_BorderControl.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <Border BorderThickness="2" BorderBrush="Black" Margin="10">
 <StackPanel Margin="10">
 <Button Content="Sample Button" Margin="5" />
 <TextBlock Text="Sample TextBlock" Margin="5" />
 <ListBox Margin="5">
 <ListBoxItem>
 <TextBlock Text="ListItem 1" />
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock Text="ListItem 2" />
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock Text="ListItem 3" />
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock Text="ListItem 4" />
 </ListBoxItem>
 </ListBox>
 </StackPanel>
 </Border>
 </Grid>
</UserControl>

Figure 4-8 shows the results.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

77

Figure 4-8. Using the Border control

Another feature of the Border control is the ability to round the corners of the border using the
CornerRadius property. Here is how the preceding example could be modified to provide a Border
control with a CornerRadius property of 10.

<Border BorderThickness="2" BorderBrush="Black" Margin="10" CornerRadius="10">
 . . .
</Border>

The border with rounded corners is shown in Figure 4-9.
You can declare a background color for your border using the Background property. Like the

BorderBrush property, the Background property can be set to either a color or a brush type. Here is an
example of setting a border with a background color of silver:

<Border BorderThickness="2" BorderBrush="Black" Margin="10" CornerRadius="10"
 Background="Silver">
 . . .
</Border>

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

78

Figure 4-9. Border control with a CornerRadius property of 10

Figure 4-10 shows the result of adding the background color.

Figure 4-10. Border control with its background set to silver

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

79

The following is an example of a more complex Border control that contains a gradient for the
border and background, by using a Brush object.

<Border BorderThickness="2" Margin="10" CornerRadius="10">
 <Border.Background>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <GradientStop Color="Green" Offset="0" />
 <GradientStop Color="White" Offset="1" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Border.Background>
 <Border.BorderBrush>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <GradientStop Color="Black" Offset="0" />
 <GradientStop Color="White" Offset="1" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Border.BorderBrush>

 <StackPanel Margin="10">
 <Button Content="Sample Button" Margin="5" />
 <TextBlock Text="Sample TextBlock" Margin="5" />
 <ListBox Margin="5">
 <ListBoxItem>
 <TextBlock Text="ListItem 1" />
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock Text="ListItem 2" />
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock Text="ListItem 3" />
 </ListBoxItem>
 <ListBoxItem>
 <TextBlock Text="ListItem 4" />
 </ListBoxItem>
 </ListBox>
 </StackPanel>
</Border>

Figure 4-11 shows the border with the gradient applied.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

80

Figure 4-11. Border control with gradient brushes for the border and background

User Input Controls
One of the most common controls in applications is a text box, which is the standard control for
collecting basic string input from the user. Also ubiquitous are check boxes and radio buttons, which
allow users to select from a list of choices—more than one choice in the case of check boxes, and a
single choice in the case of radio buttons. Silverlight 2 provides the TextBox, CheckBox, and RadioButton
for these standard controls. The following exercises will also give you a chance to work with the
Ellipse and Rectangle controls.

Try It Out: Working with the TextBox Control
This exercise demonstrates the use of the TextBox control in Silverlight 2 by creating a simple
application that will request the red, green, and blue values to fill an ellipse with a given color. The
resulting application will appear as shown in Figure 4-12.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

81

Figure 4-12. Sample application using TextBox controls

1. In Visual Studio 2008, create a new Silverlight application named
Ch4_TextBox. Allow Visual Studio to create a Web Application project to host
your application.

2. In the MainPage.xaml file, within the root Grid element, add three
RowDefinition items, as follows:

<UserControl x:Class="Ch4_TextBox.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 <RowDefinition />
 </Grid.RowDefinitions>

 </Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

82

Add three TextBox and TextArea controls contained in a horizontal-oriented
StackPanel to the first row, a Button control to the second row, and an Ellipse
control to the third row. In addition, place a TextBlock in the third row to stack
on top of the Ellipse control for error-reporting purposes. Name each of the
TextBox controls, as well as the Button control and the TextBlock. These
additions are shown in the following code:

<UserControl x:Class="Ch4_TextBox.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>
 <RowDefinition Height="50" />
 <RowDefinition Height="50" />
 <RowDefinition />
 </Grid.RowDefinitions>

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
 <TextBlock VerticalAlignment="Center" Text="Red:" />
 <TextBox x:Name="txtRed"
 Height="24" Width="50" Margin="5" />
 <TextBlock VerticalAlignment="Center" Text="Green:" />
 <TextBox x:Name="txtGreen"
 Height="24" Width="50" Margin="5" />
 <TextBlock VerticalAlignment="Center" Text="Blue:" />
 <TextBox x:Name="txtBlue"
 Height="24" Width="50" Margin="5" />
 </StackPanel>

 <Button x:Name="btnTry" Content="Try Color"
 Grid.Row="1" Width="100" Height="24" />
 <Ellipse x:Name="ellipse" Grid.Row="2"
 Stroke="Black" StrokeThickness="5" Margin="20" />
 <TextBlock x:Name="lblColor" Grid.Row="2"
 HorizontalAlignment="Center" VerticalAlignment="Center"
 FontSize="20" FontFamily="Arial" FontWeight="Bold" />

 </Grid>
</UserControl>

Now add the Click event to the Button control. Do this in the code behind, as
explained earlier in try it out section “Declaring an Event in XAML.”

namespace Ch4_TextBox
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

83

 this.btnTry.Click += new RoutedEventHandler(btnTry_Click);
 }

 void btnTry_Click(object sender, RoutedEventArgs e)
 {

 }
 }
}

3. When the button is clicked, the application will change the Fill property of
the Ellipse control, which expects a SolidColorBrush. You can create the
SolidColorBrush using the Colors.FromArgb() method, which accepts four
arguments: one for opacity, and one byte each for the red, green, and blue
values. You will get the red, green, and blue values from the TextBox controls
using the Text property.

void btnTry_Click(object sender, RoutedEventArgs e)
{
 this.ellipse.Fill = new SolidColorBrush(
 Color.FromArgb(
 255,
 byte.Parse(this.txtRed.Text),
 byte.Parse(this.txtGreen.Text),
 byte.Parse(this.txtBlue.Text)
)
);
}

Since the values for red, green, and blue must be an integer from 0 to 255,
you can either validate them using Silverlight validation (refer to Chapter 7)
or take the easy way out and just wrap your code in a try/catch block, and
then report the error using the TextBlock. You’ll go with the latter approach
here. To keep things clean, you will make sure the error message is cleared if
all works correctly. Here is the updated code:

void btnTry_Click(object sender, RoutedEventArgs e)
{
 try
 {
 this.ellipse.Fill = new SolidColorBrush(
 Color.FromArgb(
 255,
 byte.Parse(this.txtRed.Text),
 byte.Parse(this.txtGreen.Text),
 byte.Parse(this.txtBlue.Text)
)
);

 this.lblColor.Text = "";
 }
 catch

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

84

 {
 this.lblColor.Text = "Error with R,G,B Values";
 }
}

4. Build and run the application to see what you get. Type 255, 0, and 0 in the
Red, Green, and Blue text boxes, respectively, and then click the Try Color
button. You should see the ellipse turn red. Just for the fun of it, if you leave
one of the values blank or enter a value other than 0 through 255, you will see
the error message.

Now that we have taken a quick look at the TextBox control, let’s turn our attention to two other
common controls: CheckBox and RadioButton.

Try It Out: Working with the RadioButton and CheckBox Controls
The following exercise will give you a first look at the RadioButton and CheckBox controls. You will build
a simple survey, as shown in Figure 4-13.

Figure 4-13. Sample application using the RadioButton and CheckBox controls

1. Create a new Silverlight application in Visual Studio 2008 and call it
Ch4_CheckBoxRadioButton. Allow Visual Studio to create a Web Site project to
host the application.

2. In the MainPage.xaml file, divide the root Grid into two rows. In each row,
place a StackPanel with vertical orientation and a Margin property set to 10.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

85

<UserControl x:Class="Ch4_CheckBoxRadioButton.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">

 <Grid x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <StackPanel Orientation="Vertical" Grid.Row="0" Margin="10">
 </StackPanel>

 <StackPanel Orientation="Vertical" Grid.Row="1" Margin="10">
 </StackPanel>

 </Grid>

</UserControl>

The top row will be used to demonstrate the use of the RadioButton control,
and the bottom row will feature the CheckBox control. Let’s begin with the
RadioButton.

The RadioButton control allows users to select only one selection out of a
number of RadioButton controls that share the same group name. This is set
using the RadioButton’s Grouping property.

Although you could simply type in each of the color choices for the radio
buttons as text using the Content property, I thought it would be less boring to
use colored rectangles instead. As we discussed earlier in the section
“Nesting Controls Within Controls”, one of the benefits of Silverlight 2
controls is that you can nest just about anything within the different controls.
This is just another example of that flexibility.

3. Place five RadioButton controls in the first StackPanel, each with a Rectangle
control of a different color. For the group name, use FavoriteColor. To make
the content of the RadioButton controls display as left-justified, set the
HorizontalAlignment property to Left for each one. Here is the code:

<StackPanel Orientation="Vertical" Grid.Row="0" Margin="10">

 <TextBlock Text="What is your favorite color?" />
 <RadioButton HorizontalAlignment="Left" GroupName="FavoriteColor">
 <Rectangle Width="100" Height="10" Fill="Red" />
 </RadioButton>
 <RadioButton HorizontalAlignment="Left" GroupName="FavoriteColor">
 <Rectangle Width="100" Height="10" Fill="Blue" />
 </RadioButton>
 <RadioButton HorizontalAlignment="Left" GroupName="FavoriteColor">
 <Rectangle Width="100" Height="10" Fill="Green" />
 </RadioButton>
 <RadioButton HorizontalAlignment="Left" GroupName="FavoriteColor">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

86

 <Rectangle Width="100" Height="10" Fill="Yellow" />
 </RadioButton>
 <RadioButton HorizontalAlignment="Left" GroupName="FavoriteColor">
 <Rectangle Width="100" Height="10" Fill="Purple" />
 </RadioButton>

</StackPanel>

Next, do the same for the CheckBox controls in the bottom row, except here, just
go the boring route and supply the choices as text. In addition, CheckBox
controls are left-justified by default, and they do not need to be grouped.
Here is the code for the CheckBox portion:

<StackPanel Orientation="Vertical" Grid.Row="1" Margin="10">

 <TextBlock Text="What Technologies are you familiar with?" />
 <CheckBox Content="Silverlight" />
 <CheckBox Content="ASP.NET" />
 <CheckBox Content="Visual Studio 2008" />
 <CheckBox Content="Expression Blend 2" />

</StackPanel>

4. Go ahead and run the solution to see the end result as it will appear in the
browser. The output is shown in Figure 4-14. Notice that, as you would expect,
you are able to select only one radio button at a time, but you can click as
many check boxes as you wish.

Figure 4-14. Creating the RadioButton and CheckBox application

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

87

Extended Controls
When a Silverlight application is deployed, it goes into an .xap file. This file will need to be
downloaded by every client that accesses the Silverlight application.

A big benefit of Silverlight is that the size of this .xap file is kept very small. One reason this file
can be small is that the most commonly used controls are included in the Silverlight Runtime, which is
already present on every machine with Silverlight installed.

However, Silverlight provides a number of controls beyond this commonly used set of controls.
These controls are included in two separate assemblies: System.Windows.Controls.dll and
System.Windows.Controls.Data.dll. These dynamic link libraries (DLLs) will be included in the
application .xap file only if the developer used a control from one of these extended control sets in
that application.

Adding an Extended Control
When a developer uses a control from one of the other control libraries, an additional xmlns
declaration will be added in the UserControl definition. This xmlns will have a prefix associated with it
that will then be used to reference the individual controls.

For example, if you add a DataGrid to your Silverlight application in Visual Studio, your source will
appear as follows:

<UserControl
 xmlns:data=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data"
 x:Class="SilverlightApplication1.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <data:DataGrid></data:DataGrid>
 </Grid>
</UserControl>

Notice the additional xmlns declaration pointing to the System.Windows.Controls namespace
within the System.Windows.Controls.Data assembly.

■ Tip To view which controls belong to which assemblies, first create a new Silverlight application and add a
DataGrid and GridSplitter to the root Grid. Then select View ~TRA Object Browser from the Visual Studio 2008

main menu. From the Object Browser’s Browse drop-down list (in the top-left corner), select My Solution and
browse the listing for three assemblies: System.Windows, System.Windows.Controls.Data, and
System.Windows.Controls. Within each of those assemblies, drill down to the System.Windows.Controls

namespace in order to see all of the controls that reside in that assembly.

Now we will work through an exercise using one of the controls in the System.Windows.Controls
assembly.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

88

Try It Out: Using the GridSplitter
One of the controls that resides in the System.Windows.Controls assembly is the GridSplitter. This
control provides the ability for a user to change the width of a column or row in an application. If used
properly, the GridSplitter can greatly improve the appearance of your application, as well as the user
experience. In the following exercise, you will implement a simple GridSplitter.

1. Create a new Silverlight application in Visual Studio 2008 called
Ch4_GridSplitter. Allow Visual Studio to create a Web Site project to host the
application.

2. In the MainPage.xaml file, divide the root Grid into two columns. The first
column should be 150 pixels in width, and the second should take up the
remainder of the application. To be able to see what is going on in the grid,
set ShowGridLines to True. Also add two TextBlock controls to the application:
one in the first column and one in the second column. Your source should
appear as follows:

<UserControl x:Class="Ch4_GridSplitter.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <TextBlock Text="Apress, Inc." />
 <TextBlock Grid.Column="1"
 Text="Beginning Silverlight 2 by Robert Lair" />
 </Grid>
</UserControl>

At this point, your Silverlight application should look like Figure 4-15.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

89

Figure 4-15. The setup for the GridSplitter example

Notice that you cannot see all of the text in the second column. Let’s add a
GridSplitter control to the application so users can resize the two columns to
be able to view all the text in both columns.

3. Within the XAML, place the cursor just below the TextBlock definitions you
added. Then, in the Visual Studio Toolbox, double-click the GridSplitter
control. This will add the xmlns to the System.Windows.Controls assembly, and
it will also add the GridSplitter to the application. Then set the Background
property of the GridSplitter to LightGray. The source appears as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <TextBlock Text="Apress, Inc." />
 <TextBlock Grid.Column="1"
 Text="Beginning Silverlight 2 by Robert Lair" />

 <basics:GridSplitter Background="LightGray"></basics:GridSplitter>

</Grid>

You no longer need to see the grid lines, so remove the ShowGridLines
property.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

90

4. Run the application. It should look similar to Figure 4-16. Notice that you can
now click and drag the GridSplitter to resize the two Grid columns.

Figure 4-16. The completed GridSplitter application

As you can see, it’s quite easy to gain the rich functionality of a grid splitter in your application
with the Silverlight GridSplitter control.

AutoCompleteBox
The AutoCompleteBox is a new control available in Silverlight 3 that was previously included in the
Silverlight Toolkit. Its functionality is nothing new to users, as the auto-complete textboxes have been
around for many years. As you start typing in a textbox, a number of items that fit what you are typing
are displayed below it. You can then pick an item from list instead of having to finish typing it yourself.
The AutoCompleteBox in Silverlight is contained in the Silverlight.Windows.Controls namespace and
located in the Silverlight.Windows.Controls.Input assembly. This means in order to use the control,
you must add an xmlns entry, as we discussed in the previous section.

xmlns:input="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Input"

To define an AutoCompleteBox in XAML is no different than defining other controls, such as the Button.

<input:AutoCompleteBox x:Name="Color" />

In the code behind, you can then easily add the items that are displayed when the user types by binding
a collection to the ItemsSource property. As an example we can bind to a simple string array
containing colors.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

91

public MainPage()
{
 InitializeComponent();
 this.Color.ItemsSource = new string[]
 {
 "aqua", "azure", "beige", "black", "blue", "brown", "cyan",
 "gold", "gray", "ivory", "lime", "magenta", "maroon", "navy",
 "olive", "orange", "pink", "purple", "red", "tan", "teal",
 "violet", "wheat", "white", "yellow"
 };
}
When this control is displayed and a user starts to type in the textbox, you will see that the colors
matching the typed text are displayed below in a list, as shown in Figure 4-17.

Figure 4-17. The AutoCompleteBox

Another thing you may have noticed is that many times when you see an autocomplete textbox, it will
automatically complete the text for you as you type. This is controlled by the property
IsTextCompletionEnabled, which by default is set to False.

<input:AutoCompleteBox x:Name="Color"
 IsTextCompletionEnabled="True" />
Once this property has been set, you will see that the text will automatically complete as you type, as
shown in Figure 4-18.

Figure 4-18. The AutoCompleteBox with IsTextCompletionEnabled set to true

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

92

ViewBox
The ViewBox is another new control available in Silverlight 3 that was previously included in the
Silverlight Toolkit. Any content placed within the ViewBox are automatically sized to fill the entire
ViewBox. This can be ideal if you want to automatically position things the way you want within the
ViewBox. When you need items to change size, instead of changing each item individually, you can
simply change the size of the ViewBox and all items are automatically resized to fit. As a quick example
of using the ViewBox, consider a simple scenario of an icon and text under the icon, as shown in Figure
4-19.

<StackPanel>
 <Image Source="/bookmark.png" />
 <TextBlock Text="Star" FontSize="30"
 HorizontalAlignment="Center" />
</StackPanel>

Figure 4-19. Default icon and text label

If you want to resize these two items without a ViewBox, you would need to change the size of each
item. However, by placing the two items within a ViewBox, all you need to do is resize the ViewBox
itself. To demonstrate this, you place the same source for the icon and text in three different sized
ViewBox controls.

<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
 <controls:Viewbox Width="40" Margin="5">
 <StackPanel>
 <Image Source="/bookmark.png" />
 <TextBlock Text="Star" FontSize="30"
 HorizontalAlignment="Center" />
 </StackPanel>
 </controls:Viewbox>
 <controls:Viewbox Width="100" Margin="5">
 <StackPanel>
 <Image Source="/bookmark.png" />
 <TextBlock Text="Star" FontSize="30"
 HorizontalAlignment="Center" />
 </StackPanel>
 </controls:Viewbox>
 <controls:Viewbox Width="200" Margin="5">
 <StackPanel>

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

93

 <Image Source="/bookmark.png" />
 <TextBlock Text="Star" FontSize="30"
 HorizontalAlignment="Center" />
 </StackPanel>
 </controls:Viewbox>
</StackPanel>

The result of this code is shown in Figure 4-20. As you can see, the icon and text are resized to fit each
ViewBox and the proportion and positioning is maintained.

Figure 4-20. Icon and Text Label within three ViewBox controls

Modal Windows
A new feature added in Silverlight 3 is the Modal Child Window. This provides functionality to pop
up a window that disables the rest of the application until the window is closed, something that is
very common in Windows desktop development.The Silverlight Modal window’s visual appearance
and content is defined by XAML just like everything else in Silverlight, which gives the developer a
lot of control.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

94

REFACTORING THE CHILD WINDOW

■ Note Out of the box, the Child Window can only operate as a modal dialog, which means that it has to
disable the content of the application while it is open. However, some of you may prefer to have the option
to allow the child window to behave more like a standard window. Good news! The Child Window was
developed out of the Silverlight Toolkit project on CodePlex, and as a result, you have access to the entire
source code under MsPL license. You can download the source from http://www.codeplex.com/silverlight
and make any modifications you would like, including refactoring the Child Window to not only operate as
a modal dialog, but also as a standard floating and draggable window.

To show a modal dialog, you will create an instance of the window and call its Show() method. The
Show() method is an asynchronous call, and it returns immediately. Therefore, you will not be able to
get the result from the dialog using this method. Instead, you need to handle the Closed event from the
window and check the DialogResult there.

Confirm confirmDlg = new Confirm();
confirmDlg.Closed += new EventHandler(confirmDlg_Closed);
confirmDlg.Show();

void confirmDlg_Closed(object sender, EventArgs e)
{
 Confirm confirmDlg = (Confirm)sender;
 if (confirmDlg.DialogResult == true)
 {
 // User Clicked OK
 }
 else if (confirmDlg.DialogResult = false)
 {
 // User Clicked Cancel
 }
}

Note that the DialogResult is not a standard Boolean type, it is a nullable Boolean. Therefore, there are
three possible values: true, false, and null. In C#, a nullable Boolean is specified with the syntax bool?.

void confirmDlg_Closed(object sender, EventArgs e)
{
 Confirm confirmDlg = (Confirm)sender;
 bool? Result = confirmDlg.DialogResult;
}

In addition to simply getting a true/false/null response from the Child Window, you can implement your
own properties that can be passed from the dialog. To retrieve these property values, in the Closed()
event handler you cast the sender object to your Child Window’s type and simply access the property.

void confirmDlg_Closed(object sender, EventArgs e)
{
 Confirm confirmDlg = (Confirm)sender;
 string myPropValue = confirmDlg.MyProperty;
}

Let’s run through a quick exercise to show how to create a modal popup window in Silverlight.

http://www.codeplex.com/silverlight

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

95

Try It Out: Using the Modal Child Window
In this exercise, you will create a simple registration form that accepts a first and last name. When the
user presses on the button to register button, a modal window will appear with a terms and conditions
notice that users must agree to before proceeding. You will not fully code the registration form, but
rather you will just send a result to a TextBlock so you can see what is going on. Let’s get started.

1. Create a new Silverlight application in Visual Studio 2008 called
Ch4_ModalWindow. Allow Visual Studio to create a Web Application project to
host the application.

2. In the MainPage.xaml file, divide the root Grid into five rows and two columns.
The first four rows should be 40 pixels in height, and the fifth row should take
up the remainder of the application. The first column should be 150 pixels in
width, and the second should take up the remainder of the application.

<Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition Height="40" />
 <RowDefinition Height="40" />
 <RowDefinition Height="40" />
 <RowDefinition Height="40" />
 <RowDefinition />
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
</Grid>

3. In the first row, add a TextBlock for a header with the Text “Register for a new
Account” that spans both columns. In the second row, add a TextBlock in the
first column with the Text “First Name”, and add a TextBox in the second
column. Add some Margin and Padding to improve the appearance.

<Grid x:Name="LayoutRoot" Background="White">
 …

 <TextBlock Text="Register for a New Account"
 FontSize="20"
 FontWeight="Bold"
 Margin="5"
 Grid.ColumnSpan="2" />

 <TextBlock Padding="5"
 Margin="5"
 Text="First Name"
 FontSize="12"
 Grid.Row="1" />

 <TextBox Padding="5"
 Margin="5"

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

96

 FontSize="12"
 Grid.Column="1"
 Grid.Row="1" />

</Grid>

4. In the third row, add another TextBlock in the first column with the Text “Last
Name”, and add a TextBox in the second column. Add some Margin and
Padding to improve the appearance. In the fourth row, add a Button to the
second column with the Text “Register”. Finally, in the fifth row, add a
TextBlock to the second column with the Text blank. Name the TextBlock
“Result.” Your XAML should now appear like the following code, as shown in
Figure 4-21.

<Grid x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>
 …
 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>
 …
 </Grid.ColumnDefinitions>

 <TextBlock Text="Register for a New Account"
 FontSize="20"
 FontWeight="Bold"
 Margin="5"
 Grid.ColumnSpan="2" />

 <TextBlock Padding="5"
 Margin="5"
 Text="First Name"
 FontSize="12"
 Grid.Row="1" />

 <TextBox Padding="5"
 Margin="5"
 FontSize="12"
 Grid.Column="1"
 Grid.Row="1" />

 <TextBlock Padding="5"
 Margin="5"
 Text="Last Name"
 FontSize="12"
 Grid.Row="2" />

 <TextBox Padding="5"
 Margin="5"
 FontSize="12"
 Grid.Column="1"
 Grid.Row="2" />

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

97

 <Button Content="Register"
 Padding="5"
 Margin="5"
 FontSize="12"
 Grid.Column="1"
 Grid.Row="3"
 Click="Button_Click" />

 <TextBlock Text=""
 FontSize="14"
 FontWeight="Bold"
 Grid.Column="1"
 Grid.Row="4"
 Margin="5"
 x:Name="Result" />

</Grid>

Figure 4-21. Modal window example with finished XAML layout

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

98

5. Now that you have the main form laid out, you will now turn your attention to
the Child Window. To add a Child Window to the project, right click on the
Silverlight project (Ch4_ModalWindow) and select Add New Item. From the
Add New Item dialog, select Silverlight Child Window and name the window
Confirm.xaml, as shown in Figure 4-22.

Figure 4-22. Adding a Silverlight Child Window

6. When the Child Window has been added to the project, it will contain the
following XAML by default.

<controls:ChildWindow x:Class="Ch4_ModalWindow.Confirm"
 …
 Width="400" Height="300"
 Title="Confirm">

 <Grid x:Name="LayoutRoot" Margin="2">

 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <Button x:Name="CancelButton"
 Content="Cancel" Click="CancelButton_Click"
 Width="75" Height="23" HorizontalAlignment="Right"
 Margin="0,12,0,0" Grid.Row="1" />

 <Button x:Name="OKButton"
 Content="OK" Click="OKButton_Click"

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

99

 Width="75" Height="23" HorizontalAlignment="Right"
 Margin="0,12,79,0" Grid.Row="1" />

 </Grid>

</controls:ChildWindow>

Notice that there are already two buttons added for you, one for Cancel and
one for OK. If you look at the code behind for the window, you will also see that
some code is already present.

namespace Ch4_ModalWindow
{
 public partial class Confirm : ChildWindow
 {
 public Confirm()
 {
 InitializeComponent();
 }

 private void OKButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = true;
 }

 private void CancelButton_Click(object sender, RoutedEventArgs e)
 {
 this.DialogResult = false;
 }
 }
}

Two event handlers, one for each button, have been wired up, however you
will notice that the only code is simply setting the DialogResult property on
the window. In the property setter, it will automatically set the response and
will execute the dialog’s Close() method, so that is all the code you need.

7. For now, you will leave the Child Window as-is, but you need to call it from
the Silverlight application. Open the MainPage.xaml.cs code behind file. Add
the Button_Click event as well the code to create an instance of the Child
Window and execute the Show() method.

private void Button_Click(object sender, RoutedEventArgs e)
{
 Confirm confirmDlg = new Confirm();
 confirmDlg.Show();
}

Go ahead and run the application and press the Register button. You will see
that the Child Window appears, as shown in Figure 4-23. You can drag the
window, but notice that the main user interface for your application is
inaccessible. Click OK or Cancel and you will notice that the Child Window
closes and the application’s user interface is once again functioning.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

100

Figure 4-23. The default Child Window

8. Very cool, but let’s not stop there. You can now modify the Child Window to
show that its content can be customized however you like by editing the
window’s XAML. To do this, open the Confirm.xaml file in XAML design mode.
Change the Title of the window to “Terms and Conditions.” Let’s also change
the size of the Window to be 200 pixels in height. In addition, you will change
the Text of the two button to read “I Accept” and “I Do Not Accept.” Because
you are changing the text, you must also adjust the width of the buttons and
the margins. (Note that you can just as easily put these two buttons in a
Horizontal StackPanel instead of spacing them using Margins.) Finally, you
will add two TextBlock controls to the first row of the root Grid for the header,
and one below it for the terms and conditions text. Your updated XAML
should now appear similar to the following.

<Grid x:Name="LayoutRoot" Margin="2">

 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>

 <StackPanel>

 <TextBlock Text="Please Accept the Terms and Conditions to Continue"
 FontWeight="Bold" FontSize="12" />

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

101

 <TextBlock Text="These are the terms and conditions..." />

 </StackPanel>

 <Button x:Name="CancelButton"
 Content="I Do Not Accept" Click="CancelButton_Click"
 Width="125"
 Height="23" HorizontalAlignment="Right"
 Margin="0,12,0,0" Grid.Row="1" />

 <Button x:Name="OKButton"
 Content="I Accept" Click="OKButton_Click"
 Width="100"
 Height="23" HorizontalAlignment="Right"
 Margin="0,12,134,0" Grid.Row="1" />

</Grid>

9. Go ahead and run the application again and press the Register button to open
the Child Window. Notice that the content changes are reflected, as shown in
Figure 4-24. Keep in mind that the content of these window controls are
completely customizable with XAML. You can add whatever controls you wish
with any layout you wish.

Figure 4-24. The modified Child Window

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

102

10. Now let’s add code to retrieve results from the dialog. Open the
MainPage.xaml.cs file and within the Button_Click event handler, wire up
another event handler for the Child Window’s Closed() event. In this new
event handler, you need to get the Child Window’s instance, which is sent to
the handler in the sender object. Once you have the window’s instance, you
can retrieve the DialogResult property, which will contain either true, false,
or null.

private void Button_Click(object sender, RoutedEventArgs e)
{
 Confirm confirmDlg = new Confirm();
 confirmDlg.Closed += new EventHandler(confirmDlg_Closed);
 confirmDlg.Show();
}

void confirmDlg_Closed(object sender, EventArgs e)
{
 Confirm confirmDlg = (Confirm)sender;

 if (confirmDlg.DialogResult == true)
 {
 this.Result.Text = "Terms and Conditions Accepted";
 }
 else if (confirmDlg.DialogResult == false)
 {
 this.Result.Text = "Terms and Conditions Not Accepted";
 }
}

11. Run the application. Press the Register button to display the Child Window.
Press the I Accept button from the Child Window. You will see that the Result
TextBlock is updated to read “Terms and Conditions Accepted,” as shown in
Figure 4-25.

CHAPTER 4 ■ SILVERLIGHT 3 CONTROLS

103

Figure 4-25. Retrieving the DialogResult from a Child Window

Summary
In this chapter, you took a brief look at some of the common form controls that are provided with
Silverlight. In addition, you looked at how to use a modal window in Silverlight, a feature new to
Silverlight 3. The chapter was meant only as an introduction to the controls. You will be looking at
these controls in more advanced capacities in the upcoming chapters.

In the next chapter, you will look at the Silverlight list controls: ListBox and DataGrid.

C H A P T E R 5

■ ■ ■

105

Data Binding and Silverlight
List Controls

The previous chapter focused on the form controls contained in Silverlight. In this chapter, you will look
at two controls that are made to display lists of data: the ListBox and DataGrid. These controls are
typically bound to data through a technique known as data binding, which I’ll explore first.

Data Binding
Through data binding, UI elements (called targets) are “bound” to data from a data source (called the
source), as illustrated in Figure 5-1. When the data sources change, the UI elements bound to those data
sources update automatically to reflect the changes. The data can come from different types of sources,
and the target can be just about any UI element, including standard Silverlight controls.

Figure 5-1. Data binding in Silverlight

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

106

Data binding simplifies application development. Since changes are reflected automatically, you do
not need to manually update the UI elements. Also, by using data binding, you are able to separate the
UI from the data in your application, which allows for a cleaner UI and easier maintenance.

The Binding Class
Data binding in Silverlight is accomplished by using the Binding class. The Binding class has two
components—the source and target—and a property that defines the way the two are bound, called the
binding mode. The source is the data that is to be bound, the target is a property of the control that the
data is to be bound to, and the mode defines how the data is passed between the source and the target
(one-way, one-time, or two-way). You’ll see how this works in the upcoming exercise.

To define the binding of a control’s property, you use XAML markup extensions, such as {Binding
<path>}. For example, to bind the Text property of a TextBox to a data source’s FirstName element, you
would use the following XAML:

<TextBox Text="{Binding FirstName }" />

Try It Out: Simple Data Binding in Silverlight
To help explain data binding in Silverlight, let’s build a very simple application. The application will
include a Book object that contains two properties: Title and ISBN. These properties will be bound to two
TextBox controls. Figure 5-2 shows the end result of the example.

Figure 5-2. Simple data binding example

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

107

1. Create a new Silverlight application in Visual Studio 2008. Name the project
BasicDataBinding, and allow Visual Studio to create a Web Site project to host
your application.

2. Edit the MainPage.xaml file to define two columns and six grid rows. Place a
TextBlock in each row in column 1 and a TextBox in each row in column 2. Also
add some margins and some alignment assignments to improve the layout.
The code for the page follows:

<UserControl x:Class="BasicDataBinding.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">

 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <TextBlock Text="Book Title"
 VerticalAlignment="Center"
 Margin="5" />
 <TextBlock Text="ISBN-13"
 VerticalAlignment="Center"
 Margin="5"
 Grid.Row="1" />

 <TextBox Text="{Binding Title}"
 Height="24"
 Margin="5"
 Grid.Column="1" />
 <TextBox Text="{Binding ISBN}"
 Height="24"
 Margin="5"
 Grid.Column="1" Grid.Row="1" />

 <TextBlock Text="Book Title"
 VerticalAlignment="Center"
 Margin="5"
 Grid.Row="2" />
 <TextBlock Text="ISBN-13"
 VerticalAlignment="Center"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

108

 Margin="5"
 Grid.Row="3" />

 <TextBox Text="{Binding Title}"
 Height="24"
 Margin="5"
 Grid.Column="1" Grid.Row="2" />
 <TextBox Text="{Binding ISBN}"
 Height="24"
 Margin="5"
 Grid.Column="1" Grid.Row="3" />

 </Grid>
</UserControl>

3. Next, edit the code behind, MainPage.xaml.cs. Add a Loaded event handler for
the application, which will fire when the application is loaded by the client.
This is accomplished with the following source code:

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {

 }
}

Now you need to add a class to define a Book object. Below the MainPage class,
add the following class definition:

namespace BasicDataBinding
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {

 }
 }

 public class Book

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

109

 {
 public string Title { get; set; }
 public string ISBN { get; set; }
 }
}

4. Now that you have Book defined, you need to create an instance of Book and set
it to the LayoutRoot’s DataContext, as follows:

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 Book b = new Book() {
 Title = "Beginning Silverlight 3: From Novice to Professional",
 ISBN = "978-1590599525" };

 this.LayoutRoot.DataContext = b;
 }

When you set up binding definitions for different controls, the controls do not
know where they are going to get their data. The DataContext property sets the
data context for a control that is participating in data binding. The DataContext
property can be set directly on the control. If a given control does not have a
DataContext property specified, it will look to its parent for its data context. The
nice thing about this model is that if you look above in the XAML for the page,
you will see little indication of where the controls are getting their data. This
provides an extreme level of code separation, allowing designers to design XAML
UIs and developers to work alongside the designers, defining the specifics of
how the controls are bound to their data sources.

5. At this point, you can go ahead and start debugging the application. If all goes
well, you will see the four text boxes populated with the data from the Book’s
instance (see Figure 5-2).

6. With the application running, change the book title in the first text box to just
“Beginning Silverlight,” by removing the “From Novice to Professional.”

You might expect that, since the third text box is bound to the same data, it will
automatically update to reflect this change. However, a couple of things need
to be done to get this type of two-way binding to work.

One problem is that, currently, the Book class does not support notifying
bound clients of changes to its properties. In other words, when a property
changes in Book, the class will not notify the TextBox instances that are bound
to the class of the change. You could take care of this by creating a change
event for each property. This is far from ideal; fortunately, there is an interface
that a class can implement that handles this for you. This interface is known as
INotifyPropertyChanged. Let’s use it.

7. Modify the Book class definition to inherit from INotifyPropertyChanged.
Notice that when you inherit from INotifyPropertyChanged, you need to add
using System.ComponentModel. Luckily, Visual Studio will help you with this, as
shown in Figure 5-3.

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

110

Figure 5-3. Visual Studio assists when you need to add the System.ComponentModel namespace.

Next, you can let Visual Studio do some more work for you. After adding the
using System.ComponentModel statement, right-click INotifyPropertyChanged
and choose the Explicitly implement interface INotifyPropertyChanged option,
as shown in Figure 5-4.

Figure 5-4. Visual Studio also assists in implementing the INotifiyPropertyChanged interface.

