

Foundation Silverlight 3
Animation

Jeff Paries

Lead Editor
Ben Renow-Clarke

Technical Reviewer
Rob Houweling

Editorial Board
Clay Andres, Steve Anglin, Mark Beckner,

Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick,

Michelle Lowman, Matthew Moodie,
Jeffrey Pepper, Frank Pohlmann,

Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Managers
Beth Christmas and Candace English

Copy Editor
Heather Lang

Associate Production Director
Kari Brooks-Copony

Production Editor
Kelly Winquist

Compositor
Lynn L'Heureux

Proofreader
April Eddy

Indexer
BIM Indexing & Proofreading Services

Cover Image Designer
Corné van Dooren

Interior Designer
Kurt Krames

Manufacturing Director
Tom Debolski

Foundation Silverlight 3 Animation
Copyright © 2009 by Jeff Paries

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written

permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2407-5

ISBN-13 (electronic): 978-1-4302-2408-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked
name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of

infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or visit .

For information on translations, please contact Apress directly at 233 Spring Street, New York, New York, 10013,
e-mail , or visit .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at

.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or

damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at in the Downloads section.

Original Firefly photograph courtesy of Terry Priest, .

Credits

For Nick

iv

About the Author .xiii

About the Technical Reviewer .xiv

About the Cover Image Designer . xv

Acknowledgments .xvi

Introduction . xvii

PART 1 GETTING STARTED

Chapter 1 What You Need to Know .3

PART 2 SILVERLIGHT ANIMATION: THE BASICS

Chapter 2 Basic Transforms . 35

Chapter 3 Storyboards and Animations . 63

Chapter 4 Animation Techniques . 111

PART 3 ADVANCED ANIMATION

Chapter 5 Coordinates in Silverlight . 155

Chapter 6 Using Trigonometry for Animation . 215

Chapter 7 Simulating 3D In 2D . 281

Chapter 8 Collisions . 325

CONTENTS AT A GLANCE

v

Chapter 9 Kinematics . 355

Chapter 10 Particle Systems . 397

Chapter 11 Silverlight VR (SLVR) Objects . 433

Index . 453

vii

About the Author .xiii

About the Technical Reviewer .xiv

About the Cover Image Designer . xv

Acknowledgments .xvi

Introduction . xvii

PART 1 GETTING STARTED

Chapter 1 What You Need to Know .3

What you need to know about software . 5
Microsoft Expression Blend . 5
Microsoft Expression Design . 5
Microsoft Visual Studio . 6
Silverlight Tools for Visual Studio 2008 . 8

What you need to know about XAML . 8
Using Blend to create XAML . 10

The Canvas element . 13
The Image element . 14
The Rectangle element . 16
The Path element . 16
The Ellipse element . 18
The TextBlock element . 18
The Line element . 20
The controls elements . 20
More about XAML . 21

What you need to know about programming . 21
Anatomy of a Silverlight project . 22
Summary . 31

CONTENTS

CONTENTS

viii

PART 2 SILVERLIGHT ANIMATION: THE BASICS

Chapter 2 Basic Transforms . 35

The Translate transform . 36
The Rotate transform . 40
The Scale transform . 43
The Skew transform . 49
The Center Point transform . 51
The Flip transform . 52

Animating object properties . 52
Animating control points . 56

3D Perspective Transforms . 61
Summary . 61

Chapter 3 Storyboards and Animations . 63

Before you get started . 63
Storyboards and storyboard properties . 64

Combining storyboard properties . 68
Types of animation . 69

Double . 69
Color . 71
Point . 72
A note about from/to . 77

Types of keyframes . 77
Linear . 77
Easing . 78
Spline . 80
Discrete . 81

Events . 83
For designers . 84
For developers . 85
Storyboard events . 88

Programming storyboards and animations . 91
Storyboards . 91
DoubleAnimation . 92
Using functions to create animation . 96
DoubleAnimationUsingKeyFrames . 99
ColorAnimation . 102
PointAnimation . 103

Summary . 108

CONTENTS

ix

Chapter 4 Animation Techniques . 111

Converting objects to paths . 111
Ghosting effects . 113
Image effects . 116

Blur . 116
Drop shadows . 120
Creating custom, animated cursors . 122
Using clipping paths . 125
Creating user controls . 129
Implementing drag-and-drop . 132
Behaviors . 135
Frame-based animation sequences . 138
Animation with the Visual State Manager . 143
A code-based Visual State Manager . 148