Now Visual Studio has added a new public event to your class:

public class Book : INotifyPropertyChanged
{
 public string Title { get; set; }
 public string ISBN { get; set; }

 #region INotifyPropertyChanged Members

 public event PropertyChangedEventHandler PropertyChanged;

 #endregion
}

8. Next, you need to create a convenience method that will fire the
PropertyChanged event. Call it FirePropertyChanged, as shown in the following
code.

public class Book : INotifyPropertyChanged
{
 public string Title { get; set; }
 public string ISBN { get; set; }

 #region INotifyPropertyChanged Members

 void FirePropertyChanged(string property)

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

111

 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(property));
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

 #endregion
}

9. Now you need to extend the simplified properties by adding private members
and full get/set definitions to define the get and set operations, as shown in
the following code. The get is just like a normal get operation, where you
simply return the internal member value. For the set, you first set the internal
member value, and then call the FirePropertyChanged method, passing it the
name of the property.

public class Book : INotifyPropertyChanged
{
 private string _title;
 private string _isbn;

 public string Title
 {
 get
 {
 return _title;
 }
 set
 {
 _title = value;
 FirePropertyChanged("Title");
 }
 }

 public string ISBN
 {
 get
 {
 return _isbn;
 }
 set
 {
 _isbn = value;
 FirePropertyChanged("ISBN");
 }
 }

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

112

 #region INotifyPropertyChanged Members

 void FirePropertyChanged(string property)
 {
 if (PropertyChanged != null)
 {
 PropertyChanged(this,
 new PropertyChangedEventArgs(property));
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;

 #endregion
}

With this completed, your class is set up to notify bound clients of changes to
the Title and ISBN properties. But you still need to take one more step. By
default, when you bind a source to a target, the BindingMode is set to OneWay
binding, which means that the source will send the data to the target, but the
target will not send data changes back to the source. In order to get the target
to update the source, you need to implement two-way (TwoWay) binding.

■ Note Earlier, I mentioned that there are three options for BindingMode. The third option is OneTime binding. In
this mode, the values are sent to the target control property when the object is set to the DataContext. However,

the values of the target property are not updated when the source value changes.

10. To change to two-way binding, add the Mode=TwoWay parameter when defining
the {Binding} on a control, as follows:

<TextBlock Text="Book Title"
 VerticalAlignment="Center"
 Margin="5" />
<TextBlock Text="ISBN-13"
 VerticalAlignment="Center"
 Margin="5"
 Grid.Row="1" />

<TextBox Text="{Binding Title, Mode=TwoWay}"
 Height="24"
 Margin="5"
 Grid.Column="1" />
<TextBox Text="{Binding ISBN, Mode=TwoWay }"
 Height="24"
 Margin="5"
 Grid.Column="1" Grid.Row="1" />

<TextBlock Text="Book Title"

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

113

 VerticalAlignment="Center"
 Margin="5"
 Grid.Row="2" />
<TextBlock Text="ISBN-13"
 VerticalAlignment="Center"
 Margin="5"
 Grid.Row="3" />

<TextBox Text="{Binding Title, Mode=TwoWay }"
 Height="24"
 Margin="5"
 Grid.Column="1" Grid.Row="2" />
<TextBox Text="{Binding ISBN, Mode=TwoWay }"
 Height="24"
 Margin="5"
 Grid.Column="1" Grid.Row="3" />

11. Rebuild and run your application. Update any of the fields, and leave the focus
on the control. You’ll see that the two-way binding is triggered, and the
corresponding field is also updated, as shown in Figure 5-5.

Figure 5-5. Two-way binding in action

Congratulations! You have just created a Silverlight application that allows for two-way data
binding. We will now move on to look at data binding lists of data to the two list controls provided in
Silverlight: DataGrid and ListBox.

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

114

Element to Element Binding
In addition to binding to data, elements can be bound directly to other elements, which can significantly
improve the readability and efficiency of your code. The syntax for binding to an element is very similar
to binding to a data item, the only difference is that in the binding an ElementName is specified, which
is very much like setting the ItemsSource to the Element. As an example, if you wanted to bind the
IsEnabled property of a control to a checkbox’s IsChecked property. Assuming the checkbox is named
EnableButton, the binding syntax would be the following.

IsEnabled="{Binding IsChecked, Mode=OneWay, ElementName=EnableButton}"

Notice that the binding is the same as it would be when binding to a data source, except that we have
added the ElementName=EnableButton. Let’s try this out in an exercise.

Try It Out: Element to Element Binding
To help explain element to element binding in Silverlight, let’s build a very simple application. The
application will include a button and a checkbox. When the checkbox is checked, the button is enabled,
when the checkbox is unchecked, the button is disabled. Let’s get started.

1. Create a new Silverlight application in Visual Studio 2008. Name the project
Ch5_ElementBinding, and allow Visual Studio to create a Web Site project to
host your application.

2. Edit the MainPage.xaml file to add a StackPanel to the root Grid. Place a
ToggleButton and CheckBox named EnableButton within that StackPanel so the
ToggleButton appears above the CheckBox. Add a margin of 20 on the
StackPanel and 5 on the ToggleButton and CheckBox to add some spacing
between the controls. The code for the page follows:

<Grid x:Name="LayoutRoot" Background="White">
 <StackPanel Margin="20">

 <ToggleButton
 Margin="5" Content="Click to Toggle" />

 <CheckBox
 x:Name="EnableButton" IsChecked="true"
 Margin="5" Content="Enable Button" />

 </StackPanel>
</Grid>

3. Next, we need to bind the ToggleButton’s IsEnabled property to the
CheckBox’s IsChecked property. We will do this with one way binding as
described earlier in this chapter, and we will set the ElementName to
EnableButton, which is the name we gave our CheckBox. The updated source
code should now look like the following.

<Grid x:Name="LayoutRoot" Background="White">
 <StackPanel Margin="20">

 <ToggleButton
 Margin="5" Content="Click to Toggle"

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

115

 IsEnabled="{Binding IsChecked, Mode=OneWay,
 ElementName=EnableButton}" />

 <CheckBox
 x:Name="EnableButton" IsChecked="true"
 Margin="5" Content="Enable Button" />

 </StackPanel>
</Grid>

4. That is it! No coding is required for this demo. Run the sample and will see that
the ToggleButton is enabled, as shown in Figure 5-6.

Figure 5-6. Element Binding example with Toggle Button Enabled

5. Now press uncheck the Enable Button checkbox and you will see that the
ToggleButton is no longer enabled, as shown in Figure 5-7.

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

116

Figure 5-7. Element Binding Example with Toggle Button Disabled

The DataGrid Control
The data grid type of control has been around for ages and has been the primary choice for developers
who need to display large amounts of data. The DataGrid control provided by Silverlight is not just a
standard data grid, however. It contains a great deal of rich user functionality that, in the past, has been
present only in third-party data grid components. For example, the Silverlight DataGrid handles resizing
and reordering of grid columns.

Figure 5-8 shows an example of a very simple DataGrid, where the columns were automatically
generated. Notice how the column titled Male is a check box. The DataGrid control has built-in
intelligence to automatically show Boolean data types as check box cells.

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

117

Figure 5-8. A simple DataGrid example

Try It Out: Building a Simple DataGrid
Let’s run through a simple DataGrid example.

1. Create a new Silverlight application in Visual Studio 2008. Name the project
SimpleDataGrid, and have Visual Studio create a hosting web site application
for you.

2. Add the DataGrid to your application. To do this, simply add the DataGrid to
the root Grid in your XAML, and set the Margin property to 10 to get some
spacing around the grid. In addition, give the DataGrid the name grid. Note
that, by default, the Grid’s AutoGenerateColumns property is set to true. If you
were going to define the columns manually, you would want to set this
property to false. However, since you want the grid to create the columns
automatically, you can simply omit the property. The DataGrid definition
follows:

<Grid x:Name="LayoutRoot" Background="White">
 <data:DataGrid x:Name="grid" Margin="10" />
</Grid>

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

118

■ Note Why use <data:DataGrid>? As discussed in Chapter 4, the DataGrid is contained in an assembly called
System.Windows.Controls.Data, which is not added to Silverlight applications by default. This way, if your
application does not need any of the extended controls, the file size of your Silverlight application can be smaller.

However, in order to add a DataGrid to your application, you need to reference the new assembly and add an
xmlns reference to the assembly in the UserControl definition. As you might expect by now, Visual Studio can do
all the work for you. To use this functionality in Visual Studio, drag the DataGrid control from the Toolbox to add it

to your application. Visual Studio will add a new xmlns reference in the UserControl at the top of the .xaml page
called data, which references the System.Windows.Controls.Data assembly. For the DataGrid, you will see the

xml namespace referenced in the DataGrid definition <data:DataGrid>.

3. Next, build the class that will be bound to the DataGrid. Call the class GridData
for simplicity, and give it three properties: Name (string), Age (int), and Male
(Boolean). Also for simplicity, create a static method that will return an
ObservableCollection containing some sample data that will be bound to the
grid. In addition, define the class directly in the MainPage.xaml.cs file. This is
not really a good idea in the real world, but for the sake of an example, it will
work just fine. Ideally, you will want to define your classes in separate files or
even in completely separate projects and assemblies. The code for the
GridData class follows:

namespace SimpleDataGrid
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }
 }

 public class GridData
 {
 public string Name { get; set; }
 public int Age { get; set; }
 public bool Male { get; set; }

 public static ObservableCollection<GridData> GetData()
 {
 ObservableCollection<GridData> data =
 new ObservableCollection<GridData>();

 data.Add(new GridData() {
 Name = "John Doe",
 Age = 30,
 Male = true });

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

119

 data.Add(new GridData() {
 Name = "Jane Doe",
 Age = 32,
 Male = false});

 data.Add(new GridData() {
 Name = "Jason Smith",
 Age = 54,
 Male = true });

 data.Add(new GridData() {
 Name = "Kayli Jayne",
 Age = 25,
 Male = false });

 return data;
 }
 }
}

■ Note When you are binding a collection of data to a DataGrid or ListBox, you may be tempted to use the List

generic class. The problem with using the List class is that it does not have built-in change notifications for the
collection. In order to bind a DataGrid and ListBox to dynamic data that will be updated, you should use the
ObservableCollection generic class. The ObservableCollection class represents a collection of dynamic data

that provides built-in notification when items in the collection are added, removed, or refreshed.

4. Now that you have the XAML and the class defined, you can wire them up.
To do this, first create an event handler for the Loaded event of the page, as
follows:

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {

 }
}

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

120

5. When the page is loaded, you want to call GetData() from the GridData class
and bind that to the DataGrid’s ItemsSource property, as follows:

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 this.grid.ItemsSource = GridData.GetData();
 }
}

6. Build and run the application. If all is well, you should see the DataGrid
displayed (see Figure 5-6).

Let’s take a few moments and play around with this DataGrid to explore some of its features. First of
all, if you click any of the column headers, you will notice that sorting is automatically available, as
shown in Figure 5-9.

Next, if you place your cursor at the edge of one of the columns, you can use the mouse to click and
drag the column’s edge to resize the column, as shown in Figure 5-10. Again, this functionality is
provided for free with the DataGrid’s rich client-side functionality.

Finally, if you click and hold the mouse on one of the column headers, then drag it left or right to
another column header’s edge, you will see a little red triangle appear above the columns. For instance,
click and drag the Name column so the little red triangle appears to the far right, as shown in Figure 5-
11. When the red triangle is where you want it, release the mouse, and you will see that the Name
column now appears as the last column in the DataGrid.

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

121

Figure 5-9. Sorting in the DataGrid

Figure 5-10. Resizing columns in a DataGrid

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

122

Figure 5-11. Column reordering in action

You’ll agree that this is pretty nice out-of-the-box functionality for simply defining a DataGrid with
this code:

<data:DataGrid x:Name="grid" Margin="10" />

Now that you have implemented a simple DataGrid example, let’s explore some of the additional
options available.

The Columns Collection
In the previous example, you allowed the DataGrid to automatically generate columns based on the data
to which it was bound. This is not a new concept—it has been around in data grid components since the
initial release of ASP.NET. But what if you want to have some additional control over the columns that
are created in your DataGrid? What if you want to add a column that contains some more complex
information, such as an image? You can do this by first setting the AutoGenerateColumns property on the
grid to false. Then you need to generate the columns manually.

Columns are defined in a DataGrid using the Columns collection. The following is an example of
setting the Columns collection in XAML. Notice that it sets the AutogenerateColumns property to False. If
you neglect to do this, you will get all of the autogenerated columns in addition to the columns you
define within the Columns collection.

<my:DataGrid x:Name="grid" Margin="10" AutoGenerateColumns="False">
 <my:DataGrid.Columns>

 </my:DataGrid.Columns>
</my:DataGrid>

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

123

You can place three types of columns within a Columns collection: a text column
(DataGridTextColumn), a check box column (DataGridCheckBoxColumn), and a template column
(DataGridTemplateColumn). All of the column types inherit from type DataGridColumn. A number of
notable properties apply to all three column types, as shown in Table 5-1.

Table 5-1. DataGridColumn properties

Property Description

CanUserReorder Turns on and off the ability for the user to drag columns to reorder them

CanUserResize Turns on or off the ability for the user to resize the column’s width with the mouse

DisplayIndex Determines the order in which the column appears in the DataGrid

Header Defines the content of the column’s header

IsReadOnly Determines if the column can be edited by the user

MaxWidth Sets the maximum column width in pixels

MinWidth Sets the minimum column width in pixels

Visibility Determines whether or not the column will be visible to the user

Width Sets the width of the column, or can be set to automatic sizing mode

DataGridTextColumn
The DataGridTextColumn defines a column in your grid for plain text. This is the equivalent to
BoundColumn in the ASP.NET DataGrid. The primary properties that can be set for a DataGridTextColumn
are the Header, which defines the text that will be displayed in the columns header, and the
DisplayMemberBinding property, which defines the property in the data source bound to the column.

The following example defines a text column with the header Name and is bound to the data source’s
Name property.

<my:DataGrid x:Name="grid" Margin="10" AutoGenerateColumns="False">
 <my:DataGrid.Columns>
 <my:DataGridTextColumn
 Header="Name"
 DisplayMemberBinding="{Binding Name}" />
 </my:DataGrid.Columns>
</my:DataGrid>

DataGridCheckBoxColumn
As you would expect, the DataGridCheckBoxColumn contains a check box. If you have data that you want
to display as a check box in your grid, this is the control to use. Here is an example of the
DataGridCheckBoxColumn that contains the header Male? and is bound to the data source’s Male property:

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

124

<my:DataGrid x:Name="grid" Margin="10" AutoGenerateColumns="False">
 <my:DataGrid.Columns>
 <my:DataGridCheckBoxColumn
 Header="Male?"
 DisplayMemberBinding="{Binding Male}" />
 </my:DataGrid.Columns>
</my:DataGrid>

DataGridTemplateColumn
If you want data in your grid column that is not plain text and is not a check box, the
DataGridTemplateColumn provides a way for you to define the content for your column.
The DataGridTemplateColumn contains a CellTemplate and CellEditingTemplate, which determine what
content is displayed, depending on whether the grid is in normal view mode or in editing mode.

Note that while you get features such as automatic sorting in the other types of DataGrid columns,
that is not true of the DataGridTemplateColumn. These columns will need to have additional logic in place
to allow for sorting.

Let’s consider an example that has two fields: FirstName and LastName. Suppose that when you are in
normal view mode, you want the data to be displayed side by side in TextBlock controls. However, when
the user is editing the column, you want to display two TextBox controls that allow the user to edit the
FirstName and LastName columns independently.

<my:DataGridTemplateColumn Header="Name">
 <my:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBlock Padding="5,0,5,0"
 Text="{Binding FirstName}"/>
 <TextBlock Text="{Binding LastName}"/>
 </StackPanel>
 </DataTemplate>
 </my:DataGridTemplateColumn.CellTemplate>
 <my:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <StackPanel Orientation="Horizontal">
 <TextBox Padding="5,0,5,0"
 Text="{Binding FirstName}"/>
 <TextBox Text="{Binding LastName}"/>
 </StackPanel>
 </DataTemplate>
 </my:DataGridTemplateColumn.CellEditingTemplate>
</my:DataGridTemplateColumn>

Now that we have covered the basics of manually defining the grids in a DataGrid, let’s try it out.

Try It Out: Building a DataGrid with Custom Columns
I thought it would be fun to build a DataGrid that contains a list of starting hands in poker. If you have
ever watched poker on TV, you most likely heard the players refer to things like “pocket rockets” and
“cowboys.” These are simply nicknames they have given to starting hands. The DataGrid you are going to
build in this example will look like Figure 5-12.

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

125

Figure 5-12. DataGrid with custom columns

1. Create a new Silverlight application called Ch5_DataGridCustomColumns. Allow
Visual Studio to create a Web Site project to host the application.

2. After the project is loaded, right-click the Ch5_DataGridCustomColumns project
and select Add New Item. In the Add New Item dialog box, select Class for the
template, and name the class StartingHands.cs, as shown in Figure 5-13. Click
the Add button to add the class to the project.

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

126

Figure 5-13. Adding a new class to the Silverlight project

3. Now define the StartingHands class. The class will contain four properties:
Nickname (string), Notes (string), Card1 (string), and Card2 (string). Also
create a static method in the class called GetHands(), which returns an
ObservableCollection of StartingHands instances. The code follows:

using System;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using System.Collections.ObjectModel;

namespace Ch5_DataGridCustomColumns
{
 public class StartingHands
 {
 public string Nickname { get; set; }
 public string Notes { get; set; }
 public string Card1 { get; set; }
 public string Card2 { get; set; }

 public static ObservableCollection<StartingHands> GetHands()
 {

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

127

 ObservableCollection<StartingHands> hands =
 new ObservableCollection<StartingHands>();

 hands.Add(
 new StartingHands()
 {
 Nickname = "Big Slick",
 Notes = "Also referred to as Anna Kournikova.",
 Card1 = "As",
 Card2 = "Ks"
 });

 hands.Add(
 new StartingHands()
 {
 Nickname = "Pocket Rockets",
 Notes = "Also referred to as Bullets.",
 Card1 = "As",
 Card2 = "Ad"
 });

 hands.Add(
 new StartingHands()
 {
 Nickname = "Blackjack",
 Notes = "The casino game blackjack.",
 Card1 = "As",
 Card2 = "Js"
 });

 hands.Add(
 new StartingHands()
 {
 Nickname = "Cowboys",
 Notes = "Also referred to as King Kong",
 Card1 = "Ks",
 Card2 = "Kd"
 });

 hands.Add(
 new StartingHands()
 {
 Nickname = "Doyle Brunson",
 Notes = "Named after poker great Doyle Brunson",
 Card1 = "Ts",
 Card2 = "2s"
 });

 return hands;

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

128

 }
 }
}

4. Now that the class is built, in the MainPage.xaml file, change the width of the
UserControl to be 500 and add a DataGrid named grdData to the root Grid by
double-clicking the DataGrid control in the Toolbox. Add a 15-pixel margin
around the DataGrid for some spacing, and set the AutoGenerateColumns
property to False. The code follows:

<UserControl
 xmlns:data="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data"
 x:Class="Ch5_DataGridCustomColumns.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="500" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <data:DataGrid Margin="15" AutoGenerateColumns="False"></data:DataGrid>
 </Grid>
</UserControl>

5. Next, define the columns in the DataGrid. To do this, add the DataGrid.Columns
collection, as follows:

<data:DataGrid x:Name="grdData" Margin="15" AutoGenerateColumns="False">
 <data:DataGrid.Columns>

 </data:DataGrid.Columns>
</data:DataGrid>

Referring back to Figure 5-12, the first column in the Grid contains the two
cards in the hand. To build this, you use a DataGridTemplateColumn. Within the
DataGridTemplateColumn, add a CellTemplate containing a Grid with two
columns, each containing a Border, Rectangle, and TextBlock, which will
overlap each other. Bind the two TextBlock controls to the Card1 and Card2
properties from the data source. Enter the following code:

<data:DataGrid x:Name="grdData" Margin="15" AutoGenerateColumns="False">
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header="Hand">
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Grid>

 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Border
 Margin="2" CornerRadius="4"
 BorderBrush="Black" BorderThickness="1" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

129

 <Rectangle
 Margin="4" Fill="White" Grid.Column="0" />
 <Border
 Margin="2" CornerRadius="4" BorderBrush="Black"
 BorderThickness="1" Grid.Column="1" />
 <Rectangle
 Margin="4" Fill="White" Grid.Column="1" />
 <TextBlock
 Text="{Binding Card1}" HorizontalAlignment="Center"
 VerticalAlignment="Center" Grid.Column="0" />
 <TextBlock
 Text="{Binding Card2}" HorizontalAlignment="Center"
 VerticalAlignment="Center" Grid.Column="1" />

 </Grid>
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
</data:DataGrid>

Again, referring back to Figure 5-12, the next two columns contain the
nickname of the starting hand and notes about the starting hand. To
implement this, use two DataGridTextColumn columns. Set the Headers of the
columns to Nickname and Notes accordingly.

<data:DataGrid x:Name="grdData" Margin="15" AutoGenerateColumns="False">
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header="Hand">
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Grid>

 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Border
 Margin="2" CornerRadius="4"
 BorderBrush="Black" BorderThickness="1" />
 <Rectangle
 Margin="4" Fill="White" Grid.Column="0" />
 <Border
 Margin="2" CornerRadius="4" BorderBrush="Black"
 BorderThickness="1" Grid.Column="1" />
 <Rectangle
 Margin="4" Fill="White" Grid.Column="1" />
 <TextBlock
 Text="{Binding Card1}" HorizontalAlignment="Center"
 VerticalAlignment="Center" Grid.Column="0" />
 <TextBlock

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

130

 Text="{Binding Card2}" HorizontalAlignment="Center"
 VerticalAlignment="Center" Grid.Column="1" />

 </Grid>
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>

 <data:DataGridTextColumn
 Header="Nickname"
 Binding="{Binding Nickname}" />
 <data:DataGridTextColumn
 Header="Notes"
 Binding="{Binding Notes}" />

 </data:DataGrid.Columns>
</data:DataGrid>

6. Finally, wire up the controls to the data source. To do this, navigate to the
MainPage.xaml.cs file and add an event handler to the Page Loaded event.
Within that Loaded event, simply set the DataGrid’s ItemsSource property equal
to the return value of the StartingHands.GetHands() static method. Here’s the
code:

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 this.grdData.ItemsSource = StartingHands.GetHands();
 }
}

7. Compile and run your application. If all goes well, your application should
appear, as shown earlier in Figure 5-12.

This completes our DataGrid with custom columns example. Naturally, in a real-world application,
you would be getting the data for these hands from an external data source, such as a web service or an
XML file. We will be looking at that in Chapter 6. Now, let’s take a look at the ListBox control.

The ListBox Control
In the past, the list box type of control has been considered one of the common controls in
programming—no more special than a drop-down list. However, in Silverlight, this has all changed. The
ListBox is perhaps one of the most flexible controls used to display lists of data. In fact, referring back to
ASP.NET controls, the Silverlight ListBox is more a cousin to the DataList control than the ASP.NET
ListBox control. Let’s take a peek at this powerful control.

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

131

Default and Custom ListBox Items
If we wire up the ListBox to our Person data from our earlier DataGrid example, you will see that, by
default, the ListBox really is just a standard ListBox.

<ListBox Margin="10" x:Name="list" DisplayMemberPath="Name" />

One additional property you may have noticed in this ListBox definition is DisplayMemberPath. If
you are defining a simple text-based ListBox, the ListBox needs to know which data member to display.
Since the Person class contains three properties (Name, Age, and Male), we need to tell it that we want the
Name to be displayed. Figure 5-14 shows the results.

Figure 5-14. A simple default ListBox

However, the ListBox control can contain much more than plain text. In fact, if you define a custom
ItemTemplate for the ListBox, you can present the items in a more interesting way. Here’s an example
using the same Person data:

<ListBox Margin="10" x:Name="list" DisplayMemberPath="Name">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="5" Orientation="Vertical">
 <TextBlock
 FontSize="17"
 FontWeight="Bold"
 Text="{Binding Name}" />
 <StackPanel Margin="5,0,0,0" Orientation="Horizontal">
 <TextBlock Text="Age: " />
 <TextBlock Text="{Binding Age}" />
 <TextBlock Text=", Male: " />
 <TextBlock Text="{Binding Male}" />

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

132

 </StackPanel>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Figure 5-15 shows how this custom ListBox appears in a browser.

Figure 5-15. A customized ListBox example

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

133

Try It Out: Building a ListBox with Custom Content
Let’s take the same data that displayed poker starting hands from the previous exercise and see what
type of cool ListBox you can build with it. Figure 5-15 shows the custom ListBox you’ll create in this
exercise.

1. Start out by creating a new Silverlight application called Ch5_ListBoxCustom
and allow Visual Studio to create a hosting web site.

2. You will use the same class that you built in the earlier DataGrid exercise.
Right-click the Silverlight project, choose Add Existing Item, and browse to
StartingHands.cs to add that class to the project.

3. When you add the existing StartingHands.cs class, it is in a different
namespace than your current project. You can reference that namespace by
adding a using statement at the top of your Silverlight application, or you can
just change the namespace, as follows:

namespace Ch5_ListBoxCustom
{
 public class StartingHands
 {
 public string Nickname { get; set; }
 public string Notes { get; set; }
 public string Card1 { get; set; }
 public string Card2 { get; set; }

 ...
 }
}

4. Next, you need to define the ListBox’s ItemTemplate. The ItemTemplate will
contain a horizontal-oriented StackPanel including the grid to display the two
cards. It will also include a nested vertical-oriented StackPanel that will
contain two TextBlock controls to display the Nickname and Notes data. Here is
the code:

<Grid x:Name="LayoutRoot" Background="White">
 <ListBox Margin="10" x:Name="list">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Margin="5" Orientation="Horizontal">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Border
 Margin="2" CornerRadius="4"
 BorderBrush="Black" BorderThickness="1" />
 <Rectangle Margin="4" Fill="White"
 Grid.Column="0" Width="20" />

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

134

 <Border
 Margin="2" CornerRadius="4" BorderBrush="Black"
 BorderThickness="1" Grid.Column="1" />
 <Rectangle Margin="4" Fill="White"
 Grid.Column="1" Width="20" />
 <TextBlock
 Text="{Binding Card1}" HorizontalAlignment="Center"
 VerticalAlignment="Center" Grid.Column="0" />
 <TextBlock
 Text="{Binding Card2}" HorizontalAlignment="Center"
 VerticalAlignment="Center" Grid.Column="1" />
 </Grid>

 <StackPanel Orientation="Vertical">
 <TextBlock
 Text="{Binding Nickname}"
 FontSize="16"
 FontWeight="Bold" />
 <TextBlock
 Text="{Binding Notes}" />
 </StackPanel>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</Grid>

5. The only thing left to do is to wire up the ListBox to the data source. To do this,
navigate to the page.xaml.cs code behind, and add an event handler for the
Page Loaded event. Then, within that Loaded event handler, add the following
code to set the ListBox’s ItemsSource to the return value from the
StartingHands.GetHands() method, as you did earlier in the DataGrid example.

namespace Ch5_ListBoxCustom
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 list.ItemsSource = StartingHands.GetHands();
 }
 }
}

6. Run the application. If all goes well, you will see the ListBox shown in Figure 5-
16.

CHAPTER 5 ■ DATA BINDING AND SILVERLIGHT LIST CONTROLS

135

As you can see, the ListBox control’s flexibility lets developers display lists of data in some very cool
ways.

Summary
In this chapter, you looked at how to bind lists of data to Silverlight controls. Then you focused on two
controls typically bound to data: the DataGrid control and the ListBox control. You saw how these
controls are flexible and can show data in unique ways. However, in all of these examples, the classes
contained static data. In real-world examples, the data that you will normally list in a DataGrid or
ListBox will be coming from some external data source, such as an XML file or a web service. In the next
chapter, you will look at how to get data from these external data sources and how to use that data to
bind to your Silverlight applications.

C H A P T E R 6

■ ■ ■

137

Data Access and Networking

Data access in Silverlight applications works differently than it does in traditional applications. You’ll
need to be aware of how it works and the limitations. In this chapter, you will look at what makes data
access different, and then explore mechanisms for accessing data in a Silverlight application.

Data Access in Silverlight Applications
As discussed in Chapter 1, RIAs bridge the gap between Windows-based smart clients and web-based
applications. When moving to this type of environment, data access and networking can be confusing.

In a Windows-based smart client, the application has access to the database at all times. It can
create a connection to the database, maintain state with the database, and remain connected.

On the other hand, a web application is what is known as a pseudo-conversational environment,
which is, for the most part, a completely stateless and disconnected environment. When a client makes a
request to the web server, the web server processes the request and returns a response to the client. After
that response has been sent, the connection between the client and the server is disconnected, and the
server moves on to the next client request. No connection or state is maintained between the two.

In Silverlight applications, we have one additional layer of complexity. The application runs from
the client’s machine. However, it is still a disconnected environment, because it is hosted within a web
browser. There is no concept of posting back for each request or creating a round-trip to the server for
data processing. Therefore, data access is limited to a small number of options.

In addition, a Silverlight application has a number of security restrictions placed on it to protect
the users from the application gaining too much control over their machine. For instance, the
Silverlight application has access to only an isolated storage space to store its disconnected data. It has
no access whatsoever to the client’s hard disk outside its “sandbox.” Silverlight’s isolated storage is
discussed in more detail in Chapter 9.

What are your options for accessing data in a Silverlight application? The following main
mechanisms are available:

• The most common mechanism to access data from a Silverlight application is
through web services, typically a WCF service.

• Silverlight applications can access data using ADO.NET Data Services, which
provides access to data through a URI syntax.

• Silverlight also has built-in socket support, which allows applications to connect
directly to a server through TCP sockets.

• Silverlight has out-of-the-box support for JavaScript Object Notation (JSON), as
well as RSS 2.0 and Atom 1.0 syndication feed formats.

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

138

Of these mechanisms, I’ll explore accessing WCF services from Silverlight 2 in depth, and then
have a high-level look at using sockets. For examples and more information on accessing other data
services, refer to Pro Silverlight 3 in C# 2008 by Matthew MacDonald (Apress, 2009).

Accessing Data Through Web Services
One of the ways that a Silverlight application can access data is through web services. These can be
ASP.NET Web Services (ASMX), Windows Communication Foundation (WCF) services, or
representational state transfer (REST) services. Here, you will concentrate on using a WCF service,
which is the preferred way of accessing data in a Silverlight application through web services.

Try It Out: Accessing Data Through a WCF Service
To demonstrate accessing data from a WCF service, you will build the same application that you built
in Chapter 5 to try out the DataGrid. (For more information about any part of this exercise regarding
the DataGrid, refer back to Chapter 5.) The difference will be that the application will get the data
through a web service.

As you’ll recall, this application displays common starting hands in poker and the nicknames that
have been given to those starting hands. The UI will have three columns: the first column will display
two images of the cards in the hand, the second column will display the nickname, and the third
column will contain notes about the hand. The completed application is shown in Figure 6-1.

Figure 6-1. The poker starting hands application

1. Create a new Silverlight application in Visual Studio 2008. Call the
application Ch6_WCFService, and allow Visual Studio to create a Web
Application project named Ch6_WCFService.Web to host your application, as
shown in Figure 6-2.

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

139

Figure 6-2. Adding the Silverlight application hosting project

Right-click the Ch6_WCFService.Web project and select Add Class. Name the
new class StartingHands.cs, as shown in Figure 6-3.

Figure 6-3. Adding the StartingHands.cs class to the project

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

140

2. Now you need to implement the StartingHands.cs class. It is very similar to
the class used in Chapter 5’s DataGrid example. To save yourself some typing,
you can copy the code from that project. As shown in bold in the following
code, the only differences are the namespace and the return type of the
GetHands() method. Instead of using an ObservableCollection, it will return a
simple List<StartingHands>.

■ Note In a real-world example, the StartingHands.cs class would be doing something like retrieving data from
a SQL Server database and executing some business logic rules on the data. For simplicity, this example just

returns a static collection.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace Ch6_WCFService.Web
{
 public class StartingHands
 {
 public string Nickname { get; set; }
 public string Notes { get; set; }
 public string Card1 { get; set; }
 public string Card2 { get; set; }

 public static List<StartingHands> GetHands()
 {
 List<StartingHands> hands = new List<StartingHands>();

 hands.Add(
 new StartingHands()
 {
 Nickname = "Big Slick",
 Notes = "Also referred to as Anna Kournikova.",
 Card1 = "As",
 Card2 = "Ks"
 });

 hands.Add(
 new StartingHands()
 {
 Nickname = "Pocket Rockets",
 Notes = "Also referred to as Bullets.",
 Card1 = "As",
 Card2 = "Ad"
 });

 hands.Add(

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

141

 new StartingHands()
 {
 Nickname = "Blackjack",
 Notes = "The casino game blackjack.",
 Card1 = "As",
 Card2 = "Js"
 });

 hands.Add(
 new StartingHands()
 {
 Nickname = "Cowboys",
 Notes = "Also referred to as King Kong",
 Card1 = "Ks",
 Card2 = "Kd"
 });

 hands.Add(
 new StartingHands()
 {
 Nickname = "Doyle Brunson",
 Notes = "Named after poker great Doyle Brunson",
 Card1 = "Ts",
 Card2 = "2s"
 });

 return hands;
 }
 }
}

3. Next, you need to add the WCF service that will call the
StartingHands.GetHands() method. Right-click the Ch6_WCFService.Web project
and select Add ~TRA New Item. In the Add New Item dialog box, select the
template named “Silverlight-enabled WCF Service” and name it
StartingHandService.svc, as shown in Figure 6-4. Then click the Add button.

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

142

Figure 6-4. Adding the Silverlight-enabled WCF service

4. This will add a service named StartingHandService.svc to the project with an
attached code-behind file named StartingHandService.svc.cs. View that code
behind. You will see that Visual Studio has already created the base WCF
service, including a sample method called DoWork(), as follows:

namespace Ch6_WCFService.Web
{
 [ServiceContract(Namespace = "")]
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 public class StartingHandService
 {
 [OperationContract]
 public void DoWork()
 {
 // Add your operation implementation here
 return;
 }

 // Add more operations here and mark them
 // with [OperationContract]
 }
}

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

143

5. Replace the DoWork() method with a GetHands() method that returns a
List<StartingHands> collection, as follows:

namespace Ch6_WCFService.Web
{
 [ServiceContract(Namespace = "")]
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 public class StartingHandService
 {
 [OperationContract]
 public List<StartingHands> GetHands() {
 return StartingHands.GetHands();
 }
 // Add more operations here and mark them
 // with [OperationContract]
 }
}

This method simply returns the results from calling the
StartingHands.GetHands() method.

Now that you have a Silverlight-enabled WCF service, you need to add a
reference in your Silverlight project so that your Silverlight application can
access the service. To do this, right-click References within the
Ch6_WCFService in Solution Explorer and select Add Service Reference, as
shown in Figure 6-5. This brings up the Add Service Reference dialog box.

Figure 6-5. Choosing to add a service reference

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

144

6. In the Add Service Reference dialog box, click the down arrow next to the
Discover button and select Services in Solution, as shown in Figure 6-6.

7. Visual Studio will find the StartingHandService.svc and will populate the
Services list in the Add Service Reference dialog box. Note that you may need
to build the solution before Visual Studio will find your service. Expand the
StartingHandService.svc node to show the StartingHandService. Click
StartingHandService to see the GetHands() web method in the Operations
listing, as shown in Figure 6-7. Enter StartingHandServiceReference as the
Namespace field, and then click OK to continue.

Figure 6-6. Finding the services in the solution

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

145

Figure 6-7. Adding a service reference for StartingHandService

Open the Visual Studio Object Browser by selecting View ~TRA Object
Browser from the main menu. Navigate to the Ch6_WCFService entry and
expand the tree. You will find Ch6_WCFService.StartingHandServiceReference
under your project. Within that, you will see an object named
StartingHandServiceClient. Select this object to examine it, as shown in
Figure 6-8.

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

146

Figure 6-8. Object Browser for StartingHandService

8. Look at the members listed on the right side of the Object Browser. There are
a number of items that are added, but take specific note of the method named
GetHandsAsync() and the event named GetHandsCompleted. You will need to
use both of these in order to call your web service from Silverlight.

9. Now it’s time to create the Silverlight application’s UI. Open the
MainPage.xaml file in Visual Studio. Place the cursor within the root Grid and
double-click the DataGrid control in the Toolbox. This adds the following
XAML:

<Grid x:Name="LayoutRoot" Background="White">
 <data:DataGrid></data:DataGrid>
</Grid>

10. Highlight the DataGrid definition in the solution and replace it with the
following DataGrid definition, which is from the previous DataGrid exercise in
Chapter 5. The DataGrid contains three columns: one template column
containing the two cards in the hand and two text columns containing the
nickname and notes about the hand.

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

147

<data:DataGrid x:Name="grdData" Margin="15" AutoGenerateColumns="False">
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header="Hand">
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Grid>

 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Border
 Margin="2" CornerRadius="4"
 BorderBrush="Black" BorderThickness="1" />
 <Rectangle
 Margin="4" Fill="White" Grid.Column="0" />
 <Border
 Margin="2" CornerRadius="4" BorderBrush="Black"
 BorderThickness="1" Grid.Column="1" />
 <Rectangle
 Margin="4" Fill="White" Grid.Column="1" />
 <TextBlock
 Text="{Binding Card1}" HorizontalAlignment="Center"
 VerticalAlignment="Center" Grid.Column="0" />
 <TextBlock
 Text="{Binding Card2}" HorizontalAlignment="Center"
 VerticalAlignment="Center" Grid.Column="1" />

 </Grid>
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>

 <data:DataGridTextColumn
 Header="Nickname"
 Binding="{Binding Nickname}" />
 <data:DataGridTextColumn
 Header="Notes"
 Binding="{Binding Notes}" />

 </data:DataGrid.Columns>
</data:DataGrid>

11. Save the MainPage.xaml file and navigate to the code behind for the
application, located in the MainPage.xaml.cs file. Wire up the Loaded event
handler for the page, as follows:

namespace Ch6_WCFService
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

148

 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 throw new NotImplementedException();
 }
 }
}

Next, you need to call the WCF service. In Silverlight, web services can be
called only asynchronously, so the browser’s execution is not blocked by the
transaction. In order to do this, you need to get an instance of the service
reference (commonly referred to as the web service proxy class) named
StartingHandService, which you added earlier. You will then wire up an event
handler for the service’s GetHandsCompleted event, which you examined in the
Object Browser (in step 11). This is the event handler that will be called when
the service has completed execution. Finally, you will execute the
GetHandsAsync() method.

■ Tip In a real-world scenario, you will want to present the user with a progress bar or animation while the

service is being called, since the duration of a web service call can be lengthy.

12. Within the Page_Loaded event handler, first obtain an instance of
StartingHandService. Then, in the GetHandsCompleted event handler, bind the
ItemsSource of the DataGrid to the result returned from the service call, as
shown in the following code. Note that normally you will want to check the
result to make certain that the web service call was successful, and alert the
user accordingly in case of failure.

using Ch6_WCFService.StartingHandServiceReference;

namespace Ch6_WCFService
{
 public partial class Page : UserControl
 {
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 StartingHandServiceClient service = new StartingHandServiceClient();
 service.GetHandsCompleted += new

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

149

 EventHandler<GetHandsCompletedEventArgs>(service_GetHandsCompleted);
 service.GetHandsAsync();
 }

 void service_GetHandsCompleted(object sender, GetHandsCompletedEventArgs e)
 {
 this.grdData.ItemsSource = e.Result;
 }
 }
}

13. Test your application. If all goes well, you should see the populated DataGrid,
as shown earlier in Figure 6-1.

This example demonstrated how to use the Silverlight-enabled WCF service provided in Visual
Studio to allow your Silverlight application to access data remotely. As noted earlier in chapter in the
section “Data Access in Silverlight Applications”, this is one of the most common approaches to data
access with Silverlight.

Accessing Services from Other Domains
In the previous example, the web service was on the same domain as your Silverlight application. What
if you want to call a service that is on a different domain?

In fact, as a best practice, it is preferred to have your web services stored on a domain separate
from your web application. Even for applications where you control both the web service and the
Silverlight application, you may be dealing with different domains.

If you attempt to access a service from a different domain in Silverlight, you will notice that it fails.
This is because, by default, a Silverlight application cannot call services that are on a different domain,
unless it is permitted to do so by the service host. In order for Silverlight to determine if it has
permission to access a service on a certain domain, it will look for one of two files in the root of the
target domain: clientaccesspolicy.xml or crossdomain.xml.

First, Silverlight will look for a file named clientaccesspolicy.xml in the domain’s root. This is
Silverlight’s client-access policy file. If you are publishing your own services that you want to be
accessible by Silverlight applications, this is the file that you want to use, as it provides the most
options for Silverlight application policy permissions. The following is a sample
clientaccesspolicy.xml file:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

150

The important elements are <allow-from> and <grant-to>. The <allow-from> element defines
which domains are permitted to access the resources specified in the <grant-to> element.

If Silverlight cannot find a clientaccesspolicy.xml file at the root of the domain from which you are
attempting to access a service, it will then look for a file named crossdomain.xml in the root. This is the
XML policy file that has been used to provide access for Flash applications to access cross-domain
services, and Silverlight supports this file as well. The following is an example of a crossdomain.xml file:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy
 SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
 <allow-http-request-headers-from domain="*" headers="*"/>
</cross-domain-policy>

Again, even though Silverlight supports crossdomain.xml, using clientaccesspolicy.xml for
Silverlight applications is the preferred and best practice.

Accessing Data Through Sockets
In the majority of cases, your Silverlight applications will access data through web services. However,
Silverlight provides another mechanism that, though rarely used, can be quite powerful. This
mechanism is socket communications. In this section, you will look at a greatly simplified example of
communicating with a server via sockets and TCP. The main purpose here is to give you a taste of
using sockets in Silverlight so you have a basic understanding of the process and can consider whether
you would like to take this approach. If so, you can refer to a more advanced resource, such as Pro
Silverlight 3 in C# 2008 by Matthew MacDonald (Apress, 2009).

For this example, let’s assume that you have a socket server running at the IP address
192.168.1.100 on port 4500. The socket server simply accepts text inputs and does something with them.
In Silverlight, you want to connect to that socket server and send it text from a TextBox control.

First, you make a connection to the socket server. To do this, you create an instance of a
System.Net.Sockets.Socket object for IP version 4 (AddressFamily.InterNetwork). The type will be
Stream, meaning it will accept a stream of bytes, and the protocol will be TCP.

Socket socket;
socket = new Socket(
 AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

You need to execute the socket’s ConnectAsync() method, but first you must create an instance of
SocketAsyncEventArgs to pass to the method, using a statement similar to the following:

SocketAsyncEventArgs socketArgs = new SocketAsyncEventArgs()
{
 RemoteEndPoint = new IPEndPoint(
 IPAddress.Parse("192.168.1.100"),
 4500)
};

This statement sets the target for the socket connection as 192.168.1.100 on port 4500.
In addition, since this is an asynchronous connection, you need to have notification when the

connection has been established. To get this notification, you wire up an event handler to be triggered

http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

151

on the SocketAsyncEventArgs.Completed event. Once you have that wired up, you simply call the
ConnectAsync() method, passing it your SocketAsyncEventArgs instance.

socketArgs.Completed += new
 EventHandler<SocketAsyncEventArgs>(socketArgs_Completed);
socket.ConnectAsync(socketArgs);

The method for this event handler will first remove the event handler, and then it will examine
the response from the socket server. If it is successful, it will send a stream of bytes from your TextBox
control to the socket server through your established connection.

void socketArgs_Completed(object sender, SocketAsyncEventArgs e)
{
 e.Completed -= socketArgs_Completed;

 if (e.SocketError == SocketError.Success)
 {
 SocketAsyncEventArgs args = new SocketAsyncEventArgs();
 args.SetBuffer(bytes, 0, bytes.Length);
 args.Completed += new EventHandler<SocketAsyncEventArgs>(OnSendCompleted);
 socket.SendAsync(args);
 }
}

Once again, since the calls to the socket are asynchronous, you wire up another event handler
called OnSendCompleted, which will fire when your SendAsync() method is completed. This event
handler will do nothing more than close the socket.

void OnSendCompleted(object sender, SocketAsyncEventArgs e)
{
 socket.Close();
}

Although this seems pretty simple, it is complicated by client-access policy permissions. In the
same way that a Silverlight application can call a web service on a separate domain only if it has the
proper client-access policy permissions, a Silverlight application can call a socket server only if that
server contains the proper client-access policy permissions. The following is an example of a client-
access policy for a socket server:

<?xml version="1.0" encoding ="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from>
 <domain uri="*" />
 </allow-from>
 <grant-to>
 <socket-resource port="4500-4550" protocol="tcp" />
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

CHAPTER 6 ■ DATA ACCESS AND NETWORKING

152

Recall that when you’re using a web service, the client-access policy is contained in a file named
clientaccesspolicy.xml, which is placed in the domain’s root. In a socket access situation, things are a
bit more complex.

Before Silverlight will make a socket request to a server on whatever port is requested by the
application, it will first make a socket request of its own to the server on port 943, requesting a policy
file. Therefore, your server must have a socket service set up to listen to requests on port 943 and serve
up the contents of the client-access policy in order for Silverlight applications to be able to make a
socket connection.

Summary
In this chapter, you focused on accessing data from your Silverlight applications through WCF services.
I also discussed accessing data from different domains and cross-domain policy files. In addition, you
looked at using sockets in Silverlight from a high level.

In the next chapter, you will look at data validation within Silverlight.

C H A P T E R 7

■ ■ ■

153

Navigation Framework

The Navigation Framework is a new feature in Silverlight 3 that allows developers to implement a
way to navigate through different pages within a Silverlight application, creating an experience
similar to browsing through different pages of a web site. The framework also allows developers to
create a history that can integrate with the browser enabling users to navigate forward and backward
through the history using the browser’s back and forward buttons.
In this chapter, you will explore the new Navigation Framework within Silverlight 3 and try out a
couple of examples involving the different aspects of the framework.

Frame and Page Object
The two main objects that are contained in the Navigation Framework is the Frame and Page objects
(see Figure 7-1). The Frame object is very similar to a ContentPlaceHolder in ASP.NET master pages
and is the place holder for the different views to be loaded onto the page.

Figure 7-1. Frame and Page objects

Try It Out: Creating a Silverlight Navigation Application
This exercise demonstrates creating a Silverlight application with navigation support from scratch
using the Navigation Framework. In the exercise, you will build a simple application that will contain

CHAPTER 7 ■ NAVIGATION FRAMEWORK

154

two HyperlinkButtons and a Frame. Clicking the links will load one of two Pages into the Frame. Let’s
get started.

1. Start Visual Studio 2008 and select File New Project from the main
menu.

2. In the New Project dialog box, select Silverlight as the project type and
Silverlight Application as the template. Name the project
Ch7_NavAppFromScratch, as shown in Figure 7-2.

Figure 7-2. Creating a new Silverlight Application

3. When the New Silverlight Application dialog appears, select the default to
host the Silverlight application in a new ASP.NET web application named
Ch7_ NavAppFromScratch.Web. Press OK to continue.

4. By default the MainPage.xaml file will be created and opened for editing. You
will start by editing that file. In the Grid definition, add ShowGridLines="True"
so you can see how your cells are laid out. You can turn this property off later
so your application is cleaner.

5. Next you want to define the Grid cells. You will simply have two rows, one for
the links and one for the navigated content.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

155

<Grid ShowGridLines="True" x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>
 <RowDefinition Height="30" />
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

</Grid>

6. Now that you have the two rows, you want to add your HyperlinkButtons that
will be used to navigate to the different views. You will do this in a horizontal
StackPanel. For the Click property, create an event handler called LinkClick.

<Grid ShowGridLines="True" x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>
 <RowDefinition Height="30" />
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">

 <HyperlinkButton Content="View 1"
 Click="LinkClick"
 Padding="5" />
 <HyperlinkButton Content="View 2"
 Click="LinkClick"
 Padding="5" />

 </StackPanel>

</Grid>

7. The next step will be to add support for the Navigation Framework in your
project. The first step is to add a reference to System.Windows.Controls.
Navigation.dll by right clicking on the References folder in your Silverlight
project and choosing Add Reference as shown in Figure 7-3.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

156

Figure 7-3. The Silverlight navigation application Contents

8. When the Add Reference dialog appears, be sure the .NET tab is selected and
then browse through the list until you find System.Windows.Controls.
Navigation, as shown in Figure 7-4. Select the entry and press OK to add the
reference to the project.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

157

Figure 7-4. The Silverlight Navigation Application References

9. When the assembly is added you will see it appear under References in the
Solution Explorer, as shown in Figure 7-5.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

158

Figure 7-5. The Silverlight Navigation Application Contents with Reference

10. Now that you have added the reference to the Navigation Framework, you
need to add the navigation objects to your application. You will start by
adding the XML namespace for System.Windows.Controls.Navigation to the
UserControl definition.

<UserControl x:Class="Ch8_NavAppFromScratch.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:navigation="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Navigation"
 Width="400" Height="300">

<Grid ShowGridLines="True" x:Name="LayoutRoot" Background="White">

 …

</Grid>

</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 ■ NAVIGATION FRAMEWORK

159

11. You can now add a Frame to the bottom row of the root grid named
ContentFrame. You will also set the HorizontalContentAlignment and
VerticalContentAlignment to Stretch so the Frame will consume the entire
Grid Cell. You will also give the Frame a 10 pixel Margin and a
BorderThickness to 2 pixels.

<Grid ShowGridLines="True" x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>
 <RowDefinition Height="30" />
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center">

 <HyperlinkButton Content="View 1"
 Click="LinkClick"
 Padding="5" />
 <HyperlinkButton Content="View 2"
 Click="LinkClick"
 Padding="5" />

 </StackPanel>

 <navigation:Frame x:Name="ContentFrame"
 HorizontalContentAlignment="Stretch"
 VerticalContentAlignment="Stretch"
 Margin="10"
 Grid.Row="1"
 BorderThickness="2"
 BorderBrush="Black" />

</Grid>

12. Next, you will add the different views to the project. Right-click on the
Silverlight project and select Add New Item.

13. On the Add New Item dialog, select the Silverlight Page template, name the
page View1.xaml and click on the Add button.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

160

Figure 7-6. Adding a Silverlight Page

14. Once View1.xaml has been added, repeat steps 11 and 12 to add another
Silverlight Page named View2.xaml.

15. Open View1.xaml up in design mode and add the following XAML to the root
Grid.

<Grid x:Name="LayoutRoot" Background="White">
 <TextBlock Text="View 1"
 FontSize="60"
 Foreground="Green"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

16. Open View2.xaml up in design mode and add the following XAML to the root
Grid.

<Grid x:Name="LayoutRoot" Background="White">
 <TextBlock Text="View 2"
 FontSize="60"
 Foreground="Red"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

CHAPTER 7 ■ NAVIGATION FRAMEWORK

161

17. You now have the main page containing the Frame and the two views that
you will load into the Frame. Next, you need to actually load the views into
the Frame. You will do this on the click event of the two HyperlinkButtons
you added in step 6. While you can easily do this with two click event
handlers, you will actually do it with one. You can set the Tag property of the
HyperlinkButton to be the page view source file. Then the click event handler
will be able to retrieve the source file from the Tag.

<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">

 <HyperlinkButton Content="View 1"
 Click="LinkClick"
 Tag="/View1.xaml"
 Padding="5" />
 <HyperlinkButton Content="View 2"
 Click="LinkClick"
 Tag="/View2.xaml"
 Padding="5" />

</StackPanel>

18. Right click on LinkClick in the Click attribute and select Navigate to Event
Handler in order to create the LinkClick event handler. Within the event add
the following code to retrieve the view’s source file.

private void LinkClick(object sender, RoutedEventArgs e)
{
 HyperlinkButton button = (HyperlinkButton)sender;
 string viewSource = button.Tag.ToString();
}

19. Now that you have the view’s source file, you can use the Frame’s Navigate
method to navigate to the proper view.

private void LinkClick(object sender, RoutedEventArgs e)
{
 HyperlinkButton button = (HyperlinkButton)sender;
 string viewSource = button.Tag.ToString();
 ContentFrame.Navigate(new Uri(viewSource, UriKind.Relative));
}

20. You are now ready to run the solution. Select Debug Start Debugging or
press F5 to run the application. Internet Explorer will open and the
application will be displayed, as shown in Figure 7-7.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

162

Figure 7-7. Testing the Silverlight Navigation Application

21. Press the View 1 HyperlinkButton at the top of the screen. The content frame
will navigate to the View1.xaml content, as shown in Figure 7-8.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

163

Figure 7-8. Testing the Silverlight Navigation Application Template View 1

22. You can then click on the View 2 link for similar results, as shown in Figure 7-9.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

164

Figure 7-9. Testing the Silverlight Navigation Application Template View 2

23. Notice that you can press the browser’s back button to navigate backward in
history from View 2, to View 1, and back to the default.

Benefits of the Navigation Framework
While the functionality of the Navigation Framework may have been achieved in previous versions of
Silverlight, the amount of work that it required was very significant and normally would require you to
purchase a third party control or library. Clearly having this functionally built into Silverlight 3 is a
major advantage. It reduces the amount of code required to achieve the same affects and produces
much cleaner and maintainable code. In addition, it provides a number of additional benefits such as
browser history support and deep linking.

Deep Linking
Another benefit of the Navigation Framework in Silverlight 3 is Deep Linking support. Deep linking is
the ability to link to an application at a specific state.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

165

To illustrate deep linking, consider an application when it is loaded a home page is displayed. When
the user clicks on a link from the home page, the application navigates to the product listings page. The
user can then on a product to navigate a page containing the details for that product. This application
could be represented by the diagram shown in Figure 7-10.

Figure 7-10. Deep Linking in Silverlight 3

Let’s say you wanted to generate a link directly to the Product B Details page in the application. Using
the Navigation Framework, Silverlight allows developers to link to different states in their
application.

The NavigationService Object
As you have seen in this chapter, you change different views using the Frame object’s Navigate
method. There are times when you need to gain access to the Frame from within the page itself. For
example, if you consider the diagram in Figure 7-11, you can easily navigate to View 1 from the
Navigation Frame on the Home Page. However, if you want to navigate to Inner View 1 from the code
behind on View 1, you need to get access to the navigation frame that is hosting View 1 in order to
navigate to a different view.

Figure 7-11. NavigationService Object in Silverlight 3

Luckily, the Navigation Framework contains an object that allows a view to access its hosting
frame. That object is the NavigationService. Let’s explore the use of the NavigationService object by
running through the following exercise.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

166

Try it Out: Using the NavigationService Object
In this exercise, you will expand on the example you built earlier in the chapter. You will add a button
to the View1 Page and on the click event of that button you will navigate to a new Page called Inner
View 1 using the NavigationService object. Let’s get started.

1. Begin by opening the project Ch7_NavAppFromScratch you just completed in
the previous section.

2. Open the XAML for View1.xaml and modify the source to include a button
under the TextBlock.

<Grid x:Name="LayoutRoot" Background="White">
 <StackPanel>

 <TextBlock Text="View 1"
 FontSize="60"
 Foreground="Green"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <Button Click="Button_Click"
 Padding="10"
 Content="Navigate to Inner View"
 HorizontalAlignment="Center" />

 </StackPanel>
</Grid>

3. You now need to add the new view that you will navigate to use the
NavigationService. Right click on the Silverlight project and choose Add
New Item. Select Silverlight Page as the template and name the file
InnerView1.xaml.

4. In the XAML for InnerView1.xaml, add a simple TextBlock.

<Grid x:Name="LayoutRoot" Background="White">
 <TextBlock Text="Inner View 1"
 FontSize="40"
 Foreground="Blue"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

5. Next, add the Button_Click event handler in the View1.xaml code behind and
add the following code

private void Button_Click(object sender, RoutedEventArgs e)
{
 NavigationService.Navigate(
 new Uri("/InnerView1.xaml", UriKind.Relative));
}

CHAPTER 7 ■ NAVIGATION FRAMEWORK

167

6. You are now ready to run the solution. Select Debug Start Debugging or
press F5 to run the application. When Internet Explorer opens the application,
click on the View 1 link at the top. The application should appear as shown in
Figure 7-12.

Figure 7-12. Testing the NavigationService Object

7. If you click on the “Navigate to Inner View” button, the application should now
show the InnerView1.xaml content in the top frame, as seen in Figure 7-13.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

168

Figure 7-13. Inner View using NavigationService

In this section, you learned how to use the NavigationService object to access the navigation frame
from a Silverlight Page. In the next section, you will learn how to pass data to navigation pages using
another object contained in the Navigation Framework, the NetworkContext object.

Passing Data to Navigation Pages
In this section, you will discuss passing data to page views within a navigation framework solution. In
HTML pages, data is passed to other pages using the QueryString. The same is true for pages within a
Silverlight navigation application through the use of the NavigationContext object. As an example, if
you want to retrieve the QueryString property ProductID, you would use the following syntax:

string productId = NavigationContext.QueryString["ProductID"].ToString();

Let’s explore how to use the NavigationContext object to pass data to views.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

169

Try it Out: Passing Data to Navigation Pages
In this exercise, you will expand on the project that you continued working on in the previous section.
You will pass some additional data to the InnerView1.xaml file, retrieve that data using the
NavigationContext object and then display the view content dependent on that data.

1. Begin by opening the project Ch7_NavAppFromScratch you were working on in
the previous section.

2. Open the XAML for View1.xaml and modify the source to include a ComboBox
under the Button.

<Grid x:Name="LayoutRoot" Background="White">
 <StackPanel>

 <TextBlock Text="View 1"
 FontSize="60"
 Foreground="Green"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />

 <Button Click="Button_Click"
 Padding="10"
 Content="Navigate to Inner View"
 HorizontalAlignment="Center" />

 <ComboBox Padding="10" Margin="10" x:Name="Color" Width="100">
 <ComboBoxItem Content="Blue" IsSelected="True" />
 <ComboBoxItem Content="Red" />
 <ComboBoxItem Content="Green" />
 </ComboBox>

 </StackPanel>
</Grid>

3. Next open the code behind for View1.xaml and edit the Button_Click event
handler to pass the selected color in the query string of the Uri passed to the
Navigate method.

private void Button_Click(object sender, RoutedEventArgs e)
{
 string color = Color.SelectionBoxItem.ToString();

 NavigationService.Navigate(
 new Uri(string.Format("/InnerView1.xaml?Color={0}", color),
 UriKind.Relative));
}

4. Open the InnerView1.xaml file and add a second TextBlock below the
existing TextBlock using a StackPanel.

<Grid x:Name="LayoutRoot" Background="White">
<StackPanel Orientation="Vertical">
 <TextBlock Text="Inner View 1"

CHAPTER 7 ■ NAVIGATION FRAMEWORK

170

 x:Name="ViewHeader"
 FontSize="40"
 Foreground="Blue"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
 <TextBlock Text="(Blue)"
 x:Name="ViewColor"
 FontSize="30"
 Foreground="Blue"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</StackPanel>

5. Open the code behind for InnerView1.xaml and retrieve the passed color
using the NavigationContext object. Then add a switch statement to change
the color of the TextBlocks and edit the Text for the second TextBlock.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 string color = NavigationContext.QueryString["Color"].ToString();
 Brush b;

 switch (color)
 {
 case "Red":
 b = new SolidColorBrush(Color.FromArgb(255,255,0,0));
 ViewHeader.Foreground = b;
 ViewColor.Foreground = b;
 ViewColor.Text = "(Red)";
 break;

 case "Green":
 b = new SolidColorBrush(Color.FromArgb(255, 0, 255, 0));
 ViewHeader.Foreground = b;
 ViewColor.Foreground = b;
 ViewColor.Text = "(Green)";
 break;

 default:
 b = new SolidColorBrush(Color.FromArgb(255, 0, 0, 255));
 ViewHeader.Foreground = b;
 ViewColor.Foreground = b;
 ViewColor.Text = "(Blue)";
 break;
 }

}

6. You are now ready to run the solution. Select Debug Start Debugging or
press F5 to run the application. When Internet Explorer opens the application,
click on the View 1 link at the top. The application should appear, as shown in
Figure 7-14.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

171

Figure 7-14. Testing the Navigation Application Passing Data

7. Select Red in the ComboBox and click on the “Navigate to Inner View” button.
You will see the content of the InnerView1.xaml is displayed with red text and
with the text “(Red)” displayed, as shown in Figure 7-15.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

172

Figure 7-15. Navigation Result with Data Passed

In this section, you learned how to use the NavigationContext object to pass data to navigation views
using the query string. In the next section, I will discuss Uri Mapping and how it can be used to create
user friendly Uri’s to your navigation views.

Uri Mapping
In the preceding examples, you may have noticed the URL changing as you navigated to different
views in a frame. You may have also noticed that the URLs were not very pretty and contained some
information that you may not want to display. As an example, consider the following URL:

http://www.domain.com/Catalog.aspx#ProductDetails.xaml?ID=4

For starters, this URL is not very pleasant to look at, and not very user-friendly either. It also may
contain information that you would prefer not to provide the user, such as the exact filename and the
query string name. A much more appropriate URL would look like the following:

http://www.domain.com/Catalog.aspx#Product/4

http://www.domain.com/Catalog.aspx#ProductDetails.xaml?ID=4
http://www.domain.com/Catalog.aspx#Product/4

CHAPTER 7 ■ NAVIGATION FRAMEWORK

173

This URL is much easier to read and is more user-friendly. In addition, it doesn’t give away any details
about your solution. You can obtain this URL using a feature known as Uri Mapping. Let’s work through
an example to further explore Uri Mapping with the Navigation Framework.

Try it Out: Uri Mapping and the Navigation Framework
In this example, you will work through implementing Uri Mapping with the project that you have been
working with earlier in the chapter .

1. Begin by opening the project Ch7_NavAppFromScratch you were working on in
the previous section.

2. There are three views in your solution that you would like to add Uri
Mapping for: View1.xaml, View2.xaml, and InnerView1.xaml. For these, you
will add simple Uri Maps that point these to View1, View2, and InnerView.
Start by opening the App.xaml file and adding the xml namespace for the
navigation framework.

<Application
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="Ch8_NavAppFromScratch.App"
xmlns:nav="clr-
namespace:System.Windows.Navigation;assembly=System.Windows.Controls.Navigation">
 <Application.Resources>

 </Application.Resources>
</Application>

3. Now that the namespace is added, you need to add the UriMapper section to
the Application Resources.

<Application.Resources>
 <nav:UriMapper x:Key="uriMapper">

 </nav:UriMapper>
</Application.Resources>

4. Within the UriMapper section you now need to add two UriMapping elements,
one for View1.xaml and one for View2.xaml. Each mapping will contain two
attributes: The Uri attribute is the name representing the mapping that will
appear in the browser address bar, and the MappedUri attribute represents the
actual Uri mapped to by the UriMapping.

<Application.Resources>
 <nav:UriMapper x:Key="uriMapper">
 <nav:UriMapping Uri="View1" MappedUri="/View1.xaml" />
 <nav:UriMapping Uri="View2" MappedUri="/View2.xaml" />
 </nav:UriMapper>
</Application.Resources>

5. You now can update MainPage.xaml to navigate to the views using the
UriMappings.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 ■ NAVIGATION FRAMEWORK

174

<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">

 <HyperlinkButton Content="View 1"
 Click="LinkClick"
 Tag="View1"
 Padding="5" />
 <HyperlinkButton Content="View 2"
 Click="LinkClick"
 Tag="View2"
 Padding="5" />

</StackPanel>

6. Next, you will shift your attention to the InnerView1.xaml. If you recall in the
previous section on passing data to a navigation view, you are passing the
color to InnerView1.xaml via the QuervString. Because of this, you need that
to be taken into account in your UriMapping. Open up the code behind for
View1.xaml and modify the Button_Click method so it navigates to
InnerView/{0}.

private void Button_Click(object sender, RoutedEventArgs e)
{
 string color = Color.SelectionBoxItem.ToString();

 NavigationService.Navigate(
 new Uri(string.Format("InnerView/{0}", color),
 UriKind.Relative));
}

7. In order for this navigate to work, you need to add an additional UriMapping
to the Application.Resources.

<Application.Resources>
 <nav:UriMapper x:Key="uriMapper">
 <nav:UriMapping Uri="View1" MappedUri="/View1.xaml" />
 <nav:UriMapping Uri="View2" MappedUri="/View2.xaml" />
 <nav:UriMapping Uri="InnerView/{c}"
 MappedUri="/InnerView1.xaml?Color={c}" />
 </nav:UriMapper>
</Application.Resources>

8. Next, in the MainPage.xaml, add the UriMapper property to the Navigation
Frame object.

<navigation:Frame x:Name="ContentFrame"
 HorizontalContentAlignment="Stretch"
 VerticalContentAlignment="Stretch"
 Margin="10"
 Grid.Row="1"
 BorderThickness="2"
 BorderBrush="Black"
 UriMapper="{StaticResource uriMapper}" />

CHAPTER 7 ■ NAVIGATION FRAMEWORK

175

9. You are now ready to run the solution. Select Debug Start Debugging or
press F5 to run the application. When Internet Explorer opens the application,
click on the View 1 link at the top. Notice that the URL now reads:

Ch8_NavAppFromScratchTestPage.aspx#View1

10. Now select Red and click on the Navigate to Inner View and once again
inspect the URL:

Ch8_NavAppFromScratchTestPage.aspx#InnerView/Red

As you have seen in this example, UriMapping provide a way to create more user friendly Url addresses
and also provide a way to hide application specific information from appearing in your application.

URI ROUTING

In addition to Uri Mapping, the Navigation Framework in Silverlight 3 supports Uri Routing. For example, if
you placed all of your navigation views in a subdirectory named Views, you can follow a naming
convention that you set. Then setup Uri Routes such as the following:

 <nav:UriMapping Uri="{}{p}" MappedUri="/Views/{p}.xaml" />

This mapping will map all files within the Views directory to its filename minus the extension. For example,
/Views/View1.xaml would map to View1 and /Views/AboutPage.xaml would map to AboutPage. As you can
see if you are able to set a naming convention that you can follow, Uri Routing can really help you handle
default mappings with the navigation framework.

Silverlight Navigation Application Template
While it is very possible to utilize the Navigation Framework from within a standard Silverlight
application, Visual Studio 2008 contains a project template that will create a base Silverlight
Navigation Application.

Try it Out: Using the Silverlight Navigation Application Template
In this example, you will create a base Silverlight application with navigation support using the built in
Silverlight Navigation Application template included in Visual Studio 2008.

1. Start Visual Studio 2008 and select File New Project from the main
menu.

2. In the New Project dialog box, select Silverlight as the project type and
Silverlight Navigation Application as the template. Name the project
Ch7_UsingNavTemplate, as shown in Figure 7-16.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

176

Figure 7-16. The Silverlight Navigation Application Project Template

3. When the New Silverlight Application dialog appears, select the default to
host the Silverlight application in a new ASP.NET web application named
Ch7_UsingNavTemplate.Web. Press OK to continue.

4. When the project is created by Visual Studio, you will notice that a number of
pages have already been created for you, as shown in Figure 7-17. The base
navigation project contains a main page called MainPage.xaml that hosts the
navigation Frame, and two navigation Pages in the Views folder:
AboutPage.xaml and HomePage.xaml.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

177

Figure 7-17. The base navigation project

5. Select Debug Start Debugging or press F5 to run the application. Internet
Explorer will open and the application will be displayed, as shown in Figure
7-18.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

178

Figure 7-18. Creating a hosting application

6. You will notice at the top right-hand corner of the application there are two
links: home and about. Click on the about button, the navigation frame will
load in the AboutPage.xaml page into the white content box, as shown in
Figure 7-19.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

179

Figure 7-19. Testing the Navigation Application

As you have seen, the Silverlight Navigation Application VS.NET template can be used to give you a
base application with navigation support to build on.

Using Multiple Frames
In all the examples you have worked through in this chapter, you have only dealt with a single Frame.
However, there is no limit on the number of frames that you can include in your application. There are
some restrictions, though. First of all, only one frame can integrate with the browser. Because of this, if
you use multiple frames you will need to indicate what frame will be integrated with the browser. This
is done using the JournalOwnership property on the Frame object. Consider the following example.

<navigation:Frame x:Name="ContentFrame" />
<navigation:Frame x:Name="BottomFrame" JournalOwnership="OwnsJournal" />
In the preceding, the ContentFrame will have full integration with the browser, but the BottomFrame
won’t. Let’s see this in action in the following exercise.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

180

Try it Out: Using Multiple Frames
In this example, you will add a second Frame to the project you have been working on throughout this
chapter.

1. Begin by opening the project Ch7_NavAppFromScratch you were working on in
the previous section.

2. You will start by adding a new view to the project. Right click on the
Silverlight project and choose Add New Item. Select Silverlight Page as the
template and name the file BottomView.xaml.

3. In the XAML for BottomView.xaml, add a simple TextBlock.

<Grid x:Name="LayoutRoot" Background="White">
 <TextBlock Text="Bottom View 1"
 FontSize="30"
 Foreground="Green"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" />
</Grid>

4. With the new view created, you now need to edit the MainPage.xaml file to
add a third row to the Grid and add a new frame within that new row. The
second frame will not integrate with the browser so you will set the
JournalOwnership property to OwnsJournal.

<Grid ShowGridLines="True" x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>
 <RowDefinition Height="30" />
 <RowDefinition></RowDefinition>
 <RowDefinition Height="65" />
 </Grid.RowDefinitions>

<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">

 <HyperlinkButton Content="View 1"
 Click="LinkClick"
 Tag="View1"
 Padding="5" />
 <HyperlinkButton Content="View 2"
 Click="LinkClick"
 Tag="View2"
 Padding="5" />

</StackPanel>

 <navigation:Frame x:Name="ContentFrame"
 HorizontalContentAlignment="Stretch"
 VerticalContentAlignment="Stretch"
 Margin="10"
 Grid.Row="1"
 BorderThickness="2"

CHAPTER 7 ■ NAVIGATION FRAMEWORK

181

 BorderBrush="Black"
 UriMapper="{StaticResource uriMapper}" />

 <navigation:Frame x:Name="BottomFrame"
 HorizontalContentAlignment="Stretch"
 VerticalContentAlignment="Stretch"
 Margin="10"
 Grid.Row="2"
 JournalOwnership="OwnsJournal"
 BorderThickness="2"
 BorderBrush="Black" />
</Grid>

5. Next view the code behind for MainPage.xaml and add a Navigate call for
BottomFrame.

private void LinkClick(object sender, RoutedEventArgs e)
{
 HyperlinkButton button = (HyperlinkButton)sender;
 string viewSource = button.Tag.ToString();
 ContentFrame.Navigate(new Uri(viewSource, UriKind.Relative));
 BottomFrame.Navigate(new Uri("/BottomView.xaml", UriKind.Relative));
}

6. You are now ready to run the solution. Select Debug Start Debugging or
press F5 to run the application. Click on the View 1 link at the top and the
application will appear, as shown in Figure 7-20 with the second frame at the
bottom.

CHAPTER 7 ■ NAVIGATION FRAMEWORK

182

Figure 7-20. Multiple navigation frames

Summary
In this chapter, you looked at the Navigation Framework in-depth and saw how it can be used to build
Silverlight applications that contain multiple page views. You explored the different objects within the
Navigation Framework, such as the NavigationContext and NavigationService, as well as how to
implement Uri Mapping within your applications.

C H A P T E R 8

■ ■ ■

183

Local Storage in Silverlight

Localized storage in Silverlight is handled by its isolated storage feature, which is a virtual file system
that can be used to store application data on the client’s machine. As just a few examples, you might use
local storage in your application to store user settings, undo information, shopping cart contents, or a
local cache for your commonly used objects. Implementations of this feature are really limited only by
your imagination.

In this chapter, you will explore Silverlight’s isolated storage. I will walk you through building a
virtual storage explorer to view the directories and files contained within isolated storage for an
application. In addition, you will look at the isolated storage quota and how to increase the quota size
for your Silverlight applications.

Working with Isolated Storage
Storing application information has always been a challenge for developers of traditional web
applications. Often, implementing such storage means storing information in cookies or on the
server, which requires using a postback to retrieve the data. In the case of desktop applications,
implementing storage for application information is significantly easier, as developers have more
access to the user’s hard drive. Once again, Silverlight bridges the gap between desktop applications
and web applications by offering isolated storage.

Using the Silverlight classes for working with isolated storage, you can not only store settings
locally, but also create files and directories, as well as read and write files within isolated storage.

Using the Isolated Storage API
The classes for accessing isolated storage are contained within the System.IO.IsolatedStorage
namespace. This namespace contains the following three classes:

• IsolatedStorageFile

• IsolatedStorageFileStream

• IsolatedStorageSettings

You’ll look at each class to see what it represents.