Summary . 150

PART 3 ADVANCED ANIMATION

Chapter 5 Coordinates in Silverlight . 155

The Silverlight coordinate system . 155
Vectors and velocity . 156

One-dimensional vector movement . 157
Two-dimensional vector movement . 159
Changing the direction of a vector . 161

Single-player paddle game . 164
Dressing up the game . 170

Code-controlled vectors . 171
Touches and Gestures . 180
Vectors and frame-based animations . 183
Vectors and storyboard animations . 190
Vector math . 195
Angles in Silverlight . 197

Converting vectors to angles . 198
Separating acceleration from direction . 202

Firing a weapon from the ship . 207
Summary . 212

CONTENTS

x

Chapter 6 Using Trigonometry for Animation . 215

What is trigonometry? . 215
Angles . 216
Triangles . 219

Sine (Sin) . 221
Cosine (Cos) . 222
Tangent (Tan) . 223
Arcsine (Asin) and arccosine (Acos) . 223
Arctangent (Atan) . 224
Converting between degrees and radians . 225
How does this relate to work you’ve done in Silverlight? . 230
Free-form rotation . 232
A little help with the visualization . 239

Sine curves . 240
Oscillation . 246
A practical use for oscillation . 248
Horizontal oscillation . 252
Falling snow . 253
Flashing and blinking . 258
Combining oscillations and rotations . 260

Circular movement . 265
Orbiting . 268

The Pythagorean theorem . 271
Distance between objects . 273
A more practical use for the Pythagorean theorem . 275

Summary . 278

Chapter 7 Simulating 3D in 2D . 281

Projection plane . 281
3D . 289

Z axis rotation . 289
A model of the inner solar system . 293
Y axis rotation . 299
A horizontal carousel . 303
X axis rotation . 314
A vertical carousel . 317

Summary . 323

Chapter 8 Collisions . 325

The basics of detecting collisions . 325
Linear collisions . 327
Angular collisions . 332
Angular collisions with forces . 337
Collisions with angled surfaces . 338
FindElementsInHostCoordinates . 346
Summary . 353

CONTENTS

xi

Chapter 9 Kinematics . 355

Forward kinematics . 356
Automating forward kinematics . 359
Walking and running . 360
Multiple forward kinematic chains . 363
Inverse kinematics . 373
Reaching . 373
Dragging . 374
Dragging longer chains . 375
Organic animations . 378
Reaching with longer chains . 384
Variable-length reaching chains . 386
Reaching for objects . 389
Summary . 395

Chapter 10 Particle Systems . 397

A basic particle system . 398
Emitters . 404
Building a comet . 408
Explosions . 415
Random explosions . 416
Fountains . 419
Particles and gravity . 421
Particles and springs . 426
Visualizing particle interactions . 427
Summary . 430

Chapter 11 Silverlight VR (SLVR) Objects . 433

VR object images . 434
What do I do with all these images? . 435
What do I do with this giant image? . 438
Using the control: single-plane . 444
Using the control: multiplane . 447
You can do it! . 449
About that time travel thing 449
Summary . 451

Index . 453

xiii

Jeff Paries has been creating applications in
Silverlight since early 2007, and he maintains a blog
with example applications and tips at

. He is currently employed as
Lead Silverlight Developer at Waggener Edstrom
Worldwide in Lake Oswego, Oregon.

Prior to joining Waggener Edstrom, Jeff spent
six years as a web manager for a company in the
Internet domain name space, where he helped the
company develop and maintain a strong online
identity.

Having worked for a 3D animation software com-
pany for six years, Jeff has a strong background in
computer graphics and animation. While there, Jeff
played a strong role in training and development of
new users by developing training materials, teach-
ing a course in 3D animation at a local community
college, and authoring three books and numerous
magazine articles related to 3D graphics.

Jeff currently makes his home near Portland, Oregon, with his wife, Kate, and son, Nicholas. He
enjoys spending his free time hiking, mountain climbing, motorcycling, and writing Silverlight
applications and tutorials. You can contact him through his blog or by e-mail at

.

ABOUT THE AUTHOR

xiv

Since the introduction of Silverlight 1.1, Rob Houweling has
been developing applications and writing articles on his weblog
(), as well as being an
active member of the forums on the Silverlight.net website
where he likes to help out people with their problems. Rob is
also cofounder of the Silverlight and Expression User Group in
the Netherlands.