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

184

IsolatedStorageFile
The IsolatedStorageFile class represents the isolated storage area, and the files and directories
contained within it. This class provides the majority of the properties and methods used when working
with isolated storage in Silverlight. As an example, in order to get an instance of the user’s isolated
storage for a given application, use the static method GetUserStoreForApplication(), as follows:

using (var store = IsolatedStorageFile.GetUserStoreForApplication())
{
 //...
}

Once the storage instance has been retrieved, a number of operations are available, including
CreateDirectory(), CreateFile(), GetDirectoryNames(), and GetFileNames(). Also, the class has
properties, such as Quota and AvailableFreeSpace. The following example creates a directory in
isolated storage called Directory1, and then it retrieves the total and available free space in isolated
storage:

using (var store = IsolatedStorageFile.GetUserStoreForApplication())
{
 store.CreateDirectory("Directory1");
 long quota = store.Quota;
 long availableSpace = store.AvailableFreeSpace;
}

IsolatedStorageFileStream
The IsolatedStorageFileStream class represents a given file. It is used to read, write, and create files
within isolated storage. The class extends the FileStream class, and in most cases, developers will use a
StreamReader and StreamWriter to work with the stream. As an example, the following code creates a
new file named TextFile.txt and writes a string to the file:

using (var store = IsolatedStorageFile.GetUserStoreForApplication())
{
 IsolatedStorageFileStream stream = store.CreateFile("TextFile.txt");
 StreamWriter sw = new StreamWriter(stream);
 sw.Write("Contents of the File);
 sw.Close();
}

IsolatedStorageSettings
The IsolatedStorageSettings class allows developers to store key/value pairs in isolated storage. The
key/value pairs are user-specific and provide a very convenient way to store settings locally. The
following example demonstrates storing the user’s name in IsolatedStorageSettings.

public partial class MainPage : UserControl
{
 private IsolatedStorageSettings isSettings =
 IsolatedStorageSettings.ApplicationSettings;

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

185

 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 this.cmdSave.Click += new RoutedEventHandler(cmdSave_Click);
 }

 void cmdSave_Click(object sender, RoutedEventArgs e)
 {
 isSettings["name"] = this.txtName.Text;
 SetWelcomeMessage();
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 SetWelcomeMessage();
 }

 private void SetWelcomeMessage()
 {
 if (isSettings.Contains("name"))
 {
 string name = (string)isSettings["name"];
 this.txtWelcome.Text = "Welcome " + name;
 }
 else
 {
 txtWelcome.Text =
 "Welcome! Enter Your Name and Press Save.";
 }
 }
}

The first time users access the application, they will see the message “Welcome! Enter Your Name
and Press Save.” They can then enter their name and click the Save Name button. The name will be
saved in local storage under the key/value pair called name. The next time the user accesses the
application, his name will still be stored in local storage, and he will see the friendly welcome
message, as shown in Figure 8-1.

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

186

Figure 8-1. Saving a user’s name with IsolatedStorageSettings

Now that you have briefly looked at some of the key classes associated with Silverlight’s isolated
storage, let’s try building an application that uses this storage.

Try It Out: Creating a File Explorer for Isolated Storage
In this example, you will create a file explorer that will allow a user to navigate through an
application’s virtual storage within Silverlight’s isolated storage. The file explorer will allow users to
view, modify, and create new files within the given directories. Keep in mind that a Silverlight
application has its own isolated storage, so the file explorer will be unique to the application. The end
result will appear as shown in Figure 8-2.

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

187

Figure 8-2. The isolated storage file explorer demo

Creating the Application Layout
Let’s get started by setting up the application layout.

1. Create a new Silverlight application in Visual Studio 2008. Name it
Ch8_ISExplorer and allow Visual Studio to create an ASP.NET web application
called Ch8_ISExplorer.Web to host your application.

2. When the project is created, you should be looking at the MainPage.xaml file. If
you do not see the XAML source, switch to that view so that you can edit the
XAML. The application should take up the entire browser window, so begin by
removing the Width and Height properties from your base UserControl.

<UserControl x:Class="Ch8_ISExplorer.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

188

3. Next, define a Grid for the form layout. Add two columns and three rows to the
Grid. Set the Width property of the first column to 250. Set the Height property
of the top row to 75 and the bottom row to 30. Also, in order to better see your
Grid layout, set the ShowGridLines property to True.

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="250" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="75" />
 <RowDefinition />
 <RowDefinition Height="30" />
 </Grid.RowDefinitions>
</Grid>

4. Run your application. It should look like Figure 8-3.

Figure 8-3. The grid layout of the file explorer application

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

189

Next, add a GridSplitter to allow the user to resize the left and right columns.
Set the Grid.RowSpan to 3 and HorizontalAlignment to Right.

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="250" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="75" />
 <RowDefinition />
 <RowDefinition Height="30" />
 </Grid.RowDefinitions>

 <basics:GridSplitter
 Grid.RowSpan="3"
 HorizontalAlignment="Right" />
</Grid>

Now you will start filling the Grid cells with controls. You will add quite a few
controls, using nested StackPanel components to assist in getting the desired
layout. These controls have been discussed in detail in Chapters 4 and 5, and
you can refer back to those chapters for more information about any of the
controls used here.

5. In Grid.Row and Grid.Column (0,0), place a StackPanel that contains a couple
cosmetic TextBlock controls that will serve as your application title, as
follows (with some of the existing code omitted for brevity):

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">
 ...
 <basics:GridSplitter ...

 <StackPanel
 VerticalAlignment="Bottom"
 Orientation="Vertical"
 Margin="5">

 <TextBlock
 FontSize="18"
 FontWeight="Bold"
 Text="Silverlight 2">
 </TextBlock>
 <TextBlock
 FontSize="18"
 FontWeight="Bold"
 Text="Isolated Storage Demo">
 </TextBlock>

 </StackPanel>
</Grid>

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

190

Referring to Figure 8-2, you will notice that the content is divided into two
sections: one for directories (top) and one for files (bottom). Let’s first take
care of the section for directories.

6. In Grid.Row and Grid.Column (1,0), place another StackPanel, which spans
two rows, with a couple TextBlock controls, three Button controls, and two
ListBox controls. The XAML should appear as follows (again, with some of the
source code omitted, but the changes are shown):

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">
 ...
 <basics:GridSplitter ...

 <StackPanel
 VerticalAlignment="Bottom"
 Orientation="Vertical"
 Margin="5">

 <TextBlock
 FontSize="18"
 FontWeight="Bold"
 Text="Silverlight 2">
 </TextBlock>
 <TextBlock
 FontSize="18"
 FontWeight="Bold"
 Text="Isolated Storage Demo">
 </TextBlock>

 </StackPanel>

 <StackPanel
 Grid.Row="1"
 Grid.RowSpan="2"
 Orientation="Vertical">

 <TextBlock
 FontSize="15"
 Text="Directories"
 Margin="5">
 </TextBlock>

 <TextBlock
 x:Name="lblCurrentDirectory"
 FontSize="13"
 Text="Selected Directory"
 Margin="5">
 </TextBlock>

 <StackPanel Orientation="Horizontal">
 <Button
 x:Name="btnUpDir"

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

191

 Margin="5"
 Click="btnUpDir_Click"
 Content="Up Directory"
 Width="100"
 Height="20" />
 <Button
 x:Name="btnOpenDir"
 Margin="5"
 Click="btnOpenDir_Click"
 Content="Open Directory"
 Width="100"
 Height="20" />
 </StackPanel>

 <ListBox Height="150"
 x:Name="lstDirectoryListing"
 Margin="5,5,13,5">
 </ListBox>
 </StackPanel>
</Grid>

First is a simple cosmetic TextBlock for the section title. This is followed by
the TextBlock named lblCurrentDirectory, which will be filled with the
current directory. As the users navigate through the directories, it will be
important to inform them which directory they are in.

Next are two Button controls (btnUpDir and btnOpenDir), which will be used for
navigating through the directories. This is simplified into two basic tasks:
moving up a directory and opening the currently selected directory. To get
the buttons to appear visually as desired, they are contained in a StackPanel
with horizontal orientation.

The final ListBox will be populated with directories named
lstDirectoryListing. As the users navigate through the directories using the
btnUpDir and btnOpenDir buttons, this ListBox will be repopulated
automatically with the directories contained in the user’s current location.

7. Next, still within Grid.Row and Grid.Column (1,0), add the files section, as
follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 ...
 <ListBox Height="100"
 x:Name="lstDirectoryListing"
 Margin="5,5,13,5">
 </ListBox>

 <TextBlock
 FontSize="15"
 Text="Files"
 Margin="5">
 </TextBlock>

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

192

 <StackPanel Orientation="Horizontal">
 <Button
 x:Name="btnOpenFile"
 Margin="5"
 Click="btnOpenFile_Click"
 Content="Show File"
 Width="100"
 Height="20" />
 </StackPanel>

 <ListBox Height="150"
 x:Name="lstFileListing"
 Margin="5,5,13,5">
 </ListBox>

 </StackPanel>
</Grid>

As with the previous section, the first TextBlock holds the section title. Next is
a Button control called btnOpenFile. Notice that even though there is only one
button, it is still placed within a StackPanel for consistency. In the future, if
you want to extend this application—for example, to add file deletion
functionality—you may want to add buttons to this StackPanel. This is purely
user preference; the StackPanel really was not required in this instance.

Finally, you have the ListBox that will be filled with the files in the current
directory, in the same way that the directories ListBox will be filled in the top
section.

8. To see what you have so far, press F5 (or choose Debug Start Debugging
from the menu bar) to start your Silverlight application.

Notice that Visual Studio will compile successfully and will open the browser
instance. However, just when you think everything is going great and you
are excited to see your beautiful form coming to life, you get an
XamlParseException with a cryptic message:

AG_E_PARSER_BAD_PROPERTY_VALUE [Line: 66 Position: 34].

This is caused by the fact that, within the code behind, you have not declared
the delegates that are referred to in your XAML.

■ Note The line and position noted in the error message you see may be slightly different from those shown here,

depending on the spacing you included when adding the controls to the code.

9. Stop debugging by clicking the Stop button. Press F7 or select View View
Code. Sure enough, there are no event handlers.

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

193

At this point, you could go through and manually add the handlers in the code.
But I think you’ve done enough typing already, so let’s have Visual Studio do
it for you.

10. Return to your XAML by clicking the MainPage.xaml file in the Files tab. Look
at the controls you have added. You will notice that the code refers to three
event handlers, one for each of the buttons: btnUpDir_Click,
btnOpenDir_Click, and btnOpenFile_Click.

11. Find the first reference, btnUpDir_Click. Right-click it and select the Navigate
to Event Handler option, as shown in Figure 8-4. Visual Studio will
automatically create the event handler in the code behind, as follows:

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 }

 private void btnUpDir_Click(object sender, RoutedEventArgs e)
 {

 }
}

Figure 8-4. Choosing the Navigate to Event Handler option in Visual Studio

12. Repeat step 11 for the other two event handlers. At this point, your code
behind should look as follows:

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 }

 private void btnUpDir_Click(object sender, RoutedEventArgs e)
 {

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

194

 }

 private void btnOpenDir_Click(object sender, RoutedEventArgs e)
 {

 }

 private void btnOpenFile_Click(object sender, RoutedEventArgs e)
 {

 }
}

13. Run the application. Once again, press F5 to start debugging. Barring any
typos, the Silverlight application should appear as shown in Figure 8-5.

Figure 8-5. Application with left portion layout

It’s looking good so far! You are almost finished with the application layout.
Now, let’s move on to the right column and add the final controls.

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

195

At the bottom of your Grid definition within Grid.Row and Grid.Column (0,1),
place another StackPanel. Within it, add a TextBox named txtFileName that
will contain the name of the file being edited, along with a Button control
named btnSave, which will save the file referred to in txtFileName. Your XAML
should look as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 ...

 </StackPanel>

 <StackPanel
 VerticalAlignment="Bottom"
 Orientation="Horizontal"
 Grid.Row="0"
 Grid.Column="1">

 <TextBox
 x:Name="txtFileName"
 Text="File1.txt"
 Margin="5"
 Width="300"
 Height="30"
 FontSize="15">
 </TextBox>
 <Button
 x:Name="btnSave"
 Margin="5"
 Content="Save"
 Width="100"
 Height="30"
 Click="btnSave_Click">
 </Button>

 </StackPanel>

</Grid>

14. While you are at it, go ahead and have Visual Studio create the event handler
for btnSave_Click. Right-click it and choose the Navigate to Event Handler
option to add the following handler:

public partial class MainPage : UserControl
{
 ...

 private void btnSave_Click(object sender, RoutedEventArgs e)
 {

 }
}

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

196

15. Navigate back to the XAML.Within Grid.Row and Grid.Column (1,1), add a
TextBox named txtContents, which will display the contents of the opened
file, as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 ...

 </StackPanel>

 <TextBox
 x:Name="txtContents"
 VerticalScrollBarVisibility="Visible"
 HorizontalScrollBarVisibility="Auto"
 AcceptsReturn="True"
 BorderBrush="Black" BorderThickness="2"
 Margin="5" Grid.Column="1" Grid.Row="1"
 FontSize="15" FontFamily="Courier">
 </TextBox>

</Grid>

Since this should be a multiline TextBox, you set the AcceptsReturn property to
True. You also set the VerticalScrollBarVisibility property to Visible,
which makes it always appear, and the HorizontalScrollBarVisibility
property to Auto, which makes it appear only when there is enough text to
require left and right scrolling.

16. Within Grid.Row and Grid.Column (1,2), place a StackPanel that contains five
TextBlock controls, some that are simply cosmetic, and some that will be
populated in the application’s code, as follows:

<Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True">

 ...

 </StackPanel>

 <TextBox
 x:Name="txtContents"
 VerticalScrollBarVisibility="Visible"
 HorizontalScrollBarVisibility="Auto"
 AcceptsReturn="True"
 BorderBrush="Black" BorderThickness="2"
 Margin="5" Grid.Column="1" Grid.Row="1"
 FontSize="15" FontFamily="Courier">
 </TextBox>

 <StackPanel
 VerticalAlignment="Bottom" Orientation="Horizontal"
 Margin="5" Grid.Column="1" Grid.Row="2">

 <TextBlock FontSize="13"
 Text="Available Space in Isolated Storage: " />

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

197

 <TextBlock x:Name="txtAvalSpace" FontSize="13" Text="123" />
 <TextBlock FontSize="13" Text="kb / " />
 <TextBlock x:Name="txtQuota" FontSize="13" Text="123" />
 <TextBlock FontSize="13" Text="kb" />

 </StackPanel>

</Grid>

With this, you are finished creating the application layout! You can now turn your attention to the
code behind.

Coding the File Explorer
Now let’s add the functionality that demonstrates accessing Silverlight’s isolated storage.

1. When the file explorer is started, it will do two things. First, it will load some
sample directories and files in isolated storage. Second, it will populate the
directories and files ListBox controls, as well as update the informative
TextBlock controls. You will encapsulate these tasks into two methods:
LoadFilesAndDirs() and GetStorageData(). Create a Loaded event handler and
add these two method calls to the event.

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 LoadFilesAndDirs();
 GetStorageData();
 }

 private void LoadFilesAndDirs()
 {

 }

 private void GetStorageData()
 {

 }

 private void btnUpDir_Click(object sender, RoutedEventArgs e)
 {

 }

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

198

 private void btnOpenDir_Click(object sender, RoutedEventArgs e)
 {

 }

 private void btnOpenFile_Click(object sender, RoutedEventArgs e)
 {

 }

 private void btnSave_Click(object sender, RoutedEventArgs e)
 {

 }
}

2. Next, add references to two namespaces for your application. Also, create a
global string variable called currentDir, which will store the current
directory.

using ...
using System.IO;
using System.IO.IsolatedStorage;

namespace Ch8_ISExplorer
{
 public partial class MainPage : UserControl
 {
 private string currentDir = "";

 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 ...
 }
}

3. Let’s implement the LoadFilesAndDirs() method. The first step is to get an
instance of the user’s isolated storage for the application using the
IsolatedStorageFile class’s GetUserStoreForApplication() method. You will
do this within a C# using statement so the instance is disposed of
automatically.

private void LoadFilesAndDirs()
{
 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 }
}

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

199

4. Now that you have an instance of the isolated storage, create three root-level
directories and three subdirectories, one in each of the root-level directories.
Use the CreateDirectory() method to create the directories, as follows:

private void LoadFilesAndDirs()
{
 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 // Create three directories in the root.
 store.CreateDirectory("Dir1");
 store.CreateDirectory("Dir2");
 store.CreateDirectory("Dir3");

 // Create three subdirectories under Dir1.
 string subdir1 = System.IO.Path.Combine("Dir1", "SubDir1");
 string subdir2 = System.IO.Path.Combine("Dir2", "SubDir2");
 string subdir3 = System.IO.Path.Combine("Dir3", "SubDir3");
 store.CreateDirectory(subdir1);
 store.CreateDirectory(subdir2);
 store.CreateDirectory(subdir3);
 }
}

5. Next, create two files: one in the root and one in a subdirectory. To do this,
use the CreateFile() method, which returns an IsolatedStorageFileStream
object. For now, you will leave the files empty, so after creating the files,
simply close the stream.

private void LoadFilesAndDirs()
{
 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 // Create three directories in the root.
 store.CreateDirectory("Dir1");
 store.CreateDirectory("Dir2");
 store.CreateDirectory("Dir3");

 // Create three subdirectories under Dir1.
 string subdir1 = System.IO.Path.Combine("Dir1", "SubDir1");
 string subdir2 = System.IO.Path.Combine("Dir2", "SubDir2");
 string subdir3 = System.IO.Path.Combine("Dir3", "SubDir3");
 store.CreateDirectory(subdir1);
 store.CreateDirectory(subdir2);
 store.CreateDirectory(subdir3);

 // Create a file in the root.
 IsolatedStorageFileStream rootFile =
 store.CreateFile("InTheRoot.txt");
 rootFile.Close();

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

200

 // Create a file in a subdirectory.
 IsolatedStorageFileStream subDirFile =
 store.CreateFile(
 System.IO.Path.Combine(subdir1, "SubDir1.txt"));
 subDirFile.Close();
 }
}

■ Caution Notice the Path.Combine() method call here is fully qualified (specified with the namespace). This is

because there is another Path class in System.Windows.Shapes. If you don’t fully qualify Path, the ambiguous

name will cause an error.

That completes the LoadFilesAndDirs() method. Next, you will implement the
GetStorageData() method, which will display the storage information in the
application.

6. Since you will be populating the directories and files ListBox controls, you
need to make sure you clear them each time the GetStorageData() method is
called. You will do this by calling the Items.Clear() method on the two
ListBox controls. Then you will get an instance of the user’s isolated storage,
in the same way as you did in the LoadFilesAndDirs() method.

private void GetStorageData()
{
 this.lstDirectoryListing.Items.Clear();
 this.lstFileListing.Items.Clear();

 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {

 }
}

7. Next, you want to list all of the directories that are contained in the directory
passed to the method. In order to do this, you will construct a search string
using the System.IO.Path.Combine() method. You will then call the
GetDirectoryNames() method along with the search string. This will return a
string array, which you can then step through to manually populate the
directories ListBox.

private void GetStorageData()
{
 this.lstDirectoryListing.Items.Clear();
 this.lstFileListing.Items.Clear();

 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

201

 {
 string searchString =
 System.IO.Path.Combine(currentDir, "*.*");

 string[] directories =
 store.GetDirectoryNames(searchString);

 foreach (string sDir in directories)
 {
 this.lstDirectoryListing.Items.Add(sDir);
 }
 }
}

8. Now populate the files ListBox. You do this in the same way that you
populated the directories ListBox, except this time, use the GetFileNames()
method, which similarly returns a string array.

private void GetStorageData()
{
 this.lstDirectoryListing.Items.Clear();
 this.lstFileListing.Items.Clear();

 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 string searchString =
 System.IO.Path.Combine(currentDir, "*.*");

 string[] directories =
 store.GetDirectoryNames(searchString);

 foreach (string sDir in directories)
 {
 this.lstDirectoryListing.Items.Add(sDir);
 }

 string[] files = store.GetFileNames(searchString);

 foreach (string sFile in files)
 {
 this.lstFileListing.Items.Add(sFile);
 }
 }
}

9. Now that the two ListBox controls are populated, you want to populate three
additional TextBlock controls. One will show the current directory. The other
two will display the amount of free space remaining in isolated storage and
the available quota for the application. You get this information by using the
Quota and AvailableFreeSpace properties, which return the total and free
space in bytes, respectively.

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

202

private void GetStorageData()
{
 this.lstDirectoryListing.Items.Clear();
 this.lstFileListing.Items.Clear();

 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 string searchString =
 System.IO.Path.Combine(currentDir, "*.*");

 string[] directories =
 store.GetDirectoryNames(searchString);

 foreach (string sDir in directories)
 {
 this.lstDirectoryListing.Items.Add(sDir);
 }

 string[] files = store.GetFileNames(searchString);

 foreach (string sFile in files)
 {
 this.lstFileListing.Items.Add(sFile);
 }

 long space = store.AvailableFreeSpace;
 txtAvalSpace.Text = (space / 1000).ToString();

 long quota = store.Quota;
 txtQuota.Text = (quota / 1000).ToString();

 this.lblCurrentDirectory.Text =
 String.Concat("\\", currentDir);
 }
}

■ Note For simplicity, you are dividing by 1000 instead of 1024.Therefore, the calculation will not be exact, but

close enough for the purposes ofthis example.

10. Run the application. You will see that the current directory is set to \, and that
the three directories and the file you created at the root level are displayed in
the ListBox controls, as shown in Figure 8-6.

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

203

Figure 8-6. The file explorer application showing the root

Now you can implement the Button events, starting with the Up Directory
and Open Directory buttons.

11. When the user clicks the Up Directory button, the system will find the current
directory’s parent directory using System.IO.Path.GetDirectoryName(), set
the current directory to be that parent directory, and reexecute the
GetStorageData() method.

private void btnUpDir_Click(object sender, RoutedEventArgs e)
{
 if (currentDir != "")
 {
 currentDir =
 System.IO.Path.GetDirectoryName(currentDir);
 }

 GetStorageData();
}

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

204

12. When the user clicks the Open Directory button, you will combine the current
directory with the selected directory from the directory ListBox using the
System.IO.Path.Combine() method, set the current directory to that new
directory, and once again reexecute the GetStorageData() method.

private void btnOpenDir_Click(object sender, RoutedEventArgs e)
{
 if (this.lstDirectoryListing.SelectedItem != null)
 {
 currentDir =
 System.IO.Path.Combine(
 currentDir,
 this.lstDirectoryListing.SelectedItem.ToString());
 }
 GetStorageData();
}

13. Next, implement the Show File button’s Click event, as follows:

private void btnOpenFile_Click(object sender, RoutedEventArgs e)
{
 if (this.lstFileListing.SelectedItem != null)
 {
 this.txtFileName.Text =
 this.lstFileListing.SelectedItem.ToString();

 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 string filePath =
 System.IO.Path.Combine(
 currentDir,
 this.lstFileListing.SelectedItem.ToString());

 IsolatedStorageFileStream stream =
 store.OpenFile(filePath, FileMode.Open);
 StreamReader sr = new StreamReader(stream);

 this.txtContents.Text = sr.ReadToEnd();
 sr.Close();
 }
 }
}

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

205

When a user clicks the Show File button, the file from isolated storage opens,
and its contents are displayed in txtContents. You achieve this by first getting
an instance of the user’s isolated storage, and then generating the path to the
file by combining the current directory with the file name provided in
txtFileName. After you have constructed the full file path, you open the file
using OpenFile(), which returns a Stream containing the file contents. You
attach a StreamReader to the Stream to assist in working with the stream, and
then display the contents of the Stream using the StreamReader’s ReadToEnd()
method.

14. Finally, wire up the Save button, which will save the contents of txtContents
to the file name specified in txtFileName. You want to make it so that if the
user enters a file name that doesn’t exist, the application will create a new
file. If the user enters one that does exist, the application will override the
contents of that file. Although this is not perfect for use in the real world, it
serves as a fine demo for using isolated storage.

private void btnSave_Click(object sender, RoutedEventArgs e)
{
 string fileContents = this.txtContents.Text;

 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 IsolatedStorageFileStream stream =
 store.OpenFile(
 System.IO.Path.Combine(
 currentDir,
 this.txtFileName.Text),
 FileMode.OpenOrCreate);

 StreamWriter sw = new StreamWriter(stream);
 sw.Write(fileContents);
 sw.Close();
 stream.Close();
 }

 GetStorageData();
}

This method is similar to the ShowFile() method. Basically, you get the
isolated storage instance, and open the file using the OpenFile() method,
passing it the full file path. However, this time, you pass the OpenFile()
method FileMode.OpenOrCreate. This way, if the file doesn’t exist, the
application will create it. You then attach the returned stream to a
StreamWriter, and write the contents to the Stream using the StreamWriter’s
Write() method.

After writing the file, you clean up the objects and call the GetStorageData()
method, which will cause the newly created file to appear in the files ListBox
(in the event a new file was created).

At this point, you’re ready to test your completed application.

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

206

Testing the File Explorer
Now let’s try out your new file explorer.

1. Fire up the application by pressing F5. If all goes well, you should see the
application.

2. Highlight Dir1 in the Directories list box and click the Open Directory button.
The application will navigate to that directory and refresh the list boxes to
show the directories and files contained within that file.

3. Enter the file name SampleTextFile.txt in the txtFileName text box. For the
contents, enter some arbitrary data. If you have Microsoft Word, you can
generate a ton of random text using =Rand(10,20) and paste the content into
the text box.

After you enter the contents, click the Save button. You will see the file appear
in the Files list box, as shown in Figure 8-7.

Figure 8-7. Testing the completed file explorer

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

207

4. Click the Up Directory button to navigate back to the root. You will notice that
the current directory changes, as do the contents of the list boxes. For kicks,
click Save again. This time, the application will save the same file in the root
directory.

5. Highlight the InTheRoot.txt file and click the Show File button. Since you left
the file empty, nothing will appear in the txtContents box. You can enter
some text in the text box and click Save.

6. Highlight SampleTextFile.txt and click Show File. The contents of your file
are still there. It really works!

7. Try adding some files (preferably with a large amount of text). Take a look at
the display of the current free space and quota of the isolated storage at the
bottom of the application. You should see the amount of free space decrease.

8. Stop debugging. Now restart debugging. Notice anything? Your files are still
there! That is because isolated storage is persistent data, and it will remain
until the user clears the isolated storage, as explained in the next section.

This exercise demonstrated how Silverlight’s isolated storage works and how you can access it. In
the following section, you will learn how to manage isolated storage, including changing its quota.

Managing Isolated Storage
By default, the amount of isolated storage space available for a Silverlight application is 1MB. You can
view the available storage, clear it, and increase its size.

Viewing and Clearing Isolated Storage
In order to view the isolated storage saved on your machine, simply right-click any Silverlight
application and select Silverlight Configuration from the pop-up menu. This will display the Microsoft
Silverlight Configuration window. Navigate to the Application Storage tab, as shown in Figure 8-8.
There, you can see your test application in the listing, and depending on what other Silverlight
applications you have accessed, you may see other web sites listed.

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

208

Figure 8-8. Viewing application storage information in the Microsoft Silverlight Configuration window

If users want to clear the storage space, they simply need to highlight the site they want to clear
data for and click Delete. This will display a confirmation dialog box, as shown in Figure 8-9.

Figure 8-9. Deleting an application’s isolated storage

What if you want more storage space for your application? Developers can request additional
storage space by using the TryIncreaseQuotaTo() method. A restriction placed on this task is that it can
be executed only in a user-triggered event, such as a Button control’s Click event. This restriction is in
place to prevent the application from increasing the quota without the user’s knowledge.

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

209

Try It Out: Increasing the Isolated Storage Quota
To demonstrate how to increase the isolated storage quota, let’s add a button to the file explorer demo
to increase the quota to 4MB.

1. Open the IsolatedStorageExplorer project that you created in the previous
exercise.

2. In the MainPage.xaml file, locate the definition of the Save button and add a
new Button control called btnIncreaseQuota, with the caption Increase Quota,
as follows:

<StackPanel
 VerticalAlignment="Bottom"
 Orientation="Horizontal"
 Grid.Row="0"
 Grid.Column="1">

 <TextBox
 x:Name="txtFileName"
 Text="File1.txt"
 Margin="5"
 Width="300"
 Height="30"
 FontSize="15">
 </TextBox>
 <Button
 x:Name="btnSave"
 Margin="5"
 Content="Save"
 Width="100"
 Height="30"
 Click="btnSave_Click">
 </Button>
 <Button
 x:Name="btnIncreaseQuota"
 Margin="5"
 Content="Increase Quota"
 Width="150"
 Height="30"
 Click="btnIncreaseQuota_Click">
 </Button>

</StackPanel>

3. You have wired up the Click event to a new event handler created by Visual
Studio. Navigate to the code behind’s definition of that event handler.

private void btnIncreaseQuota_Click(object sender, RoutedEventArgs e)
{
}

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

210

4. Next, you want to get an instance of the user’s isolated storage, just as you
did numerous times in creating the file explorer. Then call the
IncreaseQuotaTo() method, passing it 4000000, which is roughly 4MB. Add
the following to event handler:

private void btnIncreaseQuota_Click(object sender, RoutedEventArgs e)
{
 using (var store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 if (store.IncreaseQuotaTo(4000000))
 {
 GetStorageData();
 }
 else
 {
 // The user rejected the request to increase the quota size
 }
 }
}

■ Note These numbers are not exact, which is fine for the demonstration here. You can increase the quota to 4MB

exactly by multiplying 1024 by 4.

Notice that the IncreaseQuotaTo() method returns a Boolean value.
Depending on whether the user accepted the application’s request to
increase the quota size, true or false will be returned. If the user accepted the
request, you will want to redisplay the information displayed for the quota.
The easiest way to do this is to simply call the GetStorageData() method, as
you did in the event handler here.

5. Try out your new addition by running your application and clicking the new
Increase Quota button. You will see the dialog box shown in Figure 8-10.

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

211

Figure 8-10. Dialog box to request to increase available storage

Click Yes. You will notice that the available quota is now increased in your
application, as shown in Figure 8-11.

Figure 8-11. File explorer showing additional storage space

CHAPTER 8 ■ LOCAL STORAGE IN SILVERLIGHT

212

This completes the file explorer. Now you can apply these concepts to your own persistent storage
implementations in your Silverlight applications.

Summary
In this chapter, you looked at Silverlight’s isolated storage feature. As you saw, it is very
straightforward to store user-specific data for your application and have that data persist over browser
instances. This provides a very convenient way for developers to add offline content or save user
settings.

In the next chapter, you will look at Microsoft Expression Blend 2, an application created for the
sole purpose of visually editing XAML.

C H A P T E R 9

■ ■ ■

213

Introduction to Expression Blend

So far in this book, the primary focus has been on using Visual Studio 2008 to create Silverlight
applications. Visual Studio provides developers with a strong IDE for developing RIAs. However, you
may want your Silverlight applications to contain some complicated design elements, and in these
cases, it’s not much fun to edit the XAML manually. To address this problem, Microsoft has created
Expression Blend, a product built to edit XAML documents visually.

Whereas Visual Studio has been designed to cater to the developer, Expression Blend has been
built for the designer. As you’ve seen, Silverlight does a fantastic job of separating the appearance and
logic of an application, so developers and designers can work side by side. ASP.NET took a few strides
to achieve this separation, but still fell short in many ways. I think you will find that Silverlight has
reached a new layer in this separation, making it much more practical for designers and developers to
truly work in parallel in designing applications.

The first reaction most ASP.NET software developers will have when opening Expression Blend is
shock. “Wow, this looks like no Microsoft development product I have ever seen!” And it is true that
Expression Blend is quite different from the standard Visual Studio IDE type of product. The Microsoft
developers have finally provided a product for the graphic designer audience, and they have attempted
to make it very similar to the tools designers are accustomed to using. As software developers, we may
need to play around a bit in Expression Blend to get the feel of it. Personally, I have found it quite cool
to learn and use, and I think you will, too.

This chapter will get you started with Expression Blend. You’ll learn about its key features and its
workspace. Finally, I’ll walk you through creating a grid layout with Expression Blend.

Key Features in Expression Blend
In this section, you will look at some of the notable features in Expression Blend, including the
following:

• Visual XAML editor

• Visual Studio 2008 integration

• Split-view mode

• Visual State Manager and template editing support

• Timeline

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

214

■ Note One of the things that Microsoft has done better and better over the past few years is documentation.
Expression Blend’s documentation is quite comprehensive. For additional information about any of the items

discussed in this chapter, refer to the User Guide provided with Expression Blend.

Visual XAML Editor
Clearly, the biggest feature of Expression Blend is that it provides a WYSIWYG editor for XAML. XAML
is a very clean language, but it can also get quite complex quickly when you are working with your
applications. This is especially true when you start to add animations and transformations, which are
covered in Chapter 11.

Although it is possible to edit your XAML files completely in Visual Studio using IntelliSense, there
is no substitute for a visual editor. In addition, the XAML that Expression Blend creates is very clean
and developer-friendly. This should make developers happy, considering the terrible memories of
earlier versions of FrontPage, where every change you made would result in your code being mangled
beyond recognition.

In addition, when you start working with styles (covered in Chapter 10), IntelliSense support in
Visual Studio becomes limited, so the XML is very difficult to edit manually. Expression Blend provides
an extremely quick and easy way to edit and create styles, which is another reason it is an invaluable
tool for editing your Silverlight applications.

Visual Studio 2008 Integration
Due to the strong push for developers and designers to work in parallel, and given the fact that
XAML files are included directly within Visual Studio 2008 projects, a valid concern would be how
well Expression Blend and Visual Studio work together. If there were conflicts between the two IDEs,
there could be conflicts between the developers and designers, resulting in resistance to working in
parallel.

The good news is that Expression Blend integrates with Visual Studio. Visual Studio 2008 projects
can be opened directly in Expression Blend and vice versa. In addition, while Expression Blend creates
Visual Studio 2008 projects by default, it is also capable of opening Visual Studio 2005 projects.

Split-View Mode
As is shown in Figure 9-1, Expression Blend allows you to work in design and source (XAML) mode
simultaneously. For example, you can draw an object at the top in design mode, and the XAML in the
source window will be updated automatically. In addition, you can just as easily edit the XAML, and the
change will be reflected automatically in the design window.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

215

Figure 9-1. Expression Blend’s split-view mode

Visual State Manager and Template Editing Support
One of the cool features of Silverlight is the fact that all controls released with it support the new Parts
and State model, which requires strict separation between a control’s logic and appearance. Microsoft
recommends that all custom controls also support this model.

By separating the logic from the appearance of a control, a developer or designer can completely
change the appearance of a control without affecting its behavior. This process is known as creating a
template, or skinning, and is regulated by Visual State Manager (VSM). Expression Blend provides a
very clean way to create and edit these parts and states, which makes skinning your applications a
relatively simple task. You’ll learn more about VSM and skinning in Pro Silverlight 3 in C# 2008 by
Matthew MacDonald (Apress, 2009).

World-Class Timeline
In Silverlight, animations are based on keyframes within a storyboard. These keyframes are set on a
timeline, and they define the start and end points of a smooth visual transition. Figure 9-2 shows the
Expression Blend timeline, which is located in the Objects and Timeline panel.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

216

Figure 9-2. The Expression Blend timeline

The timeline provides you with structure for all of the animation sequences in your Silverlight
application. Instead of the timeline being based on abstract frames, it is based on time, which makes it
very straightforward and easy to understand. Also, as you develop your animations, you can quickly
navigate to any given time on the timeline to check the appearance of your application at that point.

Try It Out: Working with Projects in Expression Blend
As you’ve learned, one of the key features of Expression Blend is that it integrates directly with Visual
Studio 2008 projects. This exercise demonstrates how you can use the two products side by side while
creating and editing projects.

1. Open Expression Blend. By default, when you open Expression Blend, you
will see the splash screen shown in Figure 9-3. If you do not want this screen
to appear when you start Expression Blend, you can simply uncheck the Run
at startup check box at the bottom left. For now, if this screen appears, click
Close to continue with the example.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

217

Figure 9-3. Startup screen for Expression Blend

2. You should now have an empty Expression Blend workspace. From the main
menu, click File New Project. This will display the New Project dialog box.

3. In the New Project dialog box, select Silverlight 3 Application + Website for
the project type, and then enter Ch9_BlendProjects for the project name, as
shown in Figure 9-4. Click OK to create the new project.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

218

Figure 9-4. Creating a new project in Expression Blend

4. By default, Expression Blend will open the MainPage.xaml file for editing. In
the upper- right portion of the artboard (which contains the XML) are options
to switch between design, XAML, and split-mode view. Click Split to see both
the XAML and the design view at the same time, as shown in Figure 9-5.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

219

Figure 9-5. Split-view mode in Expression Blend

Now edit this project in Visual Studio. In the Project panel, right-click the
Ch9_BlendProjects project and select Edit in Visual Studio, as shown in Figure
9-6. This will automatically start Visual Studio 2008 and open your project.

■ Note Step 5 assumes that you have already installed Visual Studio 2008. If not, you will need to install that

to continue.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

220

Figure 9-6. Editing a Expression Blend project in Visual Studio

5. In Visual Studio 2008, double-click MainPage.xaml in Solution Explorer. Let’s
make a simple change to the application in Visual Studio.

6. Modify the root Grid to add the following code shown in bold, to define a
StackPanel with a TextBlock, TextBox, and Button.

<UserControl
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="Ch9_BlendProjects.MainPage"
 Width="640" Height="480">

 <Grid x:Name="LayoutRoot" Background="White">
 <StackPanel Margin="20" Orientation="Vertical">
 <TextBlock Margin="5" Text="Enter Your Name:" />
 <TextBox Margin="5" x:Name="txtName" />
 <Button Margin="5" Content="Click Me!" />
 </StackPanel>
 </Grid>
</UserControl>

7. From the main menu, click File Save All, just to make sure everything is
saved.

8. Switch back to Expression Blend. It will prompt you with the File Modified
dialog box, as shown in Figure 9-7. Click Yes. You will see Expression Blend
refresh the project so that it reflects the changes you made in Visual Studio
2008.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

221

Figure 9-7. File modification notification in Expression Blend

Pretty nifty, right? The same file modification is offered when you do the reverse: make a change
in Expression Blend and then go back into Visual Studio. Feel free to try this out yourself.

As this exercise demonstrated, Expression Blend and Visual Studio work together seamlessly. You
can switch back and forth between the two products without fear of data loss or conflicts.

■ Note Although usually Expression Blend will be used together with Visual Studio, Expression Blend will actually

pick up on changes to open files caused by edits in any editor.

Exploring the Workspace
Now that I have briefly discussed some of the key features of Expression Blend, let’s take a look at the
different elements of its workspace. Despite its radical appearance, developers will find many
similarities between Visual Studio and Expression Blend.

Let’s start out by looking at Expression Blend in Animation workspace mode. You enter this mode
by selecting Window Workspaces Animation from the main menu. Starting at the left, you will see
the Toolbox and the artboard, which contains the application and the XAML source. On the right is the
Properties panel. Docked with the Properties panel are the Project and Resources panels. At the bottom
of the workspace, you will see the VSM panel and Objects and Timeline panel. Let’s take a closer look
at some of these workspace elements.

Toolbox
The Expression Blend Toolbox provides the tools for adding and manipulating objects within your
application. As shown in Figure 9-8, it is divided into five primary sections: selection tools, view tools,
brush tools, object tools, and asset tools. The object tool group includes six submenus, which contain
path tools, shape tools, layout tools, text controls, and common controls.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

222

Figure 9-8. The Expression Blend Toolbox

Clicking the Asset Tools icon at the very bottom of the Toolbox opens the Asset Library window,
which lists the Silverlight system controls, as shown in Figure 9-9.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

223

Figure 9-9. The Asset Library window

Project Panel
The Project panel is very similar to Solution Explorer in Visual Studio. It lists all the files associated
with the project.

The Project panel also displays project references and properties. See Figure 9-6 for an example
of the Project panel.

Properties Panel
The Properties panel allows you to view and modify the properties of objects on the artboard. Figure 9-
10 shows an example of the Properties panel when an Ellipse control is selected.

The Properties panel is divided into a number of sections to help you easily find specific
properties. The sections displayed depend on the object you have selected. In addition, the Search box
at the top of the Properties panel allows you to filter the listing by typing in the property name. Figure
9-11 shows an example of the Properties panel after searching for the Margin property.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

224

Figure 9-10. The Properties panel

Figure 9-11. Filtering the Properties panel

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

225

Objects and Timeline Panel
All objects that are added to your Silverlight application are represented in the Objects and Timeline
panel. Since items can be nested within other objects, a type of layering takes place. For objects that
contain additional objects, an arrow will appear to the left of the item. Click this arrow to expand and
collapse the display of the nested objects.

When animation is added to your Silverlight application, storyboards are created. Storyboards are
represented in the timeline, as shown earlier in Figure 9-2. You’ll learn more about the timeline in
Chapter 11.

Laying Out an Application with Expression Blend
As discussed in Chapter 3, you have a number of options when it comes to laying out your Silverlight
application. Although these layout controls can be added manually, Expression Blend offers a visual
option. In this section, you will look at how Expression Blend can be used to easily work with the Grid
layout control.

Working with the Grid Control in Expression Blend
In Expression Blend, you place dividers to create columns and rows in the grid. When a Grid control is
defined, Expression Blend will show blue rulers above and to the left of the grid. When you move your
cursor over the blue rulers, a row divider will appear. Clicking the blue ruler will place the divider, and
dragging a placed divider will move it. You will have a chance to try this out in a moment.

In the top-left corner of the window is an icon that determines the grid’s edit mode. There are two
layout editing modes for a grid within Expression Blend:

Canvas layout mode: In canvas layout mode, when column and row dividers
are moved, elements inside those rows and columns stay in place.

Grid layout mode: In grid layout mode, the elements move with the column
and row dividers.

Try It Out: Editing a Layout Grid with Expression Blend
Let’s give layout in Expression Blend a try. In this exercise, you will create a simple grid layout with
three rows and two columns. Then you will nest a secondary grid within the right-center cell, and
place two more rows within that grid. The end product will look like Figure 9-12.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

226

Figure 9-12. The completed grid layout

1. In Expression Blend, create a new Silverlight 3 Application + Website project
named Ch9_BlendLayout. The MainPage.xaml file will be opened automatically,
and as usual, a root Grid named LayoutRoot will be present.

2. First, create the column definitions. To do this, at about 25% from the left of
the top blue grid ruler, click the ruler to place a grid divider, as shown in
Figure 9-13. If you examine the XAML, you will notice that the
<Grid.ColumnDefinitions> element has been added, along with two
<ColumnDefinition> elements, as follows (note that your percentages do not
need to be exact):

<UserControl
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="GridsInBlend.MainPage"
 Width="640" Height="480">

 <Grid x:Name="LayoutRoot" Background="White" >
 <Grid.ColumnDefinitions>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

227

 <ColumnDefinition Width="0.25*"/>
 <ColumnDefinition Width="0.75*"/>
 </Grid.ColumnDefinitions>
 </Grid>
</UserControl>

Figure 9-13. Adding column definitions

3. Next, create the rows. In the blue grid ruler on the left, click at about 10% from
the top and 10% from the bottom to place two dividers. Your grid should now
look like the one shown in Figure 9-14.

The source for the MainPage.xaml file should be very similar to the following
(the actual heights and widths do not need to be exact):

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

228

Figure 9-14. Adding row definitions

<UserControl
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="GridsInBlend.MainPage"
 Width="640" Height="480">

 <Grid x:Name="LayoutRoot" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition Height="0.1*"/>
 <RowDefinition Height="0.8*"/>
 <RowDefinition Height="0.1*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.25*"/>
 <ColumnDefinition Width="0.75*"/>
 </Grid.ColumnDefinitions>
 </Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

229

At this point, you have created a number of cells. Now, let’s create a nested
grid within the right-center cell. To do this, make certain that the LayoutRoot
is selected in the Objects and Timeline panel, and then double-click the Grid
control in the Toolbox. This will add a Grid of the default size to your
application, as shown in Figure 9-15.

Figure 9-15. Adding a nested grid

4. With this new grid selected, edit its properties. In the Properties panel, set the
properties as shown in Figure 9-16.

5. The nested grid should now take up the entire right-center cell. In the Objects
and Timeline panel, double-click the innerGrid object you just added. The top
and left grid rulers will now appear for the inner grid, as shown in Figure 9-17.

At this point, you could easily add rows and columns using the rulers, as you
did with the LayoutRoot, but let’s try a different method.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

230

Figure 9-16. Setting the nested grid properties

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

231

Figure 9-17. Nested grid with row and column rulers

With innerGrid selected, in the Properties panel’s Search box, type
Definitions. This will display the RowDefinitions and ColumnDefinitions
properties, as shown in Figure 9-18.

Figure 9-18. RowDefinition and ColumnDefinition property collections

6. Click the button to the right of RowDefinitions (Collection) to bring up the
RowDefinition Collection Editor dialog box.

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

232

7. Click the “Add another item” button near the bottom of the RowDefinition
Collection Editor dialog box and add two RowDefinition items. Set the Height
property for the first RowDefinition to be .25 and the Height property for the
second RowDefinition to .75, as shown in Figure 9-19. Then click OK to close
the editor.

Figure 9-19. Adding RowDefinition items in the RowDefinition Collection Editor

In the Properties panel, set the ShowGridLines property for both Grids to True.

The final XAML should look like the following (again, the heights and widths
only need to be close):

 <UserControl
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="GridsInBlend.MainPage"
 Width="640" Height="480">

 <Grid x:Name="LayoutRoot" Background="White" ShowGridLines="True" >

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 9 ■ INTRODUCTION TO EXPRESSION BLEND

233

 <Grid.RowDefinitions>
 <RowDefinition Height="0.1*"/>
 <RowDefinition Height="0.8*"/>
 <RowDefinition Height="0.1*"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="0.25*"/>
 <ColumnDefinition Width="0.75*"/>
 </Grid.ColumnDefinitions>
 <Grid Height="Auto"
 Margin="0,0,0,0"
 VerticalAlignment="Stretch"
 Grid.Row="1"
 x:Name="innerGrid"
 Grid.Column="1"
 ShowGridLines="True">
 <Grid.RowDefinitions>
 <RowDefinition Height="0.25*"/>
 <RowDefinition Height="0.75*"/>
 </Grid.RowDefinitions>
 </Grid>
 </Grid>
</UserControl>

8. Press F5 to test your application. The result should appear as shown earlier in
Figure 9-12.

As you can see, once you get used to working with Expression Blend, it can save you quite a bit of
typing. This will make laying out your applications a much faster and easier task.

Summary
In this chapter, you took a first look at Expression Blend and how it can be used alongside Visual Studio
2008 to help you design your Silverlight applications. You also looked at working with the Grid layout
control to create complex layouts for your applications.

The upcoming chapters explain how to use Expression Blend to style your Silverlight applications,
as well as add transformations and animations to your applications.

C H A P T E R 10

■ ■ ■

235

Styling in Silverlight

Of course you will want to create a rich appearance for your Silverlight application. You’ll make choices
about your design. What font size and family will you use? How much space will you place between your
objects? What size of text boxes and buttons will you use?

As you’ll learn in this chapter, you can control the styles of your Silverlight application’s UI elements
in several ways. The first approach you will explore is the straightforward use of inline properties. Then
you will look at how to define and apply Silverlight styles.

Inline Properties
You can simply define style properties directly in the object definitions. As an example, the following code
snippet sets the FontFamily, FontSize, FontWeight, and Margin properties within the TextBlock itself.

<TextBlock
 Grid.Row="0"
 Grid.Column="0"
 Text="First Name"
 FontFamily="Verdana"
 FontSize="16"
 FontWeight="Bold"
 Margin="5" />

You can set inline properties using either Visual Studio or Expression Blend. Let’s try out both.

Try It Out: Setting Inline Properties with Visual Studio
The following exercise demonstrates how to use Visual Studio 2008 to define the appearance of your
Silverlight applications with inline properties. In this exercise, you will create the UI for a simple data-
input application. You will not add any logic to the application, since the focus is on the appearance of
the controls.

1. Open Visual Studio 2008 and create a new Silverlight application named
Ch10_VSInlineStyling. Allow Visual Studio to create a Web Application project
to host the application.

CHAPTER 10 ■ STYLING IN SILVERLIGHT

236

2. When the project is created, you should be looking at the MainPage.xaml file. If
you do not see the XAML source, switch to that view. Start by adjusting the size
of the UserControl to get some additional space in which to work. Set Height to
400 and Width to 600, as follows:

<UserControl x:Class="Ch10_VSInlineStyling.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="600" Height="400">
 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>
</UserControl>

3. Add four rows and two columns to the root Grid. Set the width of the left
column to 150, leaving the rest of the row and column definitions unspecified,
as follows:

<Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
</Grid>

Next, add TextBlock controls in the three top-left columns and TextBox
controls in the top-right columns, with the text First Name, Last Name, and Age.
Then add three Button controls within a horizontal StackPanel in the bottom-
right column. Give these buttons the labels Save, Next, and Delete. (Again, you
won’t be adding any logic to these controls; you will simply be modifying their
appearance.) The code for this layout follows:

<Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Row="0" Grid.Column="0" Text="First Name" />
 <TextBlock Grid.Row="1" Grid.Column="0" Text="Last Name" />
 <TextBlock Grid.Row="2" Grid.Column="0" Text="Age" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 10 ■ STYLING IN SILVERLIGHT

237

 <TextBox Grid.Row="0" Grid.Column="1" />
 <TextBox Grid.Row="1" Grid.Column="1" />
 <TextBox Grid.Row="2" Grid.Column="1" />

 <StackPanel Grid.Row="3" Grid.Column="2" Orientation="Horizontal">
 <Button Content="Save" />
 <Button Content="Next" />
 <Button Content="Delete" />
 </StackPanel>
</Grid>

4. Press F5 to start the application. You will see that the UI you have created is far
from attractive, as shown in Figure 10-1. So let’s make this ugly UI look a bit
nicer by adding some styling.

Figure 10-1. Default input form without styling

CHAPTER 10 ■ STYLING IN SILVERLIGHT

238

5. Start with the three TextBlock controls. Within Visual Studio, set the
FontFamily, FontSize, FontWeight, and Margin properties directly within each
TextBlock definition, as shown in the following code snippet. As you type the
property names, you will notice that IntelliSense makes this task a bit less
tedious. Once you have set the four properties on the First Name TextBlock,
copy and paste the properties to the other two TextBlock controls.

<TextBlock Grid.Row="0" Grid.Column="0" Text="First Name"
 FontFamily="Verdana"
 FontSize="16"
 FontWeight="Bold"
 Margin="5" />
<TextBlock Grid.Row="1" Grid.Column="0" Text="Last Name"
 FontFamily="Verdana"
 FontSize="16"
 FontWeight="Bold"
 Margin="5" />
<TextBlock Grid.Row="2" Grid.Column="0" Text="Age"
 FontFamily="Verdana"
 FontSize="16"
 FontWeight="Bold"
 Margin="5" />

6. Run the application again. You can see the changes that have been made to the
TextBlock labels, as shown in Figure 10-2.

CHAPTER 10 ■ STYLING IN SILVERLIGHT

239

Figure 10-2. Input form with styled TextBlock labels

7. Now let’s focus on the TextBox controls. Add the following style attributes to
these controls.

<TextBox Grid.Row="0" Grid.Column="1"
 VerticalAlignment="Top"
 Height="24"
 Margin="5"
 FontSize="14"
 FontFamily="Verdana"
 Foreground="Blue"
 Background="Wheat" />

<TextBox Grid.Row="1" Grid.Column="1"
 VerticalAlignment="Top"
 Height="24"
 Margin="5"
 FontSize="14"
 FontFamily="Verdana"

CHAPTER 10 ■ STYLING IN SILVERLIGHT

240

 Foreground="Blue"
 Background="Wheat" />

<TextBox Grid.Row="2" Grid.Column="1"
 VerticalAlignment="Top"
 Height="24"
 Margin="5"
 FontSize="14"
 FontFamily="Verdana"
 Foreground="Blue"
 Background="Wheat" />

8. Run the application to see the effect. It should look like Figure 10-3.

Figure 10-3. Input form with styled TextBox controls

Notice that the spacing between the rows is too large. Ideally, the spaces
should only be large enough to allow the margins of the controls to provide the
separation. To adjust this spacing, on each RowDefinition, change the Height
property to Auto, as follows:

CHAPTER 10 ■ STYLING IN SILVERLIGHT

241

<Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
 <ColumnDefinition Width="150" />
 <ColumnDefinition />
</Grid.ColumnDefinitions>

9. Once more, run the application to see how it looks at this point. Figure 10-4
shows the results of the automatic height settings.

Figure 10-4. Input form with styled RowDefinitions

10. The next elements to tackle are the Button controls. Add the following style
attributes to these three controls:

<Button Content="Save"
 FontFamily="Verdana"
 FontSize="11"
 Width="75"
 Margin="5" />

<Button Content="Next"
 FontFamily="Verdana"
 FontSize="11"
 Width="75"
 Margin="5" />

<Button Content="Delete"
 FontFamily="Verdana"

CHAPTER 10 ■ STYLING IN SILVERLIGHT

242

 FontSize="11"
 Width="75"
 Margin="5" />

11. Run the application to see the effect. It should look like Figure 10-5.

Figure 10-5. Input form with styled buttons

12. Finally, it would be nice to add a margin around the entire application. To do
this, simply add a Margin property definition to the root Grid, as follows:

<Grid x:Name="LayoutRoot" Background="White" Margin="25">

13. Press F5. The final product is a UI that looks pretty nice, as shown in Figure 10-6.

As you saw in this exercise, the process of setting inline properties in Visual Studio is simple and
straightforward. However, the sample application contained only nine controls. You will look at some
better options later in this chapter, in the “Silverlight Styles” section. Next, let’s see how to set inline
properties within Expression Blend.

CHAPTER 10 ■ STYLING IN SILVERLIGHT

243

Figure 10-6. Final input form styled with inline properties

Try It Out: Setting Inline Properties with Expression Blend
The previous example used Visual Studio to set the inline properties of an application’s controls. For
those of you who are not a big fan of a lot of typing, you may find that Expression Blend is a better place
to set these properties. In this next exercise, you will perform the same styling as in previous exercise,
but using Expression Blend to set the properties, rather than Visual Studio 2008. Let’s give it a try!

1. Open Expression Blend and create a new Silverlight 2 application named
Ch10_BlendStyling.

2. The UserControl is 640 by 480 by default when created in Expression Blend, so
you can leave that size. The first thing to do is add the column and row
definitions. You can copy and paste the grid definitions from the previous
exercise, or you can add the columns and rows using Expression Blend’s grid
editor, as described in Chapter 9. The end result should look like Figure 10-7.

3. Next, add the controls to the form. In the Toolbox, double-click the TextBlock
control three times to add three TextBlock controls to the grid. Then double-
click the TextBox control three times, which will add three TextBox controls
below the TextBlock controls.

4. Double-click the StackPanel layout control. Once the StackPanel is added,
double- click it in the Objects and Timeline panel so that it is outlined, as
shown in Figure 10-8.

CHAPTER 10 ■ STYLING IN SILVERLIGHT

244

Figure 10-7. Completed grid layout

Figure 10-8. Selecting the StackPanel in the Objects and Timeline panel

CHAPTER 10 ■ STYLING IN SILVERLIGHT

245

With the StackPanel selected, double-click the Button control three times. The
three Button controls will appear within the StackPanel, as shown in Figure 10-9.

Figure 10-9. The Button controls added to the StackPanel

By default, Expression Blend adds a number of properties that you don’t want.
In the next steps, you’ll remove the properties shown in bold in the following
XAML:

<Grid x:Name="LayoutRoot" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <TextBlock HorizontalAlignment="Left"
 VerticalAlignment="Top" Text="TextBlock" TextWrapping="Wrap"/>
 <TextBlock HorizontalAlignment="Left"
 VerticalAlignment="Top" Text="TextBlock" TextWrapping="Wrap"/>
 <TextBlock HorizontalAlignment="Left"
 VerticalAlignment="Top" Text="TextBlock" TextWrapping="Wrap"/>
 <TextBox HorizontalAlignment="Left"
 VerticalAlignment="Top" Text="TextBox" TextWrapping="Wrap"/>

CHAPTER 10 ■ STYLING IN SILVERLIGHT

246

 <TextBox HorizontalAlignment="Left"
 VerticalAlignment="Top" Text="TextBox" TextWrapping="Wrap"/>
 <TextBox HorizontalAlignment="Left"
 VerticalAlignment="Top" Text="TextBox" TextWrapping="Wrap"/>
 <StackPanel Margin="0,0,50,20">
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 </StackPanel>
</Grid>

5. In the Objects and Timeline panel, highlight all of the TextBlock and TextBox
controls, as shown in Figure 10-10. You can highlight multiple items in the
Objects and Timeline panel by holding down the Shift or Ctrl key as you click.

Figure 10-10. Selecting multiple objects in the Objects and Timeline panel

With these six controls selected, look in the Properties panel. Notice that any
property that is set in the XAML has a white dot to its right. (Properties you
cannot edit have a gray dot.) You can easily remove these properties from the
XAML and “reset” the code by clicking the white dot and selecting Reset. Start
out by resetting the HorizontalAlignment property located in the Layout
section of the Properties panel, as shown in Figure 10-11. Then reset the
VerticalAlignment property. This will remove the HorizontalAlignment and
VerticalAlignment property definitions in the XAML.

CHAPTER 10 ■ STYLING IN SILVERLIGHT

247

Figure 10-11. Resetting the HorizontalAlignment property

6. The TextWrapping property is located in the Text Section of the Properties
panel, but you must extend the section to see it. I figured that this would be a
good opportunity to show you another feature of the Properties panel. At the
top of the Properties panel, type TextWrapping into the Search box. That will
filter the Properties panel to show only the TextWrapping property. Click and
reset that property as well.

7. Next, highlight the StackPanel and reset its Margin property in the same way.
When you have finished all of these steps, the XAML should contain the
following source code:

<Grid x:Name="LayoutRoot" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition/>

CHAPTER 10 ■ STYLING IN SILVERLIGHT

248

 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <TextBlock Text="TextBlock"/>
 <TextBlock Text="TextBlock"/>
 <TextBlock Text="TextBlock"/>
 <TextBox Text="TextBox"/>
 <TextBox Text="TextBox"/>
 <TextBox Text="TextBox"/>
 <StackPanel>
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 </StackPanel>
</Grid>

8. Now you need to place these controls in the proper cells in your grid. Click to
highlight the control in the Objects and Timeline panel. In the Layout section
of the Properties panel, you will see Row and Column properties. Set their values
so that you have the following result:

<Grid x:Name="LayoutRoot" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <TextBlock Text="TextBlock"/>
 <TextBlock Text="TextBlock" Grid.Row="1"/>
 <TextBlock Text="TextBlock" Grid.Row="2"/>
 <TextBox Text="TextBox" Grid.Column="1"/>
 <TextBox Text="TextBox" Grid.Column="1" Grid.Row="1"/>
 <TextBox Text="TextBox" Grid.Row="2" Grid.Column="1"/>
 <StackPanel Grid.Column="1" Grid.Row="3">
 <Button Content="Button"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 </StackPanel>
</Grid>

CHAPTER 10 ■ STYLING IN SILVERLIGHT

249

9. Go through each of the TextBlock controls to set the Text properties to First
Name, Last Name, and Age. Next, set the Text property of the TextBox controls to
blank (or just reset the property). Then set the Orientation property for the
StackPanel to Horizontal. Finally, set the Content property for the Button
controls to Save, Next, and Delete. The final result should be the following:

<Grid x:Name="LayoutRoot" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <TextBlock Text="First Name"/>
 <TextBlock Text="Last Name" Grid.Row="1"/>
 <TextBlock Text="Age" Grid.Row="2"/>
 <TextBox Grid.Column="1"/>
 <TextBox Grid.Column="1" Grid.Row="1"/>
 <TextBox Grid.Row="2" Grid.Column="1"/>
 <StackPanel Grid.Column="1" Grid.Row="3" Orientation="Horizontal">
 <Button Content="Save"/>
 <Button Content="Next"/>
 <Button Content="Delete"/>
 </StackPanel>
</Grid>

10. Run the solution, and you will see the initial layout, which should look the
same as what you started with in the previous exercise (Figure 10-1). The next
thing to do is set the style properties for your controls.

Highlight all three TextBlock controls. In the Properties panel, set the following
properties:

• FontFamily: Verdana

• FontSize: 16

• FontWeight: Bold

• Margin: 5,5,5,5

11. Select the three TextBox controls and set the following properties:

• FontFamily: Verdana

• FontSize: 14

• FontWeight: Bold

• Foreground: #FF0008FF

• Background: #FFF9F57D

• VerticalAlignment: Top

• Margin: 5,5,5,5

CHAPTER 10 ■ STYLING IN SILVERLIGHT

250

12. Highlight the three Button controls and set the following properties:

• FontFamily: Verdana

• FontSize: 11

• Width: 75

• Margin: 5,5,5,5

13. Switch to split-view mode. Within the XAML, place your cursor within one of
the RowDefinition items. Then, in the Properties panel, set the Height property
to Auto. Repeat this for all of the RowDefinition items in the Grid. When you are
finished setting the Height properties on the RowDefinition items, the XAML
for the application should be as follows:

<Grid x:Name="LayoutRoot" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="150"/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
 <TextBlock Text="First Name" FontFamily="Verdana"
 FontSize="16" FontWeight="Bold" Margin="5,5,5,5"/>
 <TextBlock Text="Last Name" Grid.Row="1" FontFamily="Verdana"
 FontSize="16" FontWeight="Bold" Margin="5,5,5,5"/>
 <TextBlock Text="Age" Grid.Row="2" FontFamily="Verdana"
 FontSize="16" FontWeight="Bold" Margin="5,5,5,5"/>
 <TextBox Text="" Grid.Row="0" Grid.Column="1"
 FontFamily="Verdana" FontSize="14" FontWeight="Bold"
 Foreground="#FF0008FF" Background="#FFF9F57D"
 VerticalAlignment="Top" Margin="5,5,5,5"/>
 <TextBox Text="" Grid.Row="1" Grid.Column="1"
 FontFamily="Verdana" FontSize="14" FontWeight="Bold"
 Foreground="#FF0008FF" Background="#FFF9F57D"
 VerticalAlignment="Top" Margin="5,5,5,5"/>
 <TextBox Text="" Grid.Row="2" Grid.Column="1"
 FontFamily="Verdana" FontSize="14" FontWeight="Bold"
 Foreground="#FF0008FF" Background="#FFF9F57D"
 VerticalAlignment="Top" Margin="5,5,5,5"/>
 <StackPanel Grid.Row="3" Grid.Column="1" Orientation="Horizontal">
 <Button Content="Save" Margin="5,5,5,5"
 Width="75" FontFamily="Verdana"/>
 <Button Content="Next" Margin="5,5,5,5"
 Width="75" FontFamily="Verdana"/>
 <Button Content="Delete" Margin="5,5,5,5"
 Width="75" FontFamily="Verdana"/>
 </StackPanel>
</Grid>

CHAPTER 10 ■ STYLING IN SILVERLIGHT

251

14. Your application will appear something like what is shown in Figure 10-12.
When you run the application, it should look very similar to the application at
the end of the previous exercise (Figure 10-6).

Figure 10-12. Final Project in Expression Blend

Getting the code perfect is not the point of this exercise. It’s OK if your application doesn’t look
exactly like my screenshot. The main objective was to get you familiar with setting and resetting inline
properties in Expression Blend.

In these two exercises, you saw how to change the appearance of your Silverlight applications using
inline properties in Visual Studio 2008 and Expression Blend. Although this method is very
straightforward, in a normal application with a lot of controls, setting all of the properties can become
tedious. And if you need to change the appearance of some elements throughout the application, it will
not be an easy task. This is where Silverlight styles come in.

Silverlight Styles
In the previous section, you saw how you can change the appearance of a Silverlight application by
setting inline properties. This works perfectly fine, but it presents maintenance problems. From a
maintenance perspective, it’s better to separate the style properties from the control definitions. For
example, consider the following TextBlock definition:

CHAPTER 10 ■ STYLING IN SILVERLIGHT

252

<TextBlock
 Grid.Row="0"
 Grid.Column="0"
 Text="First Name"
 FontFamily="Verdana"
 FontSize="16"
 FontWeight="Bold"
 Margin="5" />

Suppose you defined all your TextBlock controls this way, throughout your application. Then, if
you wanted to update the look of your application’s text boxes, you would need to modify the TextBox
definitions one by one. To save time and avoid errors, it’s preferable to be able to make updates to
properties related to the control’s appearance in one central location, rather than in each instance of
the control.

This problem is certainly not new to Silverlight. Developers and designers have faced this challenge
for years with HTML-based pages. HTML solves the problem with a technology known as Cascading
Style Sheets (CSS). Instead of specifying the different attributes of HTML controls directly, developers
can simply specify a style for the control that corresponds to a style in a style sheet. The style sheet, not
the HTML, defines all of the different appearance attributes for all controls. This way, if developers want
to adjust an attribute of a control in an application, they can change it in the style sheet one time, and
that change will be automatically reflected in every control in the application that references that style.

Silverlight offers a similar solution. Silverlight allows you to create style resources, in much the same
way you would define styles in a CSS style sheet. In Silverlight, style resources are hierarchical, and can
be defined at either the page level or the application level. If defined at the page level, the styles will be
available only to controls on that page. Styles defined at the application level can be utilized by controls
on all pages across the entire application. The “Silverlight Style Hierarchy” section later in this chapter
provides more information about the style hierarchy.

A Silverlight style is defined using the <Style> element, which requires two attributes: the Key
attribute represents the name of the style, and the TargetType attribute tells Silverlight which type of
control gets the style. Within the <Style> element, the style is made up of one or more <Setter>
elements, which define a Property attribute and a Value attribute. As an example, the preceding
TextBlock control’s appearance properties could be defined in the following Silverlight style definition:

<Style x:Key="FormLabel" TargetType="TextBlock">
 <Setter Property="FontFamily" Value="Verdana"/>
 <Setter Property="FontSize" Value="16"/>
 <Setter Property="FontWeight" Value="Bold"/>
 <Setter Property="Margin" Value="5,5,5,5"/>
</Style>

In HTML, to reference a style from a control, you simply set the style attribute. In Silverlight, this
syntax looks a little different. Silverlight styles are referenced in a control using an XAML markup
extension. You saw markup extensions in use in Chapter 5—when working with data binding in
Silverlight, you set a control’s property using the form {Binding, <path>. To reference the sample
FormLabel style from your TextBlock, the syntax would look as follows:

<TextBlock Text="Age" Grid.Row="2" Style="{StaticResource FormLabel}"/>

Let’s give styles a try, starting with defining styles at the page level.

CHAPTER 10 ■ STYLING IN SILVERLIGHT

253

Try It Out: Using Styles As Static Resources
In this exercise, you will define the styles as a static resource at the page level, using Expression Blend.
The application will have a very simple UI, so you can focus on styles.

1. In Expression Blend, create a new Silverlight 3 Application + Website named
Ch10_Styles.

2. Double-click the StackPanel control in the Toolbox to add a StackPanel. With
the StackPanel selected, reset the Width and Height property so the StackPanel
will automatically resize. Next, double-click the StackPanel in the Objects and
Timeline panel so it is selected (you should see the border change around the
StackPanel item). With the StackPanel selected, add two TextBox and two
Button controls to the StackPanel. The Objects and Timeline panel should
appear as shown in Figure 10-13.

Figure 10-13. The controls for the application in the Objects and Timeline panel

The XAML at this point should appear as follows:

<Grid x:Name="LayoutRoot" Background="White" >
 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">
 <TextBox Text="TextBox" TextWrapping="Wrap"/>
 <TextBox Text="TextBox" TextWrapping="Wrap"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 </StackPanel>
</Grid>

CHAPTER 10 ■ STYLING IN SILVERLIGHT

254

3. Run the application. As shown in Figure 10-14, at this point, it really is nothing
special. Now you’ll use Silverlight styles to spice up its appearance.

Figure 10-14. Initial Silverlight application without styles

4. First, you need to build your Silverlight styles. Select the first TextBox in the
Objects and Timeline panel and select Object Edit Style Create Empty
from the main menu. This will bring up the Create Style Resource dialog box.
Enter TextBoxStyle in the Name text box, and stick with the default “Define in”
option, which is to define the style in the current document. Your dialog box
should look like Figure 10-15. Click OK.

Figure 10-15. The Create Style Resource dialog box

CHAPTER 10 ■ STYLING IN SILVERLIGHT

255

At this point, you may notice a few changes:

• The Objects and Timeline panel now contains the style object, but all of the
form objects are no longer visible. At the top of the Objects and Timeline
panel, you will see an up arrow with the text TextBoxStyle (TextBox Style)
to its right. If you hover the mouse over the arrow, you will see a message
that reads “Return scope to [UserControl],” as shown in Figure 10-16.
Clicking this arrow will return you to the Objects and Timeline panel that
you have grown used to, with the different form objects showing.

Figure 10-16. Click the arrow next to the style name to see the controls in the UserControl’s scope listed in
the Objects and Timeline panel.

• A new breadcrumb appears at the top of the artboard, as shown in Figure
10-17. The breadcrumb provides another way for you to navigate back to
normal design mode.

Figure 10-17. A new breadcrumb allows you to navigate back to normal design mode.

• The XAML has changed. A new <UserControl.Resources> section has been
added, and the first TextBox has an added Style="{StaticResource
TextBoxStyle}" attribute, as follows:

<UserControl.Resources>
 <Style x:Key="TextBoxStyle" TargetType="TextBox"/>
</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White" >
 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">
 <TextBox Text="TextBox" TextWrapping="Wrap"
 Style="{StaticResource TextBoxStyle}"/>
 <TextBox Text="TextBox" TextWrapping="Wrap"/>
 <Button Content="Button"/>
 <Button Content="Button"/>
 </StackPanel>
</Grid>

CHAPTER 10 ■ STYLING IN SILVERLIGHT

256

5. Next, you will set the different style attributes for your TextBoxStyle. Make
certain that the TextBoxStyle is still in the Objects and Timeline panel, and
from the Properties panel, set the following properties:

• FontSize: 22

• FontFamily: Trebuchet MS

• Foreground: #FFFF0000

• Margin: 5

If you now examine the XAML, you will see that Expression Blend has added a
number of Setter elements to the TextBoxStyle, as follows:

<UserControl.Resources>
 <Style x:Key="TextBoxStyle" TargetType="TextBox">
 <Setter Property="FontSize" Value="22"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="Foreground" Value="#FFFF0000"/>
 <Setter Property="Margin" Value="5"/>
 </Style>
</UserControl.Resources>

6. Click the up arrow in the Objects and Timeline panel to return to the
UserControl, and highlight the first Button control you added. With it selected,
choose Object Edit Style Create Empty from the main menu. Name the
style ButtonStyle and leave it as defined in this document.

7. This will create the new style ButtonStyle of TargetType Button and will add
the Style attribute to the first button on your form. With the ButtonStyle
selected, set the following properties:

• FontSize: 20

• FontFamily: Trebuchet MS

• FontWeight: Bold

• Width: 200

• Margin: 5

• Foreground: #FF0000FF

With these properties set, your XAML will be updated to add the new Setter
elements to the ButtonStyle style, as follows:

<UserControl.Resources>
 <Style x:Key="TextBoxStyle" TargetType="TextBox">
 <Setter Property="FontSize" Value="22"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="Foreground" Value="#FFFF0000"/>
 <Setter Property="Margin" Value="5"/>
 </Style>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="20"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>

CHAPTER 10 ■ STYLING IN SILVERLIGHT

257

 <Setter Property="FontWeight" Value="Bold"/>
 <Setter Property="Width" Value="200"/>
 <Setter Property="Foreground" Value="#FF0000FF"/>
 <Setter Property="Margin" Value="5"/>
 </Style>
</UserControl.Resources>

Now you have two styles defined, and two of your controls are set to these
styles. Next, you need to set the style for your other controls.

8. Return to the UserControl in the Objects and Timeline panel and select the
second TextBox control. Select Object Edit Style Apply a Resource
TextBoxStyle from the main menu. This will add the Style="{StaticResource
TextBoxStyle}" attribute to the second TextBox.

9. Select the second Button control and select Object Edit Style Apply a
Resource ButtonStyle.

Your XAML should now look as follows:

<UserControl.Resources>
 <Style x:Key="TextBoxStyle" TargetType="TextBox">
 <Setter Property="FontSize" Value="22"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="Foreground" Value="#FFFF0000"/>
 <Setter Property="Margin" Value="5"/>
 </Style>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="20"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="FontWeight" Value="Bold"/>
 <Setter Property="Width" Value="200"/>
 <Setter Property="Foreground" Value="#FF0000FF"/>
 <Setter Property="Margin" Value="5"/>
 </Style>
</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White" >
 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">
 <TextBox Text="TextBox" TextWrapping="Wrap"
 Style="{StaticResource TextBoxStyle}"/>
 <TextBox Text="TextBox" TextWrapping="Wrap"
 Style="{StaticResource TextBoxStyle}"/>
 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>
 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>
 </StackPanel>
</Grid>

10. Run the application. The form now appears as shown in Figure 10-18.

CHAPTER 10 ■ STYLING IN SILVERLIGHT

258

Figure 10-18. Silverlight application with styles Applied

Now, let’s say that you want to change the width of the text boxes in your
application. Currently, their width is automatically set, but you would like to
change them to a fixed width of 400 pixels. If you were using inline properties, as
in the first two exercises in this chapter, you would need to set the property for
each TextBox control in your application. However, since you are using Silverlight
styles, you can simply change the TextBoxStyle, and all TextBox controls assigned
to that style will be updated automatically. Let’s see how this works.