Currently, Rob is employed by Amercom B.V. in the Netherlands,
where he develops many websites and applications in ASP.NET
versions 1.1 to 3.5 and Silverlight, using Microsoft SQL Server
2000–2008 as the database platform.

Prior to his employment at Amercom, Rob spent several years as a Microsoft Certified system
administrator.

Rob is very grateful to Jeff for working with him on another great book, to Amercom for giving
him the opportunity to work on Silverlight, and to his loving family (Piroschka, Mika, and
Isabella) for being patient and understanding.

ABOUT THE TECHNICAL REVIEWER

xv

Corné van Dooren designed the front cover image for
this book. After taking a brief from friends of ED to cre-
ate a new design for the Foundation series, he worked
at combining technological and organic forms, with the
results now appearing on this and other books’ covers.

Corné spent his childhood drawing on everything at hand
and then began exploring the infinite world of multimedia—
and his journey of discovery hasn’t stopped since. His mantra
has always been “The only limit to multimedia is the imagi-
nation,” a saying that keeps him moving forward constantly.

Corné works for many international clients, writes features
for multimedia magazines, reviews and tests software,
authors multimedia studies, and works on many other
friends of ED books. You can see more of his work at and
contact him through his website, .

If you like Corné’s work, be sure to check out his chapter in New Masters of Photoshop:
Volume 2 (friends of ED, 2004).

ABOUT THE COVER IMAGE DESIGNER

xvi

It has been my experience in writing what is now five (wow!) books that the successful comple-
tion of a project of this size and scope are rarely the effort of a single person, and this one is no
exception. The following people made this book much better than it would have been without
them.

Rob Houweling, lead developer at Amercom: Rob served as my technical editor, going through
all of the examples in the book in great detail (oftentimes more than once), refactoring code,
offering suggestions, and so on. He also tried his best to get me to conform to best practices for
coding, and while I didn’t always hit the mark, I did better than I would have without him. I was
fortunate enough to meet Rob in person at MIX’09, and in addition to being a good technical
editor, he’s a great person. As always Rob, my door is open to you.

Ryan Loghry, illustrator: Ryan’s artwork goes a long way to making the example projects in the
book move beyond primitive shapes and examples. While I’m responsible for all those wonder-
ful gradient-filled spheres, Ryan created all of the cool-looking stuff—the rockets, scenes, and
so forth. I asked him to deliver the sun and moon, and he did—quite literally. Check out his site
at to see more of his excellent illustration work.

Keith Peters, author: Any Flash developer should recognize Keith’s name. While I’ve never
met him in person, he was kind enough to grant me permission to adapt some of his cool
ActionScript examples into Silverlight.

Other people that contributed to the successful completion of the book include Matt Smith of
PhotoSpherix, who provided the excellent sample images for the virtual reality object engine
in Chapter 11; Trevor McCauley and Andy Beaulieu for permission to include/adapt code they
originally developed; all of my coworkers at Waggener Edstrom; and everyone at friends of ED.

And of course, there is you—the reader. Without your support, I wouldn’t keep getting asked
to do something I love.

“With SketchFlow, you don’t have to trust your brightest idea to a greasy cocktail napkin.”

ACKNOWLEDGMENTS

xvii

Wow. Silverlight has really come a long way since I started using it. It’s kind of interesting to
look back a mere two years (roughly) and think about how the workflow has changed. Of even
more interest is the staggering speed at which new features are being added. In the time I’ve
been using Silverlight, it has grown from a somewhat limited toolset to an ever-more-impressive
technology that has really started to come into its own. Silverlight has started to change the way
people think about producing rich applications for the Web.

I have found that one of the hardest goals to achieve when writing a book is to not only
describe a technique for doing something but to do it in a way that gets the creative juices of
the reader flowing.

With that in mind, I tried to go a step beyond the concepts with the example projects and show
one or more ways to apply the techniques being described. It isn’t always about new techniques,
but it is often about applying existing techniques in new ways. Along those lines, it is often the
case that seeing a couple of different applications of a technique will help people start thinking
about ways to unlock the ideas that they have had floating around for a while and give them a
means to bring their ideas to life.

I think this book can do that for you.

There are nearly 200 example projects included in this book, including both code-along and
completed versions that you can take apart, change, and put back together in order to learn
how to make the concepts work for you. Don’t get locked into what is being demonstrated,
though—find ways to move beyond the examples and apply the concepts in new and interest-
ing ways. This is where your applications will really start to shine.