11. To modify the TextBoxStyle property from Expression Blend, click the
Resources panel. When you expand the UserControl item, you will see your
two styles listed. To the right of TextBoxStyle, you will see an Edit Resource
button, as shown in Figure 10-19. Click this button, and you will see that you
have returned to the TextBoxStyle’s design scope.

Figure 10-19. Resources panel showing the TextBoxStyle

CHAPTER 10 ■ STYLING IN SILVERLIGHT

259

In the Properties panel, set the Width property of the TextBoxStyle to 400. Then
click the up arrow in the Objects and Timeline panel to return to the
UserControls scope.

Your XAML should now look as follows:

<Style x:Key="TextBoxStyle" TargetType="TextBox">
 <Setter Property="FontSize" Value="22"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="Foreground" Value="#FFFF0000"/>
 <Setter Property="Margin" Value="5"/>
 <Setter Property="Width" Value="400"/>
</Style>

12. Run the application to confirm that the width of both text boxes has been
updated, as shown in Figure 10-20.

Figure 10-20. The application with the updated TextBoxStyle

This exercise showed how Silverlight styles can be used as an alternative to defining styles inline. As
you can see, this approach provides for much cleaner XAML and also greatly improves the ease of
maintaining your application.

Defining Styles at the Application Level
In the previous example, you defined the styles locally, within your UserControl. If you have multiple
UserControl components that you would like to share styles, you can define the styles at the application
level. As far as the controls are concerned, there is absolutely no difference. You still indicate the style for
the control using the Style="{StaticResource StyleName}" extended attribute. What does change is
where the styles are defined.

In the preceding example, your styles were defined within the <UserControl.Resources> element on
the UserControl itself, as follows:

CHAPTER 10 ■ STYLING IN SILVERLIGHT

260

<UserControl.Resources>
 <Style x:Key="TextBoxStyle" TargetType="TextBox">
 <Setter Property="FontSize" Value="22"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="Foreground" Value="#FFFF0000"/>
 <Setter Property="Margin" Value="5"/>
 <Setter Property="Width" Value="400"/>
 </Style>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="20"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="FontWeight" Value="Bold"/>
 <Setter Property="Width" Value="200"/>
 <Setter Property="Foreground" Value="#FF0000FF"/>
 <Setter Property="Margin" Value="5"/>
 </Style>
</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White" >
 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">
 <TextBox Text="TextBox" TextWrapping="Wrap"
 Style="{StaticResource TextBoxStyle}"/>
 <TextBox Text="TextBox" TextWrapping="Wrap"
 Style="{StaticResource TextBoxStyle}"/>
 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>
 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>
 </StackPanel>
</Grid>

In order to define the styles at the application level, instead of defining the styles in the
<UserControl.Resources>, you move them to the App.xaml file within the element
<Application.Resources>, as follows:

 <Application.Resources>
 <Style x:Key="TextBoxStyle" TargetType="TextBox">
 <Setter Property="FontSize" Value="22"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="Foreground" Value="#FFFF0000"/>
 <Setter Property="Margin" Value="5"/>
 <Setter Property="Width" Value="400"/>
 </Style>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="20"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="FontWeight" Value="Bold"/>
 <Setter Property="Width" Value="200"/>
 <Setter Property="Foreground" Value="#FF0000FF"/>
 <Setter Property="Margin" Value="5"/>
 </Style>
</Application.Resources>

That is all there is to it. Again, there are no changes at all to the controls themselves. For example, to
use these styles on your UserControl, the XAML would still look like the following:

CHAPTER 10 ■ STYLING IN SILVERLIGHT

261

<Grid x:Name="LayoutRoot" Background="White" >
 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">
 <TextBox Text="TextBox" TextWrapping="Wrap"
 Style="{StaticResource TextBoxStyle}"/>
 <TextBox Text="TextBox" TextWrapping="Wrap"
 Style="{StaticResource TextBoxStyle}"/>
 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>
 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>
 </StackPanel>
</Grid>

Merged Resource Dictionaries
A new feature as of Silverlight 3 is the ability to place your style definitions in external files called Merged
Resource Dictionaries. As I have discussed in this chapter, you can define styles at the document or
application level. If defining in the application level, your styles must be placed in the App.xaml file. This
can result in a very large App.xaml. In Silverlight 3, you can now place your style definitions in external
files and simply reference them in your application. An additional benefit from this change is that you
can now create styles that can be easily reused between your applications, by simply copying the style
resource files to your new solution. An example of using Merged Resource Dictionaries is seen the
following code.

You can add a Resource Dictionary to a Silverlight application in Visual Studio by right-clicking on
your project in the Solution Explorer and selecting Add New Item. On the Add New Item screen select
the template named Silverlight Resource Dictionary and enter a name for the dictionary as shown in
Figure 10-21.

Figure 10-21. Adding a Resource Dictionary.

CHAPTER 10 ■ STYLING IN SILVERLIGHT

262

You can then add your style information to the resource dictionary as the following code displays.

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Style x:Key="Heading1" TargetType="TextBlock">
 <Setter Property="FontSize" Value="22" />
 <Setter Property="Foreground" Value="Silver" />
 </Style>

 <Style x:Key="Heading2" TargetType="TextBlock">
 <Setter Property="FontSize" Value="18" />
 </Style>

</ResourceDictionary>

Finally, to use the resource dictionary in your application, you need to add a entry in the
ResourceDictionary.MergedDictionaries section as shown in the following code. Once you have added
the entry for the ResourceDictionary, you can then use the styles as normal.

<UserControl.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="Dictionary1.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</UserControl.Resources>
<StackPanel x:Name="LayoutRoot">
 <TextBlock Text="Heading 1" Style="{StaticResource Heading1}" />
 <TextBlock Text="Heading 2" Style="{StaticResource Heading2}" />
</StackPanel>

Silverlight Style Hierarchy
As I mentioned earlier in the chapter, Silverlight styles are hierarchical. When a control has a style set,
Silverlight will first look for the style at the local level, within the document’s <UserControl.Resources>. If
the style is found, Silverlight will look no further. If the style is not found locally, it will look at the
application level. If the style is not found there, an XamlParseException will be thrown.

In addition to locally defined styles overriding application-level styles, any properties that are
defined inline in the control element itself will override properties within the style. For example,
consider the following XAML:

<UserControl.Resources>
 <Style x:Key="TextBoxStyle" TargetType="TextBox">
 <Setter Property="FontSize" Value="22"/>
 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="Foreground" Value="#FFFF0000"/>
 <Setter Property="Margin" Value="5"/>
 <Setter Property="Width" Value="400"/>
 </Style>
 <Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="FontSize" Value="20"/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 10 ■ STYLING IN SILVERLIGHT

263

 <Setter Property="FontFamily" Value="Trebuchet MS"/>
 <Setter Property="FontWeight" Value="Bold"/>
 <Setter Property="Width" Value="200"/>
 <Setter Property="Foreground" Value="#FF0000FF"/>
 <Setter Property="Margin" Value="5 "/>
 </Style>
</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White" >
 <StackPanel HorizontalAlignment="Left" VerticalAlignment="Top">
 <TextBox Text="TextBox" TextWrapping="Wrap"
 Style="{StaticResource TextBoxStyle}" FontSize="10"/>
 <TextBox Text="TextBox" TextWrapping="Wrap"
 Style="{StaticResource TextBoxStyle}"/>
 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>
 <Button Content="Button" Style="{StaticResource ButtonStyle}"/>
 </StackPanel>
</Grid>

Both TextBox controls are set to the TextBoxStyle style; however, the first TextBox has an inline
property defined for FontSize. Therefore, when you run the XAML, it will appear as shown in Figure 10-22.

Figure 10-22. An example of inline properties overriding style properties

Notice that even though FontSize was defined inline, the control still picked up the remaining
properties from TextBoxStyle. However, a locally defined style will prevent any properties from being
applied from an application-level style.

CHAPTER 10 ■ STYLING IN SILVERLIGHT

265

Figure 10-23. Result of Derived Styles Using BasedOn

Summary
In this chapter, you looked at options for styling your Silverlight applications. You saw how to define
style properties inline using both Visual Studio and Expression Blend. Then you explored defining styles
with Silverlight styles, both at the document level and the application level. In the next chapter, you will
look at using Expression Blend to define Silverlight transformations and animations.

C H A P T E R 11

■ ■ ■

267

Transformations and Animation

Incorporating animation of objects in a youb application can really enhance the UI. In the past, to
implement this type of animation in a youb site, you would most likely turn to Adobe Flash. The cool
thing for Microsoft .NET developers is that now you can do it all within the technologies that you know,
and better yet, you can code it using .NET. Personally, I consider this the most exciting aspect of
Silverlight. For years, I have been struggling with the desire to put animations into my applications, but
not doing so because I did not want to jump over to Flash. But that’s no longer necessary. You can now
do it all within .NET, my friends! This chapter will show you just how that’s done.

Introduction to Silverlight Animation
The term animation usually brings to mind cartoons or animated features like those that Disney has
brought to life on the big screen. Artists create a number of images with slight variations that, when
shown in rapid sequence, appear as fluid movement. Fundamental to any type of animation is the
changing of some attribute of an object over time.

For Silverlight, the implementation of an animation is very straightforward. You change a property
of an object gradually over time, such that you have the appearance of that object moving smoothly
from one point to the next.

As an example, Figure 11-1 shows an icon bar that I created for one of my Silverlight applications. As
yyour mouse rolls over an icon in the bar, the icon grows; as the mouse leaves the icon, it shrinks back to
its initial size. When you click one of the icons, the icon bounces, just as it does on the Mac OS X Dock.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

268

Figure 11-1. An animated application bar created with Silverlight

In the example in Figure 11-1, for one of the icons, the animation that was created when the mouse
was placed over the icon had two basic positions: at timestamp 0.00, the icon’s Width and Height
properties were set to 50 pixels; at timestamp 0.25, the Width and Height properties were set to 75 pixels.
To make the transition smooth from timestamp 0.00 to 0.25, Silverlight creates a spline, which will
generate all of the “frames” along the way to make the movement appear fluid to the human eye.

Silverlight Storyboards
In movies or cartoon animations, a storyboard is a sequence of sketches that depict changes of action
over the duration of the film or cartoon. So, essentially, a storyboard is a timeline. In the same way,
storyboards in Silverlight are timelines. As an example, Figure 11-2 shows a storyboard for an application
that animates the transformation of a circle and two rectangles.

Figure 11-2. Example of a storyboard

In the storyboard in Figure 11-2, three objects are represented: a circle, a small rectangle, and a large
rectangle. At the start of the storyboard’s timeline, all three objects are on the left side of the document.
After 2 seconds, the circle and smaller rectangle start to move toward the right side of the document. The
larger rectangle starts to change its background from white to black. At 4 seconds into the timeline, the
circle and the smaller rectangle will have reached the right side of the document. At that time, the

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

269

smaller rectangle will begin to turn into a square. At 8 seconds, the smaller rectangle will have turned
into a square, and the larger rectangle will have turned fully black.

If you translate this storyboard into Silverlight animations, you will have four animations:

• Two animations that will cause the circle and the smaller square to move from the
left to the right side of the document.

• An animation that will change the background of the larger rectangle from white
to black.

• An animation to change the smaller rectangle into a square.

Next, you will look at the different types of animations in Silverlight .

Types of Animation in Silverlight
There are two basic types of animations in Silverlight:

Linear interpolation animation: This type of animation smoothly and
continuously varies property values over time.

Keyframe animation: With this type of animation, values change based on
keyframes that have been added to a given point in the timeline.

Most commonly, keyframe animations are used in conjunction with a form of interpolation to
smooth animations.

All types of animation in Silverlight are derived from the Timeline class found in the
System.Windows.Media.Animation namespace. The following types of animation are available:

• ColorAnimation

• ColorAnimationUsingKeyFrames

• DoubleAnimation

• DoubleAnimationUsingKeyFrames

• ObjectAnimationUsingKeyFrames

• PointAnimation

• PointAnimationUsingKeyFrames

Each of these animates a different type of object. For example, ColorAnimation animates the value of
a Color property between two target values. Similarly, DoubleAnimation animates the value of a Double
property, PointAnimation animates the value of a Point property, and ObjectAnimation animates the
value of an Object property. Developers determine which animation type to use based on what they
want to animate.

As an example, let’s look at a very simple animation where you will increase the size of a rectangle
over time, as shown in Figure 11-3. This example will allow us to dissect some of the properties involved
with the animation.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

270

Figure 11-3. Animation of growing a rectangle

To perform this animation, you need to use a DoubleAnimationUsingKeyFrames animation, since you
are modifying the Width and Height properties of the rectangle, both of which are properties of type
Double. Let’s look at the XAML used to perform this animation.

<UserControl.Resyources>
 <Storyboard x:Name="Storyboard1">
 <DoubleAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Storyboard.TargetName="rectangle"
 Storyboard.TargetProperty="Width">
 <SplineDoubleKeyFrame KeyTime="00:00:02" Value="400"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 BeginTime="00:00:00"
 Storyboard.TargetName="rectangle"
 Storyboard.TargetProperty="Height">
 <SplineDoubleKeyFrame KeyTime="00:00:02" Value="240"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
</UserControl.Resyources>

<Grid x:Name="LayoutRoot" Background="White" >
 <Rectangle
 Height="120"
 Width="200"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Stroke="#FF000000"
 x:Name="rectangle"/>
</Grid>

A number of elements are required. First, the rectangle itself has a name defined. This is required, as
the animation needs to be able to refer to the rectangle by its name.

Next, in the storyboard, you have two animations: one to animate the width and one to animate
the height.

The BeginTime property tells Silverlight at what time during the storyboard the animation should
begin. In both cases, you are starting the animations as soon as the storyboard is initiated
(BeginTime="00:00:00").

The TargetName property tells the animation which control is being animated. In this case, both
animations are targeting the rectangle.

The final property set is TargetProperty. This is an attached property that refers to the property that
is being animated. In the case of the first animation, TargetProperty is set to the rectangle’s Width
property. As the animation’s value is changed, the value will be set to the Width property of the rectangle.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

271

Finally, since this is a keyframe animation, keyframes are defined within the animation. In your case,
only one keyframe is defined, 2 seconds (KeyTime="00:00:02") into the storyboard. In the first animation, 2
seconds into the storyboard’s timeline, the value of the Width property will be changed to 400:

<SplineDoubleKeyFrame KeyTime="00:00:02" Value="400"/>

Programmatically Controlling Animations
Once your animations have been created, Silverlight needs to know when to trigger a given animation or
storyboard. Silverlight provides a number of functions that allow you to programmatically control your
storyboard animations. Table 11-1 lists some common storyboard methods.

Table 11-1. Common Storyboard Animation Methods

Method Description

Begin() Initiates the storyboard

Pause() Pauses the storyboard

Resume() Resumes a paused storyboard

Stop() Stops the storyboard

Seek() Skips to a specific part of the storyboard animation

As an example, consider a simple animation where a rectangle grows and shrinks, repeating forever.

You want to allow the user to control the animation through a simple UI. Clicking the Start button starts
the animation, and clicking the Stop button stops it. In addition, if the user clicks the rectangle, it will
pause and resume the animation. Here’s the XAML to set up the application:

<UserControl.Resyources>
 <Storyboard x:Name="MoveRect" RepeatBehavior="Forever">
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Storyboard.TargetName="rectangle" Storyboard.TargetProperty="Width">
 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="200"/>
 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="600"/>
 <SplineDoubleK
eyFrame KeyTime="00:00:06" Value="200"/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames BeginTime="00:00:00"
 Storyboard.TargetName="rectangle" Storyboard.TargetProperty="Height">
 <SplineDoubleKeyFrame KeyTime="00:00:00" Value="100"/>
 <SplineDoubleKeyFrame KeyTime="00:00:03" Value="300"/>
 <SplineDoubleKeyFrame KeyTime="00:00:06" Value="100"/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
</UserControl.Resyources>

<Grid x:Name="LayoutRoot" Background="White" >

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

272

 <Rectangle Height="100" Width="200" Fill="#FF000AFF"
 Stroke="#FF000000" StrokeThickness="3" x:Name="rectangle" />
 <Button Height="24" Margin="200,416,340,40"
 Content="Start" Width="100" x:Name="btnStart" />
 <Button Height="24" Margin="340,416,200,40"
 Content="Stop" Width="100" x:Name="btnStop" />
</Grid>

The UI is shown in Figure 11-4.
To implement the desired behavior, you will wire up three event handlers in the Page constructor.

Figure 11-4. The setup for the example of programmatically controlling animation

To start the animation when the user clicks the Start button, you use the storyboard’s Begin()
method. To stop the animation, you use the storyboard’s Stop() method. The pause/resume behavior is
a bit trickier, but still not complicated. You include a private Boolean property called Paused, which you
use to tell the code behind whether or not the animation is paused. To pause and resume the animation,
you use the Pause() and Resume() methods. The code looks like this:

private bool Paused;
public Page()
{
 // Required to initialize variables
 InitializeComponent();
 this.btnStart.Click += new RoutedEventHandler(btnStart_Click);
 this.btnStop.Click += new RoutedEventHandler(btnStop_Click);
 this.rectangle.MouseLeftButtonUp +=
 new MouseButtonEventHandler(rectangle_MouseLeftButtonUp);
}

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

273

void rectangle_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)
{
 if (Paused)
 {
 this.MoveRect.Resume();
 Paused = false;
 }
 else
 {
 this.MoveRect.Pause();
 Paused = true;
 }
}

void btnStop_Click(object sender, RoutedEventArgs e)
{
 this.MoveRect.Stop();
}

void btnStart_Click(object sender, RoutedEventArgs e)
{
 this.MoveRect.Begin();
}

That’s all there is to it!
So far in this chapter, you have looked at some very simple animations. Of course, in reality,

animations can get much more complex. One of the key advantages you have as a developer is that there
are tools to assist you with these animations. Expression Blend is the tool to use when designing yyour
Silverlight animations.

Using Expression Blend to Create Animations
Although you can use Visual Studio 2008 to create yyour animations in Silverlight, Visual Studio does not
include designer tools to assist you. If you are going to build animations programmatically, Visual Studio
is the way to go. But if you are creating yyour animations in design mode, Expression Blend has the tools
that allow you to do this easily.

Viewing a Storyboard in the Expression Blend Timeline
The primary asset within Expression Blend for animations is the Objects and Timeline panel. Up to this
point, you have focused on the object side of the Objects and Timeline panel. With animations, it is all
about the timeline. With a storyboard selected, the timeline appears as shown in Figure 11-5.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

274

Figure 11-5. Expression Blend’s timeline for a storyboard

The timeline in Figure 11-5 is actually the implemented timeline for the storyboard shown earlier in
Figure 11-2. The three objects in the storyboard are listed in the Objects and Timeline panel. To the right
of each of these objects, you see the timeline with just over 10 seconds showing horizontally. At time 0,
there are three keyframes added, indicating that some animation action is taking place at that time.
Then, at 4 seconds into the timeline, you see two keyframes providing the end point of the circle and
smaller rectangle’s movement from left to right. At 8 seconds through the timeline, there are two final
keyframes: one providing an end point for the smaller rectangle turning into a square and one changing
the larger rectangle to black.

To better understand how Expression Blend can help you build yyour animations, let’s run through
an exercise.

Try It Out: Creating an Animation with Expression Blend
In this exercise, you’ll create the classic bouncing ball animation using Expression Blend. You’ll create
an animation that will make a red ball drop and bounce on a black rectangle until it comes to rest. You’ll
start off with a very simple animation, and then add to it to make it progressively more realistic.

1. Create a new Silverlight application in Expression Blend named
Ch11_BlendAnimations.

2. Add an Ellipse control with red fill and a black border near the top center of
the grid. Next, add a Rectangle control to the very bottom of the grid, and have
it stretch all the way from left to right. Set the fill color and border color to
black. Your application should appear similar to Figure 11-6.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

275

Figure 11-6. Initial application layout

3. The first step in creating an animation is to create a new storyboard. On the
Objects and Timeline panel, click the button with the plus sign, to the right of
the text “(No Storyboard open),” as shown in Figure 11-7. This opens the
Create Storyboard Resyource dialog box.

Figure 11-7. Click the plus button to create a new storyboard.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

276

4. In the Create Storyboard Resource dialog box, enter BounceBall in the Name
(Key) text box, as shown in Figure 11-8. This will be the name of yyour
storyboard.

Figure 11-8. Name yyour storyboard in the Create Storyboard Resyource dialog box.

5. When the storyboard is created, the timeline will be visible on the right side of
the Objects and Timeline panel. To better see this, switch to the Animation
workspace in Expression Blend by selecting Window Active Workspace
Animation Workspace. Your workspace should now look similar to Figure 11-9.

Figure 11-9. The Animation workspace in Expression Blend

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

277

Your animation will have many keyframes, as the ball will be moving up and
down as it “bounces” on the rectangle. To simplify things, every change of
direction will cause the need for a new keyframe. For yyour first keyframe, you
will simply take the ball and drop it onto the top of the rectangle. To do this, you
need to add a new keyframe and move the ball to its new position on the grid.

Make sure the artboard is surrounded in a red border with “Timeline recording
is on” in the upper-right corner. If this is not the case, make certain that
BounceBall is selected for the storyboard in the Object and Timeline panel, and
you can click the red circle in the top-left corner to toggle between recording
and not recording.

6. Move the playhead (the yellow vertical line on the timeline with the down
arrow at the top), to position 3 (3 seconds), as shown in Figure 11-10.

Figure 11-10. Moving the playhead on the timeline

7. With the playhead at 3 seconds, select the ellipse and move it down so that it is
positioned directly below its starting point, but touching the black rectangle,
as shown in Figure 11-11.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

278

Figure 11-11. Repositioned ball on your grid

If you look carefully at the timeline, you’ll notice that a red circle has shown up
to the left of the Ellipse control in the Objects and Timeline panel, with a white
arrow indicating that the object contains an animation. In addition, in the
timeline, at position 3 seconds, a white ellipse has appeared to the right of the
Ellipse control. This is how Expression Blend visually represents a keyframe.

At the top of the timeline, you will see buttons for navigating forward and
backward between the frames in the animation. In addition, there is a play
button that lets you view the animation.

8. Click the play button to view the animation. If you followed the steps properly,
you will see the ball start at the top of the grid and slowly move to the top of
the rectangle.

You just created yyour first animation! However, it isn’t very realistic. In a real
environment, the ball would accelerate as it fell toward the rectangle. So its
movement would start out slow and speed up. You can mimic this behavior by
modifying yyour keyframe and adding a spline.

9. Select the newly added keyframe in the timeline. (When the keyframe is
selected, it will turn gray instead of white.)

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

279

Once the keyframe is selected, in the Properties panel, you will see a section
titled Easing. This section allows you to adjust the KeySpline property. By
default, the interpolation between the two keyframes is linear. However, for this
example, you want to speed up the ball as it gets closer to the second keyframe.

10. Click and drag the dot in the upper-right corner of the KeySpline grid (the end
point of the right side of the line), and drag it down so it appears as shown in
Figure 11-12.

11. Click the play button at the top of the timeline. This time, you will see that the
circle starts to drop slowly and then speeds up the closer it gets to the
rectangle. This makes for a much more realistic animation.

12. Next, the circle is going to bounce back up after impacting the rectangle. With
recording still on, move the playhead to 6 seconds on the timeline, and then
move the circle directly up from its current position to about three-fourths its
initial starting point.

13. Select the new keyframe that is created, and navigate to the Easing section of
the Properties panel. This time, you want the movement to start out fast and
slow down as the circle reaches its apex. To get this effect, move the bottom-
left dot up so the KeySpline curve appears as shown in Figure 11-13.

Figure 11-12. Adjusting the KeySpline property for the ball dropping

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

280

Figure 11-13. Adjusting the KeySpline property for the ball rising

14. Click the play button above the timeline to see the animation you have so far.
The circle will fall with increasing speed, and then bounce back up with
decreasing speed. So far so good, but what goes up, must come down.

Move the playhead to 8 seconds, and move the circle up about one-fourth its
initial position and adjust the KeySpline property to match Figure 11-12.
Sticking with the pattern, move the playhead to 10 seconds, and move the
circle down to the top of the rectangle. The KeySpline curve should match
Figure 11-13. Repeat this pattern at 11 seconds, and then 11.5 seconds.

15. Click the play button. You should see the circle bounce on the rectangle as you
would expect. The final timeline will appear as shown in Figure 11-14.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

281

Figure 11-14. Final timeline for bouncing ball

Next, you need to tell Silverlight when the animation should take place. You
will keep it simple and have the animation start when the page is loaded.

16. Navigate to the code behind for the MainPage.xaml file. In the Page()
constructor, add the event handler for the Loaded event, as follows:

public MainPage()
{
 // Required to initialize variables
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
}

void Page_Loaded(object sender, RoutedEventArgs e)
{
 this.BounceBall.Begin();
}

17. Run the application. At this point, you should see the ball bounce on the
rectangle. You might see something like what is shown in Figure 11-15.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

282

Figure 11-15. Finished bouncing ball animation application

In this section, you discussed animations in Silverlight. You should be comfortable creating new
animations for yyour application in Expression Blend, and modifying and programming against those
animations in Visual Studio 2008. The next section addresses transformations in Silverlight.

Creating Transformations in Silverlight
Silverlight includes a number of 2D transforms, which are used to change the appearance of objects.
Transforms in Silverlight are defined using a transformation matrix, which is a mathematical construct
for mapping points from one coordinate space to another. If this sounds a bit confusing, do not fear,
Silverlight abstracts this matrix.

Silverlight supports fyour transformation types: rotation, scaling, skewing, and translation.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

283

■ Note You can also define yyour own transformation matrix, if you need to modify or combine the fyour

transformation types. See Pro Silverlight 3 by Matthew MacDonald (Apress, 2009) for details on how to do this.

Transformation Types
Figure 11-16 shows a Silverlight application that has been divided into four grid cells. Each cell contains
two rectangles that have their width and height set to 100 pixels. One of the rectangles in each cell has a
border with its width set to 1 pixel, and the other has a border with its width set to 5 pixels. The rectangle
with the thicker border was then transformed, so you can see the result of the transformation.

Figure 11-16. Examples of the four transformation types

ScaleTransform
The ScaleTransform type allows you to transform the size of a Silverlight object. The ScaleX property is
used to scale the object on the horizontal axis, and the ScaleY property is used to scale the object on the
vertical axis. The values of these properties are multiples of the object’s original size. For example,
setting the ScaleX property to 2 will double the size of the object on the horizontal axis. The following
XAML was used to create the ScaleTransform in Figure 11-16.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

284

<Rectangle Height="100" Width="100" Stroke="#FF000000" Grid.Row="1" Grid.Column="0"
 StrokeThickness="5" RenderTransformOrigin="0.5,0.5">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleX="1.25" ScaleY="1.25"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

SkewTransform
The SkewTransform type allows you to skew a Silverlight object horizontally and vertically. The
SkewTransform is used most commonly to create a 3D effect for an object. The AngleX property is used to
skew the object horizontally, and AngleY is used to skew the object vertically. The following XAML was
used to create the SkewTransform in Figure 11-16:

<Rectangle Height="100" Width="100" Stroke="#FF000000" Grid.Row="1" Grid.Column="1"
 StrokeThickness="5" RenderTransformOrigin="0.5,0.5">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <SkewTransform AngleX="20" AngleY="15"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

RotateTransform
The RotateTransform type allows you to rotate a Silverlight object by a specified angle around a specified
center point. The angle is specified by the Angle property, and the center point is specified by the
RenderTransformOrigin property. When you create a RotateTransform for a rectangle in Expression
Blend, by default, it will set RenderTransformOrigin to 0.5, 0.5, which is the center of the object. You can
also specify the center point using the CenterX and CenterY properties on the RotateTransform element.
The following is the XAML to produce the RotateTransform in Figure 11-16:

<Rectangle Height="100" Width="100" Stroke="#FF000000" Grid.Row="0" Grid.Column="1"
 StrokeThickness="5" RenderTransformOrigin="0.5,0.5">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <RotateTransform Angle="45"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

TranslateTransform
The TranslateTransform type allows you to change the position of a Silverlight object, both horizontally
and vertically. The X property controls the position change on the horizontal axis, and the Y property
controls the change to the vertical axis. The following XAML was used to create the TranslateTransform
in Figure 11-16:

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

285

<Rectangle Height="100" Width="100" Stroke="#FF000000" Grid.Row="0" Grid.Column="0"
 StrokeThickness="5" RenderTransformOrigin="0.5,0.5">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <TranslateTransform X="10" Y="10"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
</Rectangle>

Now that you have covered the basics of transforms in Silverlight, let’s run through a quick exercise
that will give you a chance to try them out for yourself.

Try It Out: Using Expression Blend to Transform Silverlight Objects
In this exercise, you’ll use Expression Blend to add and animate transformations.

1. Create a new Silverlight application in Expression Blend called
Ch11_BlendTransforms. Add two ColumnDefinition elements and two
RowDefinition elements so the root Grid is equally divided into four cells, as
follows:

<Grid x:Name="LayoutRoot" Background="White" >
 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>
</Grid>

2. Next, add two rectangles to each of the cells that you just created. Create two
sets of rectangles: one set with StrokeThickness="1" and another with
StrokeThickness="5". Also, name the second set of rectangles recTrans. Add
the following code:

<Grid x:Name="LayoutRoot" Background="White" >

 <Grid.RowDefinitions>
 <RowDefinition/>
 <RowDefinition/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition/>
 <ColumnDefinition/>
 </Grid.ColumnDefinitions>

 <Rectangle Grid.Row="0" Grid.Column="0" Height="100"
 Width="100" Stroke="#FF000000" StrokeThickness="1" />
 <Rectangle Grid.Row="0" Grid.Column="1" Height="100"
 Width="100" Stroke="#FF000000" StrokeThickness="1" />

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

286

 <Rectangle Grid.Row="1" Grid.Column="0" Height="100"
 Width="100" Stroke="#FF000000" StrokeThickness="1" />
 <Rectangle Grid.Row="1" Grid.Column="1" Height="100"
 Width="100" Stroke="#FF000000" StrokeThickness="1" />

 <Rectangle Grid.Row="0" Grid.Column="0" Height="100"
 Width="100" Stroke="#FF000000" StrokeThickness="5" x:Name="recTrans" />
 <Rectangle Grid.Row="0" Grid.Column="1" Height="100"
 Width="100" Stroke="#FF000000" StrokeThickness="5" x:Name="recRotate" />
 <Rectangle Grid.Row="1" Grid.Column="0" Height="100"
 Width="100" Stroke="#FF000000" StrokeThickness="5" x:Name="rectScale" />
 <Rectangle Grid.Row="1" Grid.Column="1" Height="100"
 Width="100" Stroke="#FF000000" StrokeThickness="5" x:Name="rectSkew" />

</Grid>

At this point, your application should have four squares equally spaced in the
four cells of your application. The next step will be to introduce your
transforms, but instead of just adding the transforms, you are going to animate
the transformation taking place.

3. Using the techniques discussed earlier in this chapter, create a new storyboard
called TransformElements.

4. You will perform the transformations over 2 seconds, so move the playhead on
the timeline to 2 seconds. Select the rectangle named recTrans. In the
Properties panel, find the Transform section. Select the Translate tab. Set X and
Y to 25. This will cause the top-left square to move down and to the right, as
shown in Figure 11-17.

5. Highlight the rectangle named recRotate. In the Transform section of the
Properties panel, select the Rotate tab. Set the Angle property to 45. The
top-right square will rotate 45 degrees, as shown in Figure 11-18.

Figure 11-17. Adding the TranslateTransform

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

287

Figure 11-18. Adding the RotateTransform

6. Select the rectangle named rectScale. In the Transform section of the Properties
panel, select the Scale tab. Set the values of the X and Y properties to 1.5, which
will scale the bottom-left square 1.5x, or 150%, as shown in Figure 11-19.

Figure 11-19. Adding the ScaleTransform

7. Select the rectangle named rectSkew. In the Transform section of the
Properties panel, select the Skew tab. Set the values of the X and Y properties to
20. This will cause the square to skew into a diamond shape, as shown in
Figure 11-20.

CHAPTER 11 ■ TRANSFORMATIONS AND ANIMATION

288

Figure 11-20. Adding the SkewTransform

8. Click the play button at the top of the timeline, and watch the objects
transform from their original shapes and locations.

As you’ve seen in this exercise, applying transformations is pretty straightforward.

Summary
This chapter covered creating animations in Silverlight. You looked at animations from a high level,
explored the different elements that make up an animation in Silverlight, and learmed how to
programmatically control animations in the code behind. You also looked at how Expression Blend
helps you create complex animations. Then you shifted your focus to transformations in Silverlight. You
looked at each of the fyour transform types, and then created a simple Silverlight application utilizing
transforms.

In the following chapter, you will look at the more advanced topic of creating your own Silverlight
custom controls. Custom controls allow you to create Silverlight functionality that can be easily reused
in different Silverlight applications.

C H A P T E R 12

■ ■ ■

289

Custom Controls

So far in this book, you have learned about the many elements of Silverlight and how they can be used to
build RIAs. But what if Silverlight doesn’t offer the specific functionality you need for an application? In
that case, you may want to create a custom control to provide that additional functionality.

The actual procedure for creating custom controls is not that terribly difficult, but understanding
the process can be. Under the hood, Silverlight performs some complex work, but most Silverlight
developers do not need to know these details. However, in order to understand custom controls and the
process used to build them, you you must dive in and see how Silverlight ticks.

In this chapter, you will examine when it is appropriate to write custom controls in Silverlight. Then
you will look at the Silverlight Control Toolkit and the controls it offers for developers to use in their
applications. Next, you will explore the different aspects of the Silverlight control model. Finally, you will
build a custom control for Silverlight.

When to Write Custom Controls
When you find that none of the existing Silverlight controls do exactly what you want, creating a custom
control is not always the solution. In fact, in most cases, you should be able to get by without writing
custom controls. Due to the flexibility built into the Silverlight controls, you can usually modify an
existing one to suit your needs.

As a general rule, if your goal is to modify the appearance of a control, there is no need to write a
custom control. Silverlight controls that are built properly, following Microsoft’s best practices, will
adopt the Parts and States model, which calls for complete separation of the logical and visual aspects of
your control. Due to this separation, developers can change the appearance of controls, and even
change transitions of the controls between different states, without needing to write custom controls.

So, just when is creating a custom control the right way to go? Here are the primary reasons for
writing custom controls:

Abstraction of functionality: When developing your applications, you may need to implement some
functionality that can be achieved using Silverlight’s out-of-the- box support. However, if this
functionality needs to be reused often in your application, you may choose to create a custom
control that abstracts the functionality, in order to simplify the application. An example of this
would be if you wanted to have two text boxes next to each other for first and last names. Instead of
always including two TextBox controls in your XAML, you could write a custom control that would
automatically include both text boxes and would abstract the behavior surrounding the text boxes.

Modification of functionality: If you would like to change the way a Silverlight control behaves, you
can write a custom control that implements that behavior, perhaps inheriting from an existing
control. An example of this would be if you wanted to create a button that pops up a menu instead
of simply triggering a click method.

CHAPTER 12 ■ CUSTOM CONTROLS

290

Creation of new functionality: The most obvious reason for writing a custom control in Silverlight is
to add functionality that does not currently exist in Silverlight. As an example, you could write a
control that acts as a floating window that can be dragged and resized.

Although these are valid reasons for creating custom controls, there is one more resource you
should check before you do so: the Silverlight Control Toolkit.

Silverlight Control Toolkit
Upon the release of Silverlight, Microsoft announced the Silverlight Control Toolkit, an open source
project located on CodePlex at http://www.codeplex.com/SilverlightToolkit. This toolkit provides
additional components and controls that you can download for use in your Silverlight applications. For
example, it includes the fully functional charting controls shown in Figure 12-1.

Microsoft’s target is to eventually have more than 100 controls available through this open source
toolkit. For developers, this means that as Silverlight matures, more and more controls will be available
for use in your applications.

Figure 12-1. Charting controls in the Silverlight Control Toolkit

The Silverlight Control Toolkit contains four “quality bands” that describe the specific control’s
maturity level: experimental, preview, stable, and mature. With the initial announcement of the
Silverlight Control Toolkit, the following controls (six within the preview band and six in the stable band)
are available for download (including the full source code):

http://www.codeplex.com/SilverlightToolkit

CHAPTER 12 ■ CUSTOM CONTROLS

291

• AutoCompleteBox

• NumericUpDown

• Viewbox

• Expander

• ImplicitStyleManager

• Charting

• TreeView

• DockPanel

• WrapPanel

• Label

• HeaderedContentControl

• HeaderedItemsControl

This toolkit is an excellent resource for Silverlight developers. You can use these controls as is in
your applications, or you can use the source code to modify your own controls. They are also a great way
to learn how to build custom controls, because you can examine their source code. In order to
understand that source code, you will need to know about the Silverlight control model.

Silverlight Control Model
Before you start to build custom controls for Silverlight, you should understand the key concepts of the
Silverlight control model. In this section, you will look at two of these concepts:

• The Parts and States model

• Dependency properties

Parts and States Model
Following Microsoft’s best practices, Silverlight controls are built with a strict separation between the
visual aspects of the control and the logic behind the control. This allows developers to create templates
for existing controls that will dramatically change the visual appearance and the visual behaviors of a
control, without needing to write any code. This separation is called for by the Parts and States model.
The visual aspects of controls are managed by Silverlight’s Visual State Manager (VSM).

■ Note You are not required to adhere to the Parts and State model when developing custom controls. However,

developers are urged to do so in order to follow the best practices outlined by Microsoft.

CHAPTER 12 ■ CUSTOM CONTROLS

292

The Parts and States model uses the following terminology:

Parts: Named elements contained in a control template that are manipulated by code in some way
are called parts. For example, a simple Button control could consist of a rectangle that is the body of
the button and a text block that represents the text on the control.

States: A control will always be in a state. For a Button control, different states include when the
mouse is hovered over the button, when the mouse is pressed down on the button, and when
neither is the case (its default or normal state). The visual look of control is defined by its
particular state.

Transitions: When a control changes from one state to another—for example, when a Button control
goes from its normal state to having the mouse hovered over it—its visual appearance may change.
In some cases, this change may be animated to provide a smooth visual transition from the states.
These animations are defined in the Parts and States model by transitions.

State group: According to the Parts and States model, control states can be grouped into mutually
exclusive groups. A control cannot be in more than one state within the same state group at the
same time.

Dependency Properties
Properties are a common part of object-oriented programming and familiar to .NET developers. Here is
a typical property definition:

private string _name;
public string Name
{
 get { return _name; }
 set { _name = value; }
}

In Silverlight and WPF, Microsoft has added some functionality to the property system. This new
system is referred to as the Silverlight property system. Properties created based on this new property
system are called dependency properties.

In a nutshell, dependency properties allow Silverlight to determine the value of a property
dynamically from a number of different inputs, such as data binding or template binding. As a general
rule, if you want to be able to style a property or to have it participate in data binding or template
binding, it must be defined as a dependency property.

You define a property as a dependency property using the DependencyProperty object, as shown in
the following code snippet:

public static readonly DependencyProperty NameProperty =
 DependencyProperty.Register(
 "Name",
 typeof(string),
 typeof(MyControl),
 null
);

public int Name
{
 get
 {

CHAPTER 12 ■ CUSTOM CONTROLS

293

 return (string)GetValue(NameProperty);
 }
 set
 {
 SetValue(NameProperty, value);
 }
}

This example defines the Name property as a dependency property. It declares a new object of type
DependencyProperty called NameProperty, following the naming convention detailed by Microsoft.
NameProperty is set equal to the return value of the DependencyProperty.Register() method, which
registers a dependency property within the Silverlight 2 property system.

The DependencyProperty.Register() method is passed a number of arguments:

• The name of the property that you are registering as a dependency property—
Name, in this example.

• The data type of the property you are registering—string, in this example.

• The data type of the object that is registering the property—MyControl, in this
example.

• Metadata that should be registered with the dependency property. Most of the
time, this will be used to hook up a callback method that will be called whenever
the property’s value is changed. This example simply passes null. In the next
section, you will see how this last argument is used.

Now that I have discussed custom controls in Silverlight from a high level, it’s time to see how to
build your own.

Creating Custom Controls in Silverlight
As I mentioned at the beginning of the chapter, creating a custom control does not need to be difficult.
Of course, the work involved depends on how complex your control needs to be. As you’ll see, the
custom control you’ll create in this chapter is relatively simple. Before you get to that exercise, let’s take
a quick look at the two options for creating custom controls.

Implementing Custom Functionality
You have two main options for creating custom functionality in Silverlight:

With a UserControl: The simplest way to create a piece of custom functionality is to implement it
with a UserControl. Once the UserControl is created, you can then reuse it across your application.

As a custom control: The content that is rendered is built from scratch by the developer. This is by far
the most complex option for creating a custom control. You would need to do this when you want to
implement functionality that is unavailable with the existing controls in Silverlight.
In this chapter’s exercise, you will take the custom control approach.

CHAPTER 12 ■ CUSTOM CONTROLS

294

Try It Out: Building a Custom Control
In this exercise, you will build your own “cooldown” button. This button will be disabled for a set
number of seconds—its cooldown duration—after it is clicked. If you set the cooldown to be 3 seconds,
then after you click the button, you will not be able to click it again for 3 seconds.

For demonstration purposes, you will not use the standard Silverlight Button control as the base
control. Instead, you will create a custom control that implements Control. This way, I can show you
how to create a control with a number of states.

The cooldown button will have five states, implemented in two state groups. The NormalStates state
group will have these states:

• Pressed: The button is being pressed. When it is in this state, the thickness of the
button’s border will be reduced.

• MouseOver: The mouse is hovering over the button. When it is in this state, the
thickness of the button’s border will be increased.

• Normal: The button is in its normal state.

It will also have a state group named CoolDownStates, which will contain two states:

• Available: The button is active and available to be clicked.

• CoolDown: The button is in its cooldown state, and therefore is not active. You will
place a rectangle over top of the button that is of 75% opacity. In addition, you will
disable all other events while the button is in this state.

Keep in mind that this is only an example, and it has many areas that could use improvement. The
goal of the exercise is not to produce a control that you will use in your applications, but rather to
demonstrate the basic steps for creating a custom control in Silverlight.

Setting Up the Control Project
Let’s get started by creating a new project for the custom control.

1. In Visual Studio 2008, create a new Silverlight Application named
Ch12_CoolDownButton and allow Visual Studio to create a Web Application
project to host your application.

2. From Solution Explorer, right-click the solution and select Add New Project.

3. In the Add New Project dialog box, select the Silverlight Class Library template
and name the library CoolDownButton, as shown in Figure 12-2.

CHAPTER 12 ■ CUSTOM CONTROLS

295

Figure 12-2. Adding the Silverlight Class Library to the project

4. By default, Visual Studio will create a class named Class1.cs. Delete this file
from the project.

5. Right-click the CoolDownButton project and select Add New Item.

6. In the Add New Item dialog box, select the Class template and name the class
CoolDownButtonControl, as shown in Figure 12-3.

CHAPTER 12 ■ CUSTOM CONTROLS

296

Figure 12-3. Adding the new class to the project

Defining Properties and States
Now you’re ready to create the control. Let’s begin by coding the properties and states.

1. Set the control class to inherit from Control, in order to gain the base
Silverlight control functionality, as follows:

namespace CoolDownButton
{
 public class CoolDownButtonControl : Control
 {

 }
}

2. Now add the control’s public properties, as follows:

public static readonly DependencyProperty CoolDownSecondsProperty =
 DependencyProperty.Register(
 "CoolDownSeconds",
 typeof(int),
 typeof(CoolDownButtonControl),
 new PropertyMetadata(
 new PropertyChangedCallback(

CHAPTER 12 ■ CUSTOM CONTROLS

297

 CoolDownButtonControl.OnCoolDownSecondsPropertyChanged
)
)
);

public int CoolDownSeconds
{
 get
 {
 return (int)GetValue(CoolDownSecondsProperty);
 }
 set
 {
 SetValue(CoolDownSecondsProperty, value);
 }
}

private static void OnCoolDownSecondsPropertyChanged(
 DependencyObject d, DependencyPropertyChangedEventArgs e)
{
 CoolDownButtonControl cdButton = d as CoolDownButtonControl;

 cdButton.OnCoolDownButtonChange(null);
}

public static readonly DependencyProperty ButtonTextProperty =
 DependencyProperty.Register(
 "ButtonText",
 typeof(string),
 typeof(CoolDownButtonControl),
 new PropertyMetadata(
 new PropertyChangedCallback(
 CoolDownButtonControl.OnButtonTextPropertyChanged
)
)
);

public string ButtonText
{
 get
 {
 return (string)GetValue(ButtonTextProperty);
 }
 set
 {
 SetValue(ButtonTextProperty, value);
 }
}

private static void OnButtonTextPropertyChanged(
 DependencyObject d, DependencyPropertyChangedEventArgs e)
{
 CoolDownButtonControl cdButton = d as CoolDownButtonControl;

CHAPTER 12 ■ CUSTOM CONTROLS

298

 cdButton.OnCoolDownButtonChange(null);
}

protected virtual void OnCoolDownButtonChange(RoutedEventArgs e)
{

}

As explained earlier in the chapter, in order for your properties to allow data
binding, template binding, styling, and so on, they must be dependency
properties. In addition to the dependency properties, you added two callback
methods that will be called when the properties are updated. By naming
convention, the CoolDownSeconds property has a DependencyProperty object
named CoolDownSecondsProperty and a callback method of
onCoolDownSecondsPropertyChanged(). So you need to watch out, or your
names will end up very long, as they have here.

3. Add some private members to contain state information, as follows:

namespace CoolDownButton
{
 public class CoolDownButtonControl : Control
 {
 ...

 private FrameworkElement corePart;
 private bool isPressed, isMouseOver, isCoolDown;
 private DateTime pressedTime;

 }
}

The corePart members are of type FrameworkElement and will hold the instance
of the main part, which will respond to mouse events. The isPressed,
isMouseOver, and isCoolDown Boolean members will be used to help keep track
of the current button state. And the pressedTime member will record the time
that the button was clicked in order to determine when the cooldown should
be removed.

4. Add a helper method called GoToState(), which will assist in switching
between the states of the control.

private void GoToState(bool useTransitions)
{
 // Go to states in NormalStates state group
 if (isPressed)
 {
 VisualStateManager.GoToState(this, "Pressed", useTransitions);
 }
 else if (isMouseOver)
 {
 VisualStateManager.GoToState(this, "MouseOver", useTransitions);
 }
 else

CHAPTER 12 ■ CUSTOM CONTROLS

299

 {
 VisualStateManager.GoToState(this, "Normal", useTransitions);
 }

 // Go to states in CoolDownStates state group
 if (isCoolDown)
 {
 VisualStateManager.GoToState(this, "CoolDown", useTransitions);
 }
 else
 {
 VisualStateManager.GoToState(this, "Available", useTransitions);
 }
}

This method will check the private members you added in the previous step to
determine in which state the control should be. When the proper state is
determined, the VisualStateManager.GoToState() method is called, passing it
the control, the name of the state, and whether or not the control should use
transitions when switching from the current state to this new state (whether or
not an animation should be shown).

Now let’s turnto the visual aspect of the control.

Defining the Control’s Appearance
The default control template is placed in a file named generic.xaml, which is located in a folder named
themes. These names are required. The generic.xaml is a resource dictionary that defines the built-in
style for the control. You need to add the folder and file, make some adjustments to the file, and then
add the XAML to set the control’s appearance.

1. To add the required folder, right-click the CoolDownButton project and select
Add New Folder. Name the folder themes.

2. Right-click the newly added themes folder and select Add New Item.

3. In the Add New Item dialog box, select the Silverlight User Control template
and name the file generic.xaml, as shown in Figure 12-4. Click Add and
confirm that the generic.xaml file was added within the themes folder.

CHAPTER 12 ■ CUSTOM CONTROLS

300

Figure 12-4. Adding the generic.xaml resource dictionary

4. In Solution Explorer, expand the generic.xaml file to see the generic.xaml.cs
file. Right-click it and delete this code-behind file.

5. Right-click the generic.xaml file and select Properties. Change the Build Action
to Resource and remove the resource for the Custom Tool property, as shown
in Figure 12-5.

CHAPTER 12 ■ CUSTOM CONTROLS

301

Figure 12-5. The Properties panel for generic.xaml

6. Open the generic.xaml file. You will see that, by default, the file has the
following contents:

<UserControl x:Class="CoolDownButton.themes.generic"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">

 </Grid>
</UserControl>

7. You need to change the generic.xaml file to be a resource dictionary. To do
this, replace the UserControl tag with a ResourceDictionary tag. Then remove
the Width and Height definitions and add a new xmlns for the CoolDownButton.
Finally, remove the Grid definition. Your code should look like this:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:begSL2="clr-namespace:CoolDownButton">
</ResourceDictionary>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 12 ■ CUSTOM CONTROLS

302

Now you can add the actual XAML that will make up the control. First, add a
Style tag, with the TargetType set to CoolDownButtonControl. Then add a
Setter for the control template, and within that, add the ControlTemplate
definition, again with TargetType set to CoolDownButtonControl. The control
will consist of two Rectangle components: one for the button itself, named
coreButton, one for the 75% opacity overlay that will be displayed when the
button is in its CoolDown state. It will also have a TextBlock component to
contain the text of the button. This defines the control in the default state.
Therefore, the opacity of the overlay rectangle is set to 0% to start, because the
overlay should not be visible by default. The additions are as follows:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:begSL2="clr-namespace:CoolDownButton">
<Style TargetType="begSL2:CoolDownButtonControl">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="begSL2:CoolDownButtonControl">
 <Grid x:Name="LayoutRoot">
 <Rectangle
 StrokeThickness="4"
 Stroke="Navy"
 Fill="AliceBlue"
 RadiusX="4"
 RadiusY="4"
 x:Name="innerButton" />
 <TextBlock
 HorizontalAlignment="Center"
 VerticalAlignment="Center"
 Text="Test"
 TextWrapping="Wrap"/>
 <Rectangle
 Opacity="0"
 Fill="#FF000000"
 Stroke="#FF000000"
 RenderTransformOrigin="0.5,0.5"
 RadiusY="4" RadiusX="4"
 x:Name="corePart">
 <Rectangle.RenderTransform>
 <TransformGroup>
 <ScaleTransform
 ScaleX="1"
 ScaleY="1"/>
 </TransformGroup>
 </Rectangle.RenderTransform>
 </Rectangle>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>
</ResourceDictionary>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 12 ■ CUSTOM CONTROLS

303

8. Now that you have defined the default appearance of the control, you need to
add the VisualStateGroups, along with the different states for the control. To
do this, add the following code directly below the Grid definition and above
the first Rectangle. Notice that for each state, a Storyboard is used to define the
state’s visual appearance.

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="NormalStates">

 <VisualState x:Name="Normal"/>

 <VisualState x:Name="MouseOver" >
 <Storyboard >
 <DoubleAnimation
 Storyboard.TargetName="innerButton"
 Storyboard.TargetProperty="(UIElement.StrokeThickness)"
 Duration="0" To="6"/>
 </Storyboard>

 </VisualState>
 <VisualState x:Name="Pressed">

 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="innerButton"
 Storyboard.TargetProperty="(UIElement.StrokeThickness)"
 Duration="0" To="2"/>
 </Storyboard>

 </VisualState>

 </VisualStateGroup>

 <VisualStateGroup x:Name="CoolDownStates">

 <VisualState x:Name="Available"/>
 <VisualState x:Name="CoolDown">
 <Storyboard>
 <DoubleAnimation
 Storyboard.TargetName="corePart"
 Storyboard.TargetProperty="(UIElement.Opacity)"
 Duration="0" To=".75"/>
 </Storyboard>
 </VisualState>

 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

Now let’s turn attention back to the CoolDownButtonControl.cs file to finish up the logic behind the
control.

CHAPTER 12 ■ CUSTOM CONTROLS

304

Handling Control Events
To complete the control, you need to handle its events and define its control contract.

1. First, you must get an instance of the core part. Referring back to step 8 in the
“Defining the Control’s Appearance” section, you’ll see that this is the overlay
rectangle named corePart. This is the control on top of the other controls, so it
is the one that will accept the mouse events. To get the instance of corePart,
use the GetChildElement() method. Call this method in the OnApplyTemplate()
method that is called whenever a template is applied to the control, as follows:

public override void OnApplyTemplate()
{
 base.OnApplyTemplate();

 CorePart = (FrameworkElement)GetTemplateChild("corePart");

 GoToState(false);
}

private FrameworkElement CorePart
{
 get
 {
 return corePart;
 }

 set
 {
 corePart = value;
 }
}

Notice that this method calls the base OnApplyTemplate() method, and then
calls the GoToState() method, passing it false. This is the first time that the
GoToState() method will be called, and you are passing it false so that it does
not use any transitions while changing the state. The initial view of the control
should not have any animations to get it to the initial state.

2. At this point, you need to wire up event handlers to handle the mouse events.
First, create the event handlers themselves, as follows:

void corePart_MouseEnter(object sender, MouseEventArgs e)
{
 isMouseOver = true;
 GoToState(true);
}

void corePart_MouseLeave(object sender, MouseEventArgs e)
{
 isMouseOver = false;
 GoToState(true);
}

CHAPTER 12 ■ CUSTOM CONTROLS

305

void corePart_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 isPressed = true;
 GoToState(true);
}

void corePart_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)
{
 isPressed = false;
 isCoolDown = true;
 pressedTime = DateTime.Now;
 GoToState(true);
}

3. Next, wire up the handlers to the events. You can do this in the CorePart
property‘s setter, as follows. Note that in the case where more than one
template is applied, before wiring up the event handlers, you need to make
sure to remove any existing event handlers.

private FrameworkElement CorePart
{
 get
 {
 return corePart;
 }

 set
 {
 FrameworkElement oldCorePart = corePart;

 if (oldCorePart != null)
 {
 oldCorePart.MouseEnter -=
 new MouseEventHandler(corePart_MouseEnter);
 oldCorePart.MouseLeave -=
 new MouseEventHandler(corePart_MouseLeave);
 oldCorePart.MouseLeftButtonDown -=
 new MouseButtonEventHandler(
 corePart_MouseLeftButtonDown);
 oldCorePart.MouseLeftButtonUp -=
 new MouseButtonEventHandler(
 corePart_MouseLeftButtonUp);
 }

 corePart = value;

 if (corePart != null)
 {
 corePart.MouseEnter +=
 new MouseEventHandler(corePart_MouseEnter);
 corePart.MouseLeave +=
 new MouseEventHandler(corePart_MouseLeave);

CHAPTER 12 ■ CUSTOM CONTROLS

306

 corePart.MouseLeftButtonDown +=
 new MouseButtonEventHandler(
 corePart_MouseLeftButtonDown);
 corePart.MouseLeftButtonUp +=
 new MouseButtonEventHandler(
 corePart_MouseLeftButtonUp);
 }
 }
}

4. Recall that when the button is clicked, you need to make sure the button is
disabled for however many seconds are set as the cooldown period. To do
this, first create a method that checks to see if the cooldown time has
expired, as follows:

private bool CheckCoolDown()
{
 if (!isCoolDown)
 {
 return false;
 }
 else
 {
 if (DateTime.Now > pressedTime.AddSeconds(CoolDownSeconds))
 {
 isCoolDown = false;
 return false;
 }
 else
 {
 return true;
 }
 }
}

The logic behind this method is pretty simple. If the isCoolDown flag is true,
then you are simply checking to see if the current time is greater than the
pressedTime added to the cooldown. If so, you reset the isCoolDown flag and
return false; otherwise, you return true.

5. Now you need to surround the code in each of the event handlers with a call to
the CheckCoolDown() method, as follows. If the cooldown has not yet expired,
none of the event handlers should perform any action.

void corePart_MouseEnter(object sender, MouseEventArgs e)
{
 if (!CheckCoolDown())
 {
 isMouseOver = true;
 GoToState(true);
 }
}

void corePart_MouseLeave(object sender, MouseEventArgs e)

CHAPTER 12 ■ CUSTOM CONTROLS

307

{
 if (!CheckCoolDown())
 {
 isMouseOver = false;
 GoToState(true);
 }
}

void corePart_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 if (!CheckCoolDown())
 {
 isPressed = true;
 GoToState(true);
 }
}

void corePart_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)
{
 if (!CheckCoolDown())
 {
 isPressed = false;
 isCoolDown = true;
 pressedTime = DateTime.Now;
 GoToState(true);
 }
}

6. Recall that in step 2 of the “Defining Properties and States” section, you
created a method called OnCoolDownButtonChange(). At that time, you did not
place anything in this method. This is the method that is called whenever there
is a notification change to a dependency property. When a change occurs, you
need to call GoToState() so the control can reflect the changes, as follows:

protected virtual void OnCoolDownButtonChange(RoutedEventArgs e)
{
 GoToState(true);
}

7. Next, create a constructor for your control and apply the default style key. In
many cases, this will simply be the type of your control itself.

public CoolDownButtonControl()
{
 DefaultStyleKey = typeof(CoolDownButtonControl);
}

8. The final step in creating the control is to define a control contract that
describes your control. This is required in order for your control to be modified
by tools such as Expression Blend. This contract consists of a number of
attributes that are placed directly in the control class, as follows. These
attributes are used only by tools; they are not used by the runtime.

CHAPTER 12 ■ CUSTOM CONTROLS

308

namespace CoolDownButton
{
 [TemplatePart(Name = "Core", Type = typeof(FrameworkElement))]
 [TemplateVisualState(Name = "Normal", GroupName = "NormalStates")]
 [TemplateVisualState(Name = "MouseOver", GroupName = " NormalStates")]
 [TemplateVisualState(Name = "Pressed", GroupName = " NormalStates")]
 [TemplateVisualState(Name = "CoolDown", GroupName="CoolDownStates")]
 [TemplateVisualState(Name = "Available", GroupName="CoolDownStates")]
 public class CoolDownButtonControl : Control
 {
 }
}

This completes the creation of the custom control.

Compiling and Testing the Control
Now you’re ready to try out your new control.

1. Compile your control.

2. If everything compiles correctly, you need create an instance of your control in
your Ch12_CoolDownButton project. To do this, right-click the
Ch12_CoolDownButton project in Solution Explorer and select Add Reference. In
the Add Reference dialog box, select the Projects tab and choose
CoolDownButton, as shown in Figure 12-6. Then click OK.

Figure 12-6. Adding a reference to your control

CHAPTER 12 ■ CUSTOM CONTROLS

309

3. Navigate to your MainPage.xaml file within the Ch12_CoolDownButton project.
First add a new xmlns to the UserControl definition, and then add an instance
of your control, as follows:

<UserControl x:Class="Ch11_CoolDownButton.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:begSL2="clr-namespace:CoolDownButton;assembly=CoolDownButton"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <begSL2:CoolDownButtonControl
 CoolDownSeconds="3"
 Width="150" Height="60" />
 </Grid>
</UserControl>

4. Run the project. You should see your button.

5. Test the states of your button. When you move the mouse over the button, the
border thickness will increase. Click the mouse on the button, and the border
will decrease. When you release the mouse button on the button, the border will
go back to normal, and the overlay will appear. You can continue to move the
mouse over the button, and you will notice that it will not respond to your events
until 3 seconds have passed. Figure 12-7 shows the various control states.

Figure 12-7. Button states

Clearly, this cooldown button has a lot of room for improvement. However, the goal was to show
you the basic steps involved in creating a custom control. As you most certainly could tell, the process is
pretty involved, but the rewards of following the best practices are worth it. When the control is built
properly like this, you can apply custom templates to it to dramatically change its appearance, without
needing to rewrite any of the code logic.

Summary
Without a doubt, this was the most complex content so far covered in this book. The goal was to give you
a basic understanding of what is involved in creating custom controls the right way in Silverlight.

In this chapter, you looked at when you might want to create a custom control. Then you learned
about some of the key concepts within the Silverlight control model, including the Parts and States
model and dependency properties. Finally, you built your own custom control.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

C H A P T E R 13

■ ■ ■

311

Deployment

Up to now in this book, I have discussed only the process of developing Silverlight applications. In this
chapter, I turn your focus to post development and discuss the topic of deploying your Silverlight
applications.

Deploying Silverlight Applications
Once you have finished developing your Silverlight application, you must then face the question of
deployment. Luckily, Silverlight deployment is a trivial task that really only involves one concept,
XAP files.

XAP Files
When you compile a Silverlight application, the application is packaged into a single file with the
extension .XAP. This file is the only thing that needs to be sent to the client in order to run your
application. The XAP file itself is really nothing special and is nothing more than a zip file with a special
file extension. To prove this, you can simply change the file extension of a XAP file to give it a .ZIP
extension. Once the file has been renamed, you can then view the contents of compressed archive in the
file explorer in Windows or in a zip archive tool such as WinZip.

The reason Silverlight uses XAP files to package applications is really for two benefits. First, by
placing your files in a ZIP archive file, your files are compressed when they are deployed and sent to the
client, which in turn reduces download times and improves the end user experience. Secondly, by
placing your entire Silverlight application in one file, it makes the process of deploying your application
extremely simple.

Hosting Silverlight Content
In order to host Silverlight content on your web server, it is not necessary to be running a Windows
server. In fact, just about any web server can serve Silverlight content, as long as they are set to serve up
XAP files. In IIS7 this is setup by default, so if you are running Windows 2008 Server then your web server
is preconfigured ready to host your Silverlight content.

If you are running a version of IIS previous to IIS7 or if you are running on a non-Windows server,
you must do some minor configuration to enable the MIME types for the Silverlight extensions. The two
MIME types you need to add are in Table 13-1.

CHAPTER 13 ■ DEPLOYMENT

312

Table 13-1. NEED TABLE CAPTION.

Extension MIME Type

.xaml application/xaml+xml

.xap application/x-silverlight-app

Since there are so many different servers out there, I won’t attempt to show you how to setup this MIME
type for each server possibility, so you will need to do some quick research on how to setup MIME types,
though it is an extremely common task for server administration.

Assembly Caching
As the previous section described, when you deploy your Silverlight applications, all files for your application
are included in a XAP package. This includes any assemblies that are required by your application. For
example, your XAP file may look like Figure 13-1, where you can see that a number of assemblies are
included in the package like System.Windows.Controls.Data.dll. This assembly alone is 128KB in size, and
this amount has to be downloaded to each and every client that runs your application. Furthermore, if there
are multiple Silverlight applications that all require the use of the System.Windows.Controls.Data.dll
assembly, each one by default will download their own copy of the assembly.

Figure 13-1. Exploring the contents of a XAP file

CHAPTER 13 ■ DEPLOYMENT

313

Assembly caching is a feature new to Silverlight 3 that allows you to cache assemblies locally and share
them between different Silverlight applications running on a client machine. Let’s run through a very quick
example to show how assembly caching works and how to activate it in your Silverlight applications.

Try It Out: Exploring Assembly Caching
In this exercise, you will create a simple Silverlight application that includes a number of assemblies. You
will then look at the packaged XAP file before and after you activate assembly caching for the application.
You will also explore the source changes that take place when using assembly caching. Let’s get started!

1. In Visual Studio 2008, create a new Silverlight Application named
Ch13_AssemblyCaching and allow Visual Studio to create a Web Application
project to host your application.

2. In MainPage.xaml, make certain your cursor is positioned within the root Grid
and double click on the DataGrid from the Toolbox. After adding these items,
your XAML should look like the following.

<Grid x:Name="LayoutRoot">
 <data:DataGrid></data:DataGrid>
</Grid>

3. Build the application by selecting Build Build Solution from the main menu.

4. Expand the ClientBin directory within the host web application’s directory
using the Solution Explorer in Visual Studio. There you should find the
Ch13_AssemblyCaching.xap file as shown in Figure 13-2.

Figure 13-2. Locating your Application’s XAP File

CHAPTER 13 ■ DEPLOYMENT

314

5. Change the filename of this file to be Ch13_AssemblyCaching.xap.zip in order
to explore the contents. Once the file is renamed, open the compressed file in
Windows Explorer. You will see the contents as shown in Figure 13-1. You will
see that there many assemblies contained in the xap file.

6. From Visual Studio right click on the Silverlight application in the Solution
Explorer and select Properties. On the properties dialog, you will see a
checkbox labeled “Reduce XAP size by using library caching.” Check this
option as shown in Figure 13-3 and save your changes.

Figure 13-3. Enabing assembly caching

7. Rebuild the application and then navigate back to the ClientBin directory.
Once again, rename the Ch13_AssemblyCaching.xap file to a *.zip file and
open it in windows explorer. You will see that there are significantly fewer
assemblies contained within the package, as shown in Figure 13-4.

CHAPTER 13 ■ DEPLOYMENT

315

Figure 13-4. XAP File with Assembly Caching Enabled

8. If you then refresh the Solution Explorer and examine the ClientBin folder you
will see that a number of new zip files have been added, as shown in Figure 13-
5. These zip files contain the assemblies that were removed from the *.xap file.
When your Silverlight application needs the specific assemblies they will
download the assembly via the zip file in the ClientBin.

CHAPTER 13 ■ DEPLOYMENT

316

Figure 13-5. The ClientBin with Assembly Caching Enabled

ENABLING ASSEMBLY CACHING SUPPORT FOR CUSTOM ASSEMBLIES

By default custom assemblies do not support assembly caching. To quickly see this, add a control from the
Silverlight Toolkit and then build with assembly caching turned on. You will notice that the toolkit
assemblies are not removed from the *.xap. In order to add support for assembly caching to your custom
controls, a number of steps must be completed.

1. First, you must assign your assembly a public key token. This is done using the
sn.exe utility.

2. Next, you need to create an external part manifest for your assembly. This is an
XML file with the extension <ASSEMBLY NAME>.extmap.xml. This manifest
contains information that assembly caching needs to know in order to know where
to retrieve the assembly when it is requested by the Silverlight application.

Once you have taken the steps above, your custom assembly can take advantage of assembly caching.

CHAPTER 13 ■ DEPLOYMENT

317

Out of Browser Support
A new feature in Silverlight 3 is the ability to run your Silverlight applications outside the browser. The
new feature allows users to right-click on a Silverlight application, install it locally to their machine, and
execute it without opening their browser. Out of browser support is also just as safe and secure as
running Silverlight within the browser, as applications run out of the browser still live within the
sandbox.

For developers, out of browser has a number of benefits. The most obvious is that the same XAP
runs in both the browser as well as out of the browser. That means you can now develop an application
that has identical user experiences in any browser, any platform, and even outside the browser on any
platform. In addition, out of browser supports automatic updating of applications, which means even
when a user installs the Silverlight application for out of browser execution, updates will still
automatically be sent to the user. Developers also have access to an API that will allow them to
determine when their applications are run out of the browser and modify the behavior of their app
however they wish.

To enable out of browser support for your Silverlight application, the first step is to view the
properties of their Silverlight application and select the checkbox labeled “Enable running application
out of the browser” as shown in Figure 13-6.

Figure 13-6. Enabling out of browser for your application

When this is checked, right-clicking on a Silverlight application will include an additional menu item, as
shown in Figure 13-7.

CHAPTER 13 ■ DEPLOYMENT

318

Figure 13-7. Installing a Silverlight application locally

When the user clicks to install the application locally, they are presented with the default Install
Application dialog shown in Figure 13-8. The user has the option to create shortcuts on either the Start
menu, Desktop, or both.

Figure 13-8. Default Iinstall application dialog

After the installation is complete, the application re-launches outside the browser. At this point, the user
can reopen the application at any time via the shortcuts they chose during the installation.

CHAPTER 13 ■ DEPLOYMENT

319

Customizing the Install Application Dialog
As you have just seen, you can easily enable your application for out of browser support by simply checking
one checkbox in your project properties. However, what if you would like to customize the installation
experience for your application? Luckily, Silverlight has made it very easy for developers to customize the
title of their application, the shortcut names, and even the icons used in the installation experience.

To customize your application’s installation experience, in the project properties you will notice a
button to the right of the checkbox for enabling out of browser support labeled “Out-Of-Browser
Settings.” If you click that button, the Out-Of-Browser Settings dialog appears as shown in Figure 15-9.
In the following case, you have changed the title, the shortcut name, and you have provided a graphic for
the 128~TMS128 icon. Note that you have not provided graphics for the smaller icons, and as a result the
128~TMS128 icon will simply be resized. This is fine for the purposes of this book, but in your
applications you really should provide the smaller icons to obtain a crisper look.

Figure 13-9. Out-of-Browser settings

With these settings changed, when you choose to install our application, you are presented with the
updated dialog shown in Figure 13-10.

CHAPTER 13 ■ DEPLOYMENT

320

Figure 13-10. Customized install application dialog

Out of Browser API
As mentioned, in Silverlight applications running out of browser are running the exact same XAP as the
application running in the browser. This is great for developers because you know that the user will have
the same experience in both situations. However, what if you wanted to change that experience? What if
there were some elements to your application that you wanted to change the behavior in the event that
users were running the application out of the browser? In Silverlight, there are a number of API methods,
properties, and events that you can work with to customize your application based on its state. One of
these properties is the IsRunningOutOfBrowser property. This property returns true if application is
running out of the browser and false if it is running within the browser. You can easily add code that
looks at this property and executes accordingly.

private void Button_Click(object sender, RoutedEventArgs e)
{
 if (Application.Current.IsRunningOutOfBrowser)
 {
 OOBStatus.Text = "Application Running Out of Browser!";
 }
 else
 {
 OOBStatus.Text = "Application Running In Browser";
 }
}

By adding this code, you can then run the application within the browser, Figure 13-11, and out of the
browser, Figure 13-12 to see that our application can behave differently depending on its state.

CHAPTER 13 ■ DEPLOYMENT

321

Figure 13-11. Application running within browser

Figure 13-12. Application running out of browser

CHAPTER 13 ■ DEPLOYMENT

322

Removing Installed Applications
You may be wondering how you can uninstall the Silverlight applications that you installed locally.
Uninstalling involves only one very simple step. Open the application, right click on it, and select
“Remove this Application.” That is all there is to it!

Figure 13-13. Removing a Silverlight application installed locally

Summary
In this chapter, you explored deploying Silverlight applications. As you have seen, deployment in
Silverlight is straightforward and trivial, which is yet another benefit of Silverlight applications. You now
are able to build your own Silverlight applications from start to finish and deploy them for the entire
world to appreciate! Happy Silverlighting!