In the end, the goal of the book is to provide a means to realize your ideas using Silverlight as
the technology to deliver them.

Have fun. There’s a lot to learn.

Who this book is for
This book is ideal for a wide variety of web developers. If you are a Silverlight developer wanting
to learn more about animation-specific topics or a Flash developer interested in learning about
Silverlight, this book will show you a wide variety of methods that you can use to make objects
move and interact with users and each other.

Through the large assortment of code-along projects that you can work through while reading
this book, you will learn the basics of animation in Silverlight and then step into intermediate

INTRODUCTION

xviii

INTRODUCTION

and advanced procedural (code-based) animation. If you get stuck, completed versions of the
projects are included, so you can compare that code with your own to get back on track in a
hurry.

This is the right book for anyone interested in adding rich interactive applications to a website.
If you’re not sure how to get “there” from “here,” you will find a wealth of interesting tips, tech-
niques, and methods to help add some sparkle to your site. You will gain a solid understanding
of the techniques used to make objects move, and some ideas for how to apply them in projects
of your own.

No need to feel left out if you are a designer—this book will also serve as a valuable reference
for those seeking a deeper understanding of how to go about programming Silverlight. This can
be a big help when working in a team environment where cross-discipline skills are an asset, and
as the toolset continues to become more designer-friendly, you will have a leg up.

How this book is structured
This book starts out by providing the foundation information necessary for those people new to
Silverlight development. The early portion of this book starts out with what you need to know
about Silverlight and development software and the basics of animation (transforms, story-
boards, and animations).

The middle portion of this book moves toward advanced animation topics—coordinates, vec-
tor movement, and frame-based animations. The latter portion describes interesting ways to
apply trigonometry, how to simulate simple 3D movements in a 2D environment, different tech-
niques for collision detection, inverse and forward kinematics, and particle systems. The final
chapter describes in detail how you can add virtual reality objects to your applications with the
Silverlight Virtual Reality (SLVR) object engine.

If you have been developing Silverlight applications for a while, quickly scan the first chapter or
two so you know what information is there in case you need it as a reference, and then dig in.

Each chapter describes concepts through example projects. A description of the technique is
provided, and then step-by-step examples walk you through how to code up projects that dem-
onstrate the technique. If you get stuck, most of the projects include a completed version with
finalized code that you can take a look at to see how it’s done.

Many of the topics are tightly integrated, and you will see some crossover from chapter to chap-
ter. This is unavoidable, although some effort was made to present the information in manage-
able doses rather than opening the floodgates. There are, of course, additional optimizations
and different coding styles that could be applied to the code in the projects. Many times, the
code in the examples is written in a longer form to make it more readable and easily digested.
Feel free to take the examples apart, reorganize, optimize, and put them back together—that’s
the whole point!

xix

INTRODUCTION

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout.

Project names, and important words or concepts are normally highlighted on the first appear-
ance in bold type.

Code is presented in .

New or changed code is normally presented in .

Menu commands are written in the form Menu Submenu Submenu.

Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow like
this:

Downloading the code
The source code for this book is available to readers at in the Downloads
section of this book’s home page. Please feel free to visit the friends of ED website and down-
load all the code there. You can also check for errata and find related titles from friends of ED
and Apress.

Part 1

GETTING STARTED

3

Silverlight is a cross-browser, cross-platform browser plug-in developed by Microsoft
to deliver multimedia, graphics, and animation on the Web. Content created for
Silverlight looks the same on a PC and a Mac, and it supports a wide range of brows-
ers. There is even a Microsoft-supported Linux version, called Moonlight.

Silverlight projects can consist of many assets—images, vector graphics, XAML
markup, and programming code are all brought together and presented in the
browser by the Silverlight plug-in. You may use one program to create the XAML
markup, another to create the vector graphics, and another to create the program-
ming code, as shown in Figure 1-1. XAML, the markup language on which Silverlight
applications are built, is to Silverlight what HTML is to a web page. XAML describes
the containers, positions, sizes, and other attributes of the objects in a Silverlight
application.

WHAT YOU NEED TO KNOW

Chapter 1

4

CHAPTER 1

Figure 1-1. The Silverlight browser plug-in renders Silverlight content in the browser.