323

Index

* value, filling available space in Grid control, 50
+= operator, 73
2D transforms, 282
3D space, 10

A
AboutPage.xaml page, 178
AcceptsReturn property, TextBlock control, 196
Active Server Pages (ASP), 6
Add New Item dialog (Visual Studio 2008)

accessing data through WCF service, 141
creating application with navigation support, 159
creating custom control, 295, 299
JavaScript IntelliSense and debugging, 21
using Modal Child Window, 98

Add New Project dialog, 294
Add Reference dialog

compiling and testing custom controls, 308
creating application with navigation support, 156

Add Service Reference dialog, 143
Add Silverlight Application dialog, 32
addItem_Click event handler, 57
ADO.NET Data Services, 137
allow-from element, 149
Alt key+Tab key, Vista, 1
Angle properties, 284
animation, 267–271

Animation workspace mode, Expression Blend, 221
creating animation with Expression Blend, 274–282
keyframe animation, 269
linear interpolation animation, 269
programmatically controlling animations, 271–273
Silverlight 3 features, 11
spline, 268
storyboards, 268–269
Timeline class, 269
transformations, 282–288
types of animation in Silverlight, 269–271
using Expression Blend to create, 273–282
viewing storyboard in Expression Blend timeline, 273–274

■ INDEX

 324

Application.Resources element
defining styles at application level, 260
Silverlight style hierarchy, 262
Uri Mapping, Navigation Framework, 173

applications
building Silverlight application in Visual Studio, 31–36
defining styles at application level, 259–260
desktop applications, 2
hosting Silverlight application, 36
laying out applications with Expression Blend, 225–233
storing application information, 183
switching between applications, 1
web applications, 2

App.xaml file
defining styles at application level, 260
Uri Mapping, Navigation Framework, 173

ASP (Active Server Pages), 6
ASP.NET, multi-targeting support, 28
ASP.NET Web Services (ASMX), 138
Assembly Caching, Silverlight 3, 11
Asset Library Window, Expression Blend, 222
Asset Tools icon, Expression Blend, 222
attached properties

Canvas panel, 42
ColumnSpan, 54
Grid control, 49
XAML, 40

attributes
syntax, 65
type-converter-enabled attributes, 66

AutoCompleteBox control, 90–91
AutoCompleteBox.IsTextCompletionEnabled property, 91
AutoGenerateColumns property, DataGrid control, 117, 122, 128
Available state, CoolDownStates state group, 294
AvailableFreeSpace property, 201

B
Background property

Button control, 77
GridSplitter control, 89

BasedOn property, Style element, 264–265
Begin method, Storyboard, 271–272
BeginTime property, 270
binding, data, 105–113

Binding class, 106
binding mode, 106
BindingMode property, 112
Element to Element binding, 10, 114–116

bntManaged_Click event handler, 74
Border control, 76–80
BorderBrush property, Button control, 77
breadcrumbs, 255
breakpoints, JavaScript debugging, 18, 25, 27

■ INDEX

 325

browsers
cross-browser support, 5
filling entire browser window with application, 44–45
Out of Browser support, 11

Button control, Click event
adding button to Canvas panel, 41
adding buttons to DockPanel, 60, 61
adding buttons to Grid, 51
adding buttons to StackPanel, 45
adding buttons to WrapPanel, 56, 57
attribute syntax, 65
creating file explorer for isolated storage, 191
declaring event handler in managed code, 73
element syntax, 66
gradients, 79
nesting controls within controls, 67
setting inline properties with Expression Blend, 250
setting inline properties with Visual Studio, 236, 241
using styles as static resources, 256

Button events
Button_Click event, 99, 102
coding file explorer for isolated storage, 203

button properties, 69, 77
Button_Click event handler

declaring event in XAML, 70
NavigationService object navigating to Page, 166
passing data to navigation pages, 169

Button_Click method, 174

C
caching, Assembly Caching, 11
CanUserReorder property, DataGridColumn, 123
CanUserResize property, DataGridColumn, 123
canvas layout mode, 225
Canvas panel

adding button to, 41
attached properties, 42
effect of omitting Height and Width attributes, 44
filling browser window with application, 44–45
Height property, 41
Left property, 40
pros and cons of, 39
Top property, 40
Width property, 41

Cascading Style Sheets (CSS), 66, 252
CellEditingTemplate, DataGridTemplateColumn type, 124
CellTemplate, DataGridTemplateColumn type, 124, 128
CenterX property, RotateTransform type, 284
CenterY property, RotateTransform type, 284
check box, DataGridCheckBoxColumn type, 123
CheckBox control, 84–86
CheckBox.Content property, 86
CheckCoolDown method, 306

■ INDEX

 326

Child Window, Modal, 93–103
Clear method, Items, 200
Click event

Button control, 82
HyperlinkButton, 161
TextBox control, 82

Click property
Button control, 69, 204
HyperlinkButton, 155

client-access policy
clientaccesspolicy.xml file, 149, 151
permissions, 151

client-side scripting, 14
Close method, modal dialogs, 99
Closed event, modal dialogs, 94, 102
code behind

switching to code behind of page, 73
WrapPanel control, 57

code completion
with type inference for HTML element, 15
with type inference for integer, 16

ColorAnimation type, 269
colors

Colors.FromArgb method, 83
colspan attribute, <TD> tag, 55
getting red/green/blue values, 83

columns
Column property, Grid control, 49, 248
ColumnDefinitions property, 231
ColumnDefinitions XAML property element, Grid control, 50, 52, 226
ColumnSpan attached property, Grid control, 54
spanning in Grid control, 54–55

Columns collection, DataGrid
building DataGrid with custom columns, 128
DataGridCheckBoxColumn type, 123
DataGridColumn type, 123
DataGridTemplateColumn type, 124
DataGridTextColumn type, 123

Combine method, Path class, 200, 204
Completed event, SocketAsyncEventArgs, 150
ConnectAsync method, 150
connections

accessing data through sockets, 150
pseudo-conversational environment, 137

Content property
Button controls, 249
CheckBox control, 86
RadioButton control, 85

Control class, 296
control properties

binding, 106
setting, 65–66

controls
attached properties, 66

■ INDEX

 327

attribute syntax, 65
AutoCompleteBox control, 90–91
binding control properties, 106
Border control, 76–80
Canvas panel, 39, 40–45
CheckBox control, 84–86
custom controls, 289–290, 293–309
DataGrid control, 116–130
dependency properties, 292–293
DockPanel control, 40, 59–63
element syntax, 66
extended controls, 87–90
Grid control, 40, 49–55
GridSplitter control, 88–90
handling events in Silverlight, 76
introduction, 65
layout controls, 39–40
ListBox control, 130–135
nesting controls within controls, 67–68
Parts and States model, 291–292
RadioButton control, 84–86
referencing styles from, 252
setting control properties, 65–66
Silverlight 3 features, 10
Silverlight control model, 291
Silverlight Control Toolkit, 290–291
StackPanel control, 39, 45–48
TextBox control, 80–84
type-converter-enabled attributes, 66
user input controls, 80–86
ViewBox control, 92–93
viewing related assemblies, 87
WrapPanel control, 40, 55–59

CoolDown state, 294
CorePart property, 305
CornerRadius property, Button control, 77
Create Storyboard Resource dialog, 275
Create Style Resource dialog, 254
CreateDirectory method, 199
CreateFile method, 199
crossdomain.xml file, 149
cross-platform version of .NET Framework, 5
cross-platform/cross-browser support, 5
CSS (Cascading Style Sheets), 66, 252
custom columns, building DataGrid with, 124–130
custom content, building ListBox with, 133–135
custom controls

dependency properties, 292–293
Parts and States model, 289, 291–292
reasons for writing, 289–290
Silverlight control model, 291
Silverlight Control Toolkit, 290–291

custom controls, creating, 293–309
compiling and testing, 308–309

■ INDEX

 328

defining appearance, 299–303
defining properties and states, 296–299
handling events, 304–308
implementing custom functionality, 293
setting up control project, 294–296

D
data access

accessing data through sockets, 150–152
accessing services from other domains, 149–150
Silverlight applications, 137–138
through WCF service, 138–149
through web services, 138–149

data binding, 105–113
Binding class, 106
DataContext property, 109
TwoWay data binding, 112–113

data validation (Silverlight 3), 10
database connections, 137
DataContext property, LayoutRoot, 109
DataGrid control, 116–130

accessing data through WCF service, 146, 148
adding extended controls, 87
building with custom columns, 124–130
column reordering in DataGrid, 122
Columns collection, 122–124
getting XML namespace for DataGrid, 118
resizing columns in DataGrid, 121
sorting in DataGrid, 121

DataGrid.AutoGenerateColumns property, 117, 122, 128
DataGridCheckBoxColumn type, 123
DataGridColumn type properties, 123
DataGrid.Margin property, 117
DataGridTemplateColumn type

building DataGrid with custom columns, 128
CellEditingTemplate, 124
CellTemplate, 124

DataGridTextColumn type, 123, 129
DataGridTextColumn.DisplayMemberBinding property, 123
DataGridTextColumn.Header property, 123
debugging

Debugging Not Enabled dialog box, 25, 34
integrated debugger, 13
JavaScript debugging, 18–19, 25, 28

deep linking, Navigation Framework, 164–165
dependency properties, 292–293, 298
desktop applications, 2
development environment, Silverlight 3, 8–10
DialogResult property, modal dialogs, 94, 99, 102
dictionaries, Merged Resource, 261–262
DisplayIndex property, DataGridColumn, 123
DisplayMemberBinding property, DataGridTextColumn type, 123
DisplayMemberPath property, ListBox control, 131

■ INDEX

 329

DLLs (dynamic link libraries), 87
Dock property, DockPanel control, 60
DockPanel control, 59–63

default dock behavior, 60
Dock property, 60
getting XML namespace for DockPanel, 60
LastChildFill property, 61
pros and cons of, 40

domains, accessing services from, 149–150
DoubleAnimation type, 269
DoubleAnimationUsingKeyFrames type, 270
DoWork () method, 142
dynamic link libraries (DLLs), 87

E
Easing section, Properties panel, Expression Blend, 279
element syntax, 66
Element to Element binding, 10, 114–116
Ellipse control, 80, 82
Ellipse.Fill property, 83
event handling

creating custom control, 304–308
declaring event handler in managed code, 72–76
using Modal Child Window, 99

events
declaring event handler in managed code, 72–76
declaring event in XAML, 68–71
handling events in Silverlight, 68

Expression Blend, Microsoft
Animation workspace mode, 221
Asset Library Window, 222
creating animation with, 274–282
creating animations, 273–282
documentation, 214
editing layout grid with Expression Blend, 225–233
key features, 213–221
laying out applications with, 225–233
Objects and Timeline panel, 215, 225
Parts and State model, 215
Project panel, 219–220, 223
Properties panel, 223–224
setting inline properties with, 243–251
skinning, 215
split-view mode, 214
template editing support, 215
timeline, 215
Toolbox, 221–223
transforms using, 285–288
using styles as static resources, 253
viewing storyboard in Expression Blend timeline, 273–274
Visual State Manager (VSM), 215
Visual Studio 2008 integration, 214
visual XAML editor, 214

■ INDEX

 330

working with Grid control, 225–233
working with projects in, 216–221
workspace elements, 221–225

Expression Blend Toolbox, 221–223
extended controls

GridSplitter control, 88–90
viewing related assemblies, 87

Extensible Application Markup Language. See XAML (Extensible Application Markup Language)
external script files, JavaScript IntelliSense, 16

F
file explorer, creating for isolated storage, 186–207, 205–207
File Modified dialog box, 220
Fill property, Ellipse control, 83
Flash, 3, 5
FontXyz properties, TextBlock control, 238
form controls. See also controls

AutoCompleteBox control, 90–91
Border control, 76–80
CheckBox control, 84–86
extended controls, 87–90
GridSplitter control, 88–90
nesting controls within controls, 67–68
RadioButton control, 84–86
setting control properties, 65–66
TextBox control, 80–84
user input controls, 80–86
ViewBox control, 92–93

Frame object
creating application with navigation support, 159, 161
description, 153
making Frame size of entire Grid cell, 159
using multiple frames, 179–182

Frame.HorizontalContentAlignment property, 159
Frame.JournalOwnership property, 179, 180
Frame.Navigate method, 161
Frame.VerticalContentAlignment property, 159
frameworks, 153
FromArgb method (Colors), 83
functionality through custom controls, 289–290

G
generic.xaml file

creating custom control, 299
Properties panel, 301

get operation, data binding, 111
GetChildElement method, 304
GetDirectoryName method, Path class, 200, 203
GetFileNames method, 201
GetHands method, 140, 141, 143
GetHandsAsync method, 146, 148

■ INDEX

 331

GetHandsCompleted event, 146, 148
GetStorageData method, 197, 200, 205
GetUserStoreForApplication method, 198
GoToState method, 304
GoToState method, VisualStateManager, 298, 299
gradients, Button control, 79
grant-to element, 149
Grid control, 49–55

adding objects to different grid cells, 51
attached properties, 49
Column property, 49
ColumnDefinitions XAML property element, 50, 52
ColumnSpan attached property, 54
creating application with navigation support, 154
creating file explorer for isolated storage, 188
declaring event handler in managed code, 72
declaring event in XAML, 69
editing layout grid with Expression Blend, 225–233
making Frame size of entire Grid cell, 159
nesting, 52–54, 230
pros and cons of, 40
Row property, 49
RowDefinitions XAML property element, 50, 52, 81
setting inline properties with Visual Studio, 236
ShowGridLines property, 50
spanning column in, 54–55
using * value to fill available space, 50

grid layout mode, 225–233
GridSplitter control, 88–90, 189
GridSplitter.Background property, 89
Grouping property, RadioButton control, 85

H
Header property, DataGridColumn, 123, 129
Height property

Canvas panel, 41, 44
effect of omitting Height and Width attributes, 44
Grid control, 50
RowDefinition, 240
UserControl, 236

Hello World application, 31–35
HelloWorld function, 22–23, 27
horizontal orientation, WrapPanel control, 56
HorizontalAlignment property

RadioButton control, 85
setting inline properties with Expression Blend, 246
StackPanel control, 46

HorizontalContentAlignment property, Frame object, 159
HorizontalScrollBarVisibility property, TextBlock control, 196
hosting Silverlight application, 36
HTML, XAML similarities to, 6
HyperlinkButton

creating application with navigation support, 155, 161

■ INDEX

 332

HyperlinkButton.Tag property, 161

I
Immediate window, JavaScript debugging, 19, 27
IncreaseQuotaTo method, 210
InitializeComponent method, 34, 74
inline properties

overriding style properties, 262, 263
setting with Expression Blend, 243–251
setting with Visual Studio, 235–243

INotifyPropertyChanged interface, 109–110
inputs

handling events in Silverlight, 68
user input controls, 80–86

integrated debugger, 13
IntelliSense

JavaScript IntelliSense, 14–17, 20, 28
transparent IntelliSense mode, 30–31

interfaces, evolution of user, 1–2
isCoolDown flag, 306
isolated storage

clearing, 208
creating file explorer for, 186–207
data access in Silverlight applications, 137
description, 183
increasing isolated storage quota, 209–212
IsolatedStorage namespace, 183
IsolatedStorageFile class, 183, 198
IsolatedStorageFileStream class, 184
IsolatedStorageSettings class, 184–186
viewing, 207

IsReadOnly property, DataGridColumn, 123
IsTextCompletionEnabled property, AutoCompleteBox control, 91
Items.Clear method, 200
ItemsSource property

building DataGrid with custom columns, 130
building ListBox with custom content, 134

ItemTemplate, ListBox control, 133

J
JavaScript debugging, Visual Studio 2008, 18–19, 25–28
JavaScript IntelliSense

example illustrating, 20–28
external script files, 16
for function with parameter tags, 17
type inference, 14–16
XML comments, 16

JournalOwnership property, Frame object, 179–180
JSON (JavaScript Object Notation), 137

■ INDEX

 333

K
Key attribute, Style element, 252
keyframes

creating animation with Expression Blend, 277
keyframe animation, 269–270
viewing storyboard in Expression Blend timeline, 274

KeySpline property, 279–280

L
LastChildFill property, DockPanel control, 61
layout management

Canvas panel, 40–45
DockPanel control, 59–63
filling entire browser window with application, 44–45
Grid control, 49–55
laying out applications with Expression Blend, 225–233
laying out unknown numbers of items, 56
nesting controls, 47–48, 52, 54
spanning column in Grid control, 54–55
StackPanel control, 45–48
WrapPanel control, 55–59

LayoutRoot
editing layout grid with Expression Blend, 226, 229
LayoutRoot.DataContext property, 109

Left property, Canvas panel, 40, 42
linear interpolation animation, 269
linking, deep (Navigation Framework), 164–165
Linux, support for, 5
List class, 119
list controls

DataGrid control, 116–130
ListBox control, 130–135

ListBox control, 130–135
building with custom content, 133–135
creating file explorer for isolated storage, 191–192
custom, 132
default, 131
ItemTemplate, 133

ListBox.DisplayMemberPath property, 131
Loaded event, 119
Loaded event handler

accessing data through WCF service, 147
data binding, 108

Loaded event, Page
building DataGrid with custom columns, 130
building ListBox with custom content, 134
creating animation with Expression Blend, 281

LoadFilesAndDirs method, 197–198
local networking (Silverlight 3), 10
local storage, 183. See also isolated storage

■ INDEX

 334

M
Mac OS Dock feature, 1
managed code, declaring event handler in, 72–76
Margin property

DataGrid control, 117
Grid control, 242
StackPanel control, 46, 247
TextBlock control, 238
type-converter-enabled attributes, 66

MaxWidth property, DataGridColumn, 123
Merged Resource Dictionaries, 261–262
metadata, dependency properties, 293
Microsoft Expression Blend. See Expression Blend, Microsoft
MinWidth property, DataGridColumn, 123
Modal Child Window, 93–103
modal dialogs

Close method, 99
Closed event, 94, 102
DialogResult property, 94, 99
refactoring Child Window, 94
Show method, 94, 99

modal window support (Silverlight 3), 10
Mono project, 5
mouse events, 304
MouseOver state, NormalStates state group, 294
multi-targeting support, Visual Studio 2008, 28–30

N
namespaces

extended controls, 87
getting XML namespace for DataGrid, 118
getting XML namespace for DockPanel, 60
getting XML namespace for WrapPanel, 56

Navigate method
Frame object, 161
NavigationService object, 169

Navigation Application References, Silverlight, 157
Navigation Application template, Silverlight, 175–179
Navigation Framework

benefits of, 164
creating Silverlight application with navigation support, 153–164
deep linking, 164–165
Frame object, 153
introduction, 153
NavigationContext object, 168–172
NavigationService object, 165–168
Page object, 153
passing data to navigation pages, 168–169, 172
Silverlight 3 features, 10
Uri Mapping, 172–175
Uri Routing, 175
UriMapper property, 174

■ INDEX

 335

using multiple frames, 179–182
NavigationContext object, 168–172
NavigationContext.QueryString property, 168
NavigationService object, 165–168
NavigationService.Navigate method, 169
nesting

Grid control, 52–54, 230
nesting controls within controls, 67–68
StackPanel control, 47–48

.NET Framework
cross-platform version of, 5
multi-targeting support, 28, 30

networking, local, 10
New Project dialog

building Silverlight application in Visual Studio, 32
creating application with navigation support, 154
JavaScript IntelliSense and debugging, 20
multi-targeting support, 29
Silverlight Navigation Application template, 175
working with projects in Expression Blend, 217

New Silverlight Application dialog, 154, 176
NormalStates state group, 294
NotImplementedException, 75

O
Object Browser, Visual Studio, 145
object tool group, Expression Blend Toolbox, 221
ObjectAnimation type, 269
Objects and Timeline panel, Expression Blend

creating animation with Expression Blend, 275
editing layout grid with Expression Blend, 229
using styles as static resources, 253, 255
viewing storyboard in Expression Blend timeline, 273

ObservableCollection class
building DataGrid control, 118, 119
building DataGrid with custom columns, 126

OnApplyTemplate method, 304
OneTime value, BindingMode property, 112
OneWay value, BindingMode property, 112
OnSendCompleted event handler, 151
OpenFile method, 205
Orientation property, StackPanel control, 46, 249
Orientation property, WrapPanel control, 58
Out of Browser support (Silverlight 3), 11

P
Page object

accessing Frame from, 165
creating application with navigation support, 159–160
description, 153
NavigationService object navigating to, 166

■ INDEX

 336

passing data to navigation pages, 169–172
Page_Loaded event

accessing data through WCF service, 148
building DataGrid with custom columns, 130
building ListBox with custom content, 134

pages, switching to code behind of, 73
panels, Expression Blend, 221

Objects and Timeline panel, 225
Project panel, 223
Properties panel, 223–224
Toolbox, 221–223

parts
Parts and State model, 215
Parts and States model, 291–292

Path.Combine method, 200, 204
Path.GetDirectoryName method, 203
Pause method, Storyboard, 271–272
performance, Silverlight 3, 11
perspective 3D (Silverlight 3), 10
platforms

cross-platform support, 5
cross-platform version of .NET Framework, 5

PointAnimation type, 269
Pressed state, NormalStates state group, 294
Project panel, Expression Blend, 219–220, 223
project templates for Visual Studio 2008, 9
properties

attached properties, 40, 42, 66
creating custom control, 296
dependency properties, 292–293
inline properties, 235, 243, 251
setting control properties, 65–66

Properties panel, Expression Blend, 223–224
editing layout grid with Expression Blend, 229, 232
setting inline properties with Expression Blend, 246
transforms using Expression Blend, 286

Properties panel, generic.xaml file, 301
Property attribute, Setter element, 252
PropertyChanged event, 110
pseudo-conversational environment (Silverlight applications), 137

Q
QueryString property, NavigationContext object, 168
Quota property, 201

R
RadioButton control, 84–86
RadioButton.Content property, 85
RadioButton.Grouping property, 85
RadioButton.HorizontalAlignment property, 85
ReadToEnd method, StreamReader class, 205

■ INDEX

 337

Rectangle control, 85
References folder, 155
Register method, DependencyProperty object, 293
remote scripting, 3
RenderTransformOrigin property, RotateTransform type, 284
resources

Merged Resource Dictionaries, 261–262
ResourceDictionary element, 301
using styles as static resources, 253–259

Resources element, Application
defining styles at application level, 260
Uri Mapping, Navigation Framework, 173

Resources element, UserControl
Silverlight style hierarchy, 262
using styles as static resources, 255

REST (representational state transfer), 138
Resume method, Storyboard, 271–272
RIAs (rich internet applications), 3
RotateTransform type, 284, 286–287
RoutedEventHandler(bntManaged_Click), 74
Row property, Grid control, 49, 248
RowDefinitions property

editing layout grid with Expression Blend, 231
Grid control, 240

RowDefinitions XAML property element, 50, 52, 81, 250
Run at startup check box (ExpressionBlend), 216
runtime, Silverlight, 6, 8

S
ScaleTransform type, 283, 287
ScaleX property, ScaleTransform type, 283
ScaleY property, ScaleTransform type, 283
SDK (Software Development Kit), Silverlight 3, 9
security of data in Silverlight applications, 137
Seek method, Storyboard, 271
SendAsync method, 151
service references

accessing data through WCF service, 148
Add Service Reference dialog box, 143

set operation, data binding, 111
Setter element, styles, 252, 256, 302
Show method, modal dialogs, 94, 99
ShowGridLines property, Grid control, 50, 154, 232
Silverlight, 2, 3, 5

additional controls, 10
animation, 267–271
Assembly Caching, 11
benefits of, 4–7
building application in Visual Studio, 31–36
Class Library template, 294
control model, 291–292
Control Toolkit, 290–291
cross-platform version of .NET Framework, 5

■ INDEX

 338

cross-platform/cross-browser support, 5
data validation, 10
description, 3–4
development environment, 8–10
Element to Element binding, 10
hosting Silverlight application, 36
layout management, 39
local networking, 10
modal window support, 10
Navigation Application References, 157
Navigation Application template, 175–179
Navigation Framework, 10, 153, 164–165
new features, 10–11
Out of Browser support, 11
pages. See pages
performance, 11
perspective 3D, 10
property system, 292
runtime, 6
style hierarchy, 262–263
styles, 251–265
Toolkit, 10
tools for Visual Studio 2008, 8
transformation and animation features, 11
transformations, 282–288
use of familiar technologies, 6
XAML, 3, 5
.xap file, 87

Silverlight applications
accessing data through sockets, 150–152
creating, with navigation support, 153–164
data access, 137–138, 149–150

SkewTransform type, 284, 287–288
skinning (Expression Blend), 215
sockets

accessing data through, 137, 150–152
SocketAsyncEventArgs.Completed event, 150

SolidColorBrush, creating, 83
source

BindingMode property, 112
data binding, 105–106

spanning column, Grid control, 54–55
splines, 268
split-view mode, Expression Blend, 214, 218
StackPanel control

building ListBox with custom content, 133
creating file explorer for isolated storage, 189, 192
default stacking orientation, 46
horizontal stacking, 45–46
HorizontalAlignment property, 46
Margin property, 46
nesting, 47–48, 189
Orientation property, 46
pros and cons of, 39

■ INDEX

 339

setting inline properties with Expression Blend, 243, 245
using styles as static resources, 253
vertical stacking, 45

StartingHands.cs class, 140
StartingHandService.svc, 142, 144, 148
state group

CoolDownStates state group, 294
NormalStates state group, 294
Parts and States model, 292

states
creating custom control, 298
handling events in Silverlight, 68
Parts and States model, 292

Stop method, Storyboard, 271–272
storage, isolated, 183–186, 207, 212
storyboards, 268–269

programmatically controlling animations, 271
Storyboard.Begin method, 271–272
Storyboard.Pause method, 271–272
Storyboard.Resume method, 271–272
Storyboard.Seek method, 271
Storyboard.Stop method, 271–272
Storyboard.TargetName property, 270
Storyboard.TargetProperty property, 270
timelines, 268
viewing storyboard in Expression Blend timeline, 273–274

StreamReader.ReadToEnd method, 205
StreamWriter.Write method, 205
Style attribute

Application.Resources element, 260
UserControl.Resources element, 255, 257

Style element, 252
BasedOn property, 264–265
creating custom control, 302

styles
Create Style Resource dialog box, 254
create styles based on another style, 264–265
defining at application level, 259–260
inheriting styles using BasedOn property, 264–265
inline properties overriding style properties, 262–263
Merged Resource Dictionaries, 261–262
properties, 235–251
referencing from controls, 252
Setter element, 252
Silverlight style hierarchy, 262–263
Style element, 252
using styles as static resources, 253–259

T
Tag property, HyperlinkButton, 161
TargetName property, Storyboard, 270
TargetProperty property, Storyboard, 270
targets

■ INDEX

 340

BindingMode property, 112
data binding, 105–106
TargetType attribute, Style element, 252

templates
DataGridTemplateColumn type, 124
Expression Blend, 215
Silverlight Navigation Application template, 175–179

testing file explorer for isolated storage, 206–207
text

DataGridTextColumn type, 123
TextBlock.AcceptsReturn property, 196
TextBlock.HorizontalScrollBarVisibility property, 196
TextBlock.Text property, 70
TextBlock.VerticalScrollBarVisibility property, 196
TextWrapping property, 247

Text property, TextBox control
declaring event in XAML, 70
getting red/green/blue values, 83
setting inline properties with Expression Blend, 249

TextBlock control
building DataGrid with custom columns, 128
building ListBox with custom content, 133
building Silverlight application in Visual Studio, 34
coding file explorer for isolated storage, 201
creating file explorer for isolated storage, 191
declaring event handler in managed code, 75
referencing style from, 252
setting inline properties with Expression Blend, 243, 246, 249
setting inline properties with Visual Studio, 236, 238–239
using Modal Child Window, 95–96, 100

TextBox control, 80–84
data binding, 106, 107, 109
setting inline properties with Expression Blend, 246
TextBox.Text property, 83
using styles as static resources, 257–258

themes folder, 299
timeline, Expression Blend, 215, 225

viewing storyboard in, 273–274
timelines

storyboards, 268
Timeline class, 269

Toolbox, Expression Blend, 221–223
toolkit

Silverlight 3 Toolkit, 10
Silverlight Control Toolkit, 290–291

Top property, Canvas panel, 40, 42
transformations, 282–288

2D transforms, 282
RotateTransform type, 284
ScaleTransform type, 283
Silverlight 3 features, 11
SkewTransform type, 284
transformation types, 283
TranslateTransform type, 284

■ INDEX

 341

using Expression Blend, 285–288
transitions, Parts and States model, 292
TranslateTransform type, 284, 286
transparent IntelliSense mode, 30–31
try/catch block, 83
TryIncreaseQuotaTo method, 208
TwoWay data binding, 112–113
TwoWay value, BindingMode property, 112
type inference

code completion with, for HTML element, 15
code completion with, for integer, 16
JavaScript IntelliSense, 14–16

type-converter-enabled attributes, 66

U
UI elements, 105–106
Uri attribute, UriMapping element, 173
Uri Mapping, Navigation Framework, 172–175
Uri Routing, Navigation Framework, 175
UriMapper property, Navigation Framework, 174
UriMapping element, Navigation Framework, 173
user input controls

CheckBox control, 84–86
RadioButton control, 84–86
TextBox control, 80–84

user inputs, 68. See also inputs
user interface, evolution of, 1–2
UserControl

creating custom control, 301
implementing custom functionality, 293
setting inline properties with Expression Blend, 243
setting inline properties with Visual Studio, 236
using styles as static resources, 255, 259

UserControl definition
adding extended controls, 87
creating application with navigation support, 158

UserControl object
changing Height and Width attributes, 49
effect of omitting Height and Width attributes, 44
filling browser window with application, 44

UserControl.Resources element
Silverlight style hierarchy, 262
using styles as static resources, 255

V
validation, data, 10
Value attribute, Setter element, 252
vertical orientation, WrapPanel control, 56
VerticalAlignment property, 246
VerticalContentAlignment property, Frame object, 159
VerticalScrollBarVisibility property, TextBlock control, 196

■ INDEX

 342

ViewBox control, 92–93
views, split-view mode (Expression Blend), 214
Visibility property, DataGridColumn, 123
Visual State Manager (VSM), 215, 291
Visual Studio

building Silverlight application, 31–36
declaring event handler in managed code, 74
description, 13
history, 14
hosting application using Web Application project, 36
hosting application using web site, 36
Object Browser, 145
Web Application project, 36
web site, 36

Visual Studio 2008
creating application with navigation support, 154
Expression Blend integration, 214
hosting Silverlight application, 36
JavaScript debugging, 18–19, 25, 28
JavaScript IntelliSense, 14–17, 20, 28
multi-targeting support, 28–30
new features, 14–31
project templates for, 9
setting inline properties with, 235–243
Silverlight 3 development environment, 8
transparent IntelliSense mode, 30–31

visual XAML editor, Expression Blend, 214
VisualStateGroups, 303
VisualStateManager.GoToState method, 298–299
VisualStateManager.VisualStateGroups, 303
VSM (Visual State Manager), 215, 291

W
WCF (Windows Communication Foundation), 138–149
Web Application project

accessing data through WCF service, 138
hosting Silverlight application using, 36

web applications, 2, 183
web services

accessing services from other domains, 149–150
data access through, 137–149
proxy class, 148

Width property
Canvas panel, 41, 44
DataGridColumn, 123
effect of omitting Height and Width attributes, 44
Grid control, 50
UserControl, 236

windows, Modal Child Window, 93–103
Windows Communication Foundation (WCF), 138–149
Windows key +Tab key, Vista, 2
Windows Presentation Foundation Everywhere (WPF/E), 3
Windows Vista, switching between applications, 1

■ INDEX

 343

workspace elements, Expression Blend
Objects and Timeline panel, 225
Project panel, 223
Properties panel, 223–224
Toolbox, 221, 223

WrapPanel control, 55–59
getting XML namespace for WrapPanel, 56
horizontal orientation, 56
Orientation property, 58
pros and cons of, 40
vertical orientation, 56

Write method, StreamWriter class, 205

X
X Internet, 3
X property, TranslateTransform type, 284
XAML (Extensible Application Markup Language)

attached properties, 40
data binding, 106, 109
declaring events in, 68–71
description, 214
HTML similarities, 6
introduction, 3–5
property elements, 50
referencing styles from controls, 252
using Modal Child Window, 97–98, 100
visual XAML editor, 214
XamlParseException, 192, 262

.xap file, 87
XML (Extensible Markup Language)

comments, 16, 22, 24
namespaces, 56, 60
policy file, 149
xmlns declaration, 87

Y
Y property, TranslateTransform type, 284

	Prelim
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Welcome to Silverlight 3
	The Evolution of the User Interface
	Rich Internet Application Solutions
	What Is Silverlight?
	Benefits of Silverlight
	Cross-Platform/Cross-Browser Support
	Cross-Platform Version of the .NET Framework
	XAML, a Text-Based Markup Language
	Use of Familiar Technologies
	Small Runtime and Simple Deployment

	The Silverlight Development Environment
	New Features in Silverlight 3
	Improved Performance

	Summary

	Introduction to Visual Studio 2008
	What Is Visual Studio?
	What’s New in Visual Studio 2008?
	JavaScript IntelliSense and Debugging
	IntelliSense Improvements
	New Debugging Features
	Try It Out: JavaScript IntelliSense and Debugging
	Multi-Targeting Support
	Transparent IntelliSense Mode

	Building Your First Silverlight Application in Visual Studio
	Try It Out: Hello World in Silverlight 3
	Hosting Your Silverlight Application: Web Site or Web Application?
	Using a Visual Studio Web Site
	Using a Visual Studio Web Application Project

	Summary

	Layout Management in Silverlight 3
	Layout Management
	The Canvas Panel
	Try It Out: Using the Canvas Panel
	Filling the Entire Browser Window with Your Application

	The StackPanel Control
	Try It Out: Using the StackPanel Control
	Try It Out: Nesting StackPanel Controls

	The Grid Control
	Try It Out: Using the Grid Control
	Try It Out: Nesting a Grid and Spanning a Column

	The WrapPanel Control
	Try It Out: Using the WrapPanel Control

	The DockPanel Control
	Try It Out: Using the DockPanel Control

	Summary

	Silverlight 3 Controls
	Setting Control Properties
	Attribute Syntax
	Element Syntax
	Type-Converter-Enabled Attributes
	Attached Properties

	Nesting Controls Within Controls
	Handling Events in Silverlight
	Try It Out: Declaring an Event in XAML
	Try It Out: Declaring an Event Handler in Managed Code

	The Border Control
	User Input Controls
	Try It Out: Working with the TextBox Control
	Try It Out: Working with the RadioButton and CheckBox Controls

	Extended Controls
	Adding an Extended Control
	Try It Out: Using the GridSplitter

	AutoCompleteBox
	ViewBox
	Modal Windows
	Try It Out: Using the Modal Child Window

	Summary

	Data Binding and Silverlight List Controls
	Data Binding
	The Binding Class
	Try It Out: Simple Data Binding in Silverlight

	Element to Element Binding
	Try It Out: Element to Element Binding

	The DataGrid Control
	Try It Out: Building a Simple DataGrid
	The Columns Collection
	DataGridTextColumn
	DataGridCheckBoxColumn
	DataGridTemplateColumn
	Try It Out: Building a DataGrid with Custom Columns

	The ListBox Control
	Default and Custom ListBox Items
	Try It Out: Building a ListBox with Custom Content

	Summary

	Data Access and Networking
	Data Access in Silverlight Applications
	Accessing Data Through Web Services
	Try It Out: Accessing Data Through a WCF Service

	Accessing Services from Other Domains
	Accessing Data Through Sockets
	Summary

	Navigation Framework
	Frame and Page Object
	Try It Out: Creating a Silverlight Navigation Application

	Benefits of the Navigation Framework
	Deep Linking

	The NavigationService Object
	Try it Out: Using the NavigationService Object

	Passing Data to Navigation Pages
	Try it Out: Passing Data to Navigation Pages

	Uri Mapping
	Try it Out: Uri Mapping and the Navigation Framework

	Silverlight Navigation Application Template
	Try it Out: Using the Silverlight Navigation Application Template

	Using Multiple Frames
	Try it Out: Using Multiple Frames

	Summary

	Local Storage in Silverlight
	Working with Isolated Storage
	Using the Isolated Storage API
	IsolatedStorageFile
	IsolatedStorageFileStream
	IsolatedStorageSettings
	Try It Out: Creating a File Explorer for Isolated Storage
	Creating the Application Layout
	Coding the File Explorer
	Testing the File Explorer

	Managing Isolated Storage
	Viewing and Clearing Isolated Storage
	Try It Out: Increasing the Isolated Storage Quota

	Summary

	Introduction to Expression Blend
	Key Features in Expression Blend
	Visual XAML Editor
	Visual Studio 2008 Integration
	Split-View Mode
	Visual State Manager and Template Editing Support
	World-Class Timeline
	Try It Out: Working with Projects in Expression Blend

	Exploring the Workspace
	Toolbox
	Project Panel
	Properties Panel
	Objects and Timeline Panel

	Laying Out an Application with Expression Blend
	Working with the Grid Control in Expression Blend
	Try It Out: Editing a Layout Grid with Expression Blend

	Summary

	Styling in Silverlight
	Inline Properties
	Try It Out: Setting Inline Properties with Visual Studio
	Try It Out: Setting Inline Properties with Expression Blend

	Silverlight Styles
	Try It Out: Using Styles As Static Resources
	Defining Styles at the Application Level
	Merged Resource Dictionaries
	Silverlight Style Hierarchy

	Summary

	Transformations and Animation
	Introduction to Silverlight Animation
	Silverlight Storyboards
	Types of Animation in Silverlight

	Programmatically Controlling Animations
	Using Expression Blend to Create Animations
	Viewing a Storyboard in the Expression Blend Timeline
	Try It Out: Creating an Animation with Expression Blend

	Creating Transformations in Silverlight
	Transformation Types
	ScaleTransform
	SkewTransform
	RotateTransform
	TranslateTransform
	Try It Out: Using Expression Blend to Transform Silverlight Objects

	Summary

	Custom Controls
	When to Write Custom Controls
	Silverlight Control Toolkit
	Silverlight Control Model
	Parts and States Model
	Dependency Properties

	Creating Custom Controls in Silverlight
	Implementing Custom Functionality
	Try It Out: Building a Custom Control
	Setting Up the Control Project
	Defining Properties and States
	Defining the Control’s Appearance
	Handling Control Events
	Compiling and Testing the Control

	Summary

	Deployment
	Deploying Silverlight Applications
	XAP Files
	Hosting Silverlight Content

	Assembly Caching
	Try It Out: Exploring Assembly Caching

	Out of Browser Support
	Customizing the Install Application Dialog
	Out of Browser API
	Removing Installed Applications

	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