You’re reading this because you want to learn how to make objects move in Silverlight. Since it’s best
to start at the beginning, this chapter presents an overview of the software and technologies with
which you will be working to create Silverlight content and the various concepts covered in the book
that you will need to know to have success with the examples that are presented. If you are a Flash/
Flex developer exploring Silverlight, or if you are new to Silverlight altogether, this chapter is designed
to help you get your feet wet without being overwhelmed. If you are a designer, you will likely want
to focus on the Blend-based aspects of the text to get up and running quickly. If you are already com-
fortable developing Silverlight applications and want to get right to business, you can skip ahead to
Chapter 2 and start working through the animation-specific topics.

5

WHAT YOU NEED TO KNOW

What you need to know about software
The following tools were created with the goal of making the creation of Silverlight content as easy
and fast as possible. While you could use a simple text editor such as Notepad to create the XAML
markup that describes the objects you will be using in your applications, a visual design/development
environment will save you a lot of time and headaches. With that in mind, you will want to add some
of the following software tools to your collection.

Microsoft Expression Blend
Blend, shown in Figure 1-2, is a great tool for developing Silverlight applications. It bridges the gap
between designers and developers to speed application development time by providing a visual envi-
ronment in which to create application interfaces. You can find a free trial version at

. For the Silverlight 3 development described in this book, you’ll want to use Blend 3
or above.

Figure 1-2. The visual interface in Blend makes creating Silverlight interfaces fast and easy.

Microsoft Expression Design
Design, shown in Figure 1-3, is a vector-based drawing tool for designers that can be used to create or
edit the various graphical assets you will incorporate into your Silverlight projects. Design directly sup-
ports input of common formats such as Illustrator and Photoshop files, and can be utilized to export
vector drawings directly to XAML. Like Blend, a free trial of Design is available for download at

.

6

CHAPTER 1

Figure 1-3. Expression Design is a vector-based drawing tool that can export directly to XAML.

Microsoft Visual Studio
Visual Studio, shown in Figure 1-4, is the preferred development environment for creating the C#,
Visual Basic (VB), or JavaScript code-behind files that bring Silverlight applications to life. The intuitive
interface makes common programming tasks quick and easy. Microsoft offers a 90-day free trial of
Visual Studio 2008 Professional, which you can find at

.

Alternatively, you can download and install Microsoft Visual Web Developer Express Edition, which
can be registered free of charge. You can find the download at .
As of late 2008, Visual Web Developer Express Edition (shown in Figure 1-5) supports Silverlight Tools
for Visual Studio (see the following section), which enables Silverlight application development. Visual
Web Developer Express supports both Visual Basic and C# development.

7

WHAT YOU NEED TO KNOW

Figure 1-4. Visual Studio is the preferred environment for Silverlight development.

Figure 1-5. Microsoft Visual Web Developer is free to register.

8

CHAPTER 1

Silverlight Tools for Visual Studio 2008
This is a free add-on for Visual Studio specifically for developing Silverlight applications. You can find
this download at

. Currently, this package includes a developer version of
the Silverlight plug-in, the Silverlight 3 Software Development Kit (SDK), Visual Basic and C# project
templates, XAML IntelliSense and code generators, debugging for Silverlight applications, web refer-
ence support, and integration with Blend. All this may sound very complicated, but in a nutshell, this
add-on makes developing Silverlight applications in Visual Studio much easier. If you develop in Visual
Studio, the tools are a must-have.

If you are new to Silverlight development, the relationship between the different software programs
will become more apparent as you work through the examples in this book. Blend and Visual Studio
are tightly integrated, making movement between the two programs fast and easy.

What you need to know about XAML
So far, I’ve mentioned XAML a few times and described it as the markup that describes objects used
in a Silverlight application. As a designer or developer new to Silverlight, the biggest question you are
probably asking yourself is “Why do I need to learn XAML?” XAML, pronounced zammel, is an acro-
nym for Extensible Application Markup Language. XAML is an XML-based language used to describe
everything about the elements that are the building blocks of Silverlight applications—their shape, size,
color, position, and so forth. Beyond the importance of XAML to a Silverlight application, it also serves
as a bridge between designers and developers. Traditionally, the processes of design and development
have been separated, as illustrated in Figure 1-6. The designer creates full-fledged mock-ups that, when
approved, are sliced up and handed off to a developer for implementation. The designer then waits for
the developer to create a working version, and the two collaborate to get any actions or animations just
right before the application is released.

Figure 1-6. The “old way” of doing things: the designer hands off assets to the developer.

9

WHAT YOU NEED TO KNOW

In a XAML world, that all changes. XAML is a bridge between design and development. The designer
is empowered—no longer are assets sent off into a black hole for processing. With XAML, designers
can set up the objects, describe their motions through storyboards, and take part in the development
process if they so choose—all without writing any code. The overall development cycle can be accel-
erated as well. XAML is flexible and easily allows proxy objects to stand in for the real thing. In this
way, the developer can begin the work of coding an application at the same time the designer is still
working on the assets the application will utilize. Figure 1-7 illustrates the XAML-based development
model. Of course, there is some cross-discipline training that needs to take place, which is why as a
designer, you will want to learn XAML.

Figure 1-7. In a XAML-based development model, the line between
designer and developer is blurred.

If you are a developer, it is useful to note that each element described in a XAML file maps to a
Microsoft .NET type, and the attributes of an element (such as height, width, opacity, etc.) are equiva-
lent to .NET class properties. Don’t worry about what that means now if you’re not a developer; we’ll
cover it in more detail later.

Because XAML is XML-based, all XAML files must be well-formed XML files. This means that XAML
declarations are subject to many rules, including case sensitivity, use of whitespace, proper closing
tags, and so on. Once you have created a XAML file, the Silverlight plug-in in your web browser is used
to parse and render the content contained in the XAML file.

In contrast, Adobe Flex uses a different XML-based language, called MXML. While both XAML and
MXML are used to describe application interfaces, the two are not interchangeable.

Silverlight developers write code in files referred to as code-behind files, which manipulate the ele-
ments or element attributes described in a XAML file. Depending on the complexity, you may find
yourself using several XAML files within a single project. Using multiple XAML files often makes man-
aging the code base a little easier because tasks unique to each object are separated from the main

10

CHAPTER 1

application logic. Additionally, this creates a situation where multiple designers or developers can work
on a single project by dividing tasks. We will be using multiple XAML files in some of our projects.

You will want to have some familiarity with XAML, because it is often more convenient to directly
edit the XAML file in an environment like Visual Studio or Blend rather than hunt down a specific
property pane to change an attribute. Eventually, you will need to roll up your sleeves and get your
hands dirty.

There are many more XAML elements available for use in your Silverlight applications than those
described here. For simplicity, the examples in this book work mostly with the Canvas, Image,
Rectangle, Path, Ellipse, TextBlock, and Line elements. Those of you familiar with XAML are probably
already asking “What about TextBox? Or Grid and StackPanel?” The examples presented are intended
to focus on the concepts used to make objects move, not various methods for laying out data or the
merits of one layout panel over another.

Using Blend to create XAML
Microsoft’s Blend tool offers a useful visual environment in which to create Silverlight applications,
because it automatically generates proper XAML as you work. Let’s take a look at some XAML ele-
ments we’ll be using from the perspective of Blend.

If you already have Blend installed, go ahead and start the program. When Blend opens, you will be
given the option of opening a recent project via a list of recent projects displayed on the Projects tab,
or choosing from New Project, Open Project, or Open Site. Select the New Project option. Figure 1-8
shows the dialog with which you will be presented.

Figure 1-8. Blend New Project dialog

11

WHAT YOU NEED TO KNOW

If it is not already selected, choose the Silverlight 3 Application + Website project type, browse to the
location where you would like the project saved, and click the OK button to create a project using the
default name. Blend will take a moment to set the project up for you, and then you will be presented
with a blank project.

Blend initially presents the interface as the Design Workspace, as shown in Figure 1-9, which maxi-
mizes the space allotment for the design window. If you find yourself in the Animation Workspace,
with the Objects and Timeline panel across the bottom, press the F6 key to change back to the Design
Workspace. The Design Workspace is laid out such that the left side of the interface contains the tool-
box, Projects, Assets, and States panels, and the Objects and Timeline panel. The center contains the
artboard, and the right contains the Properties, Resources, and Data panels, each of which is accessible
via a row of tabs across the top. There is also a menu bar across the top.

Figure 1-9. The default interface layout for Blend

One thing you will find out rather quickly is that Blend’s interface layout is fairly flexible to suit the
way you work. By selecting Window Workspaces, you can toggle the main interface layout between
the Design Workspace and the Animation Workspace. The Animation Workspace shows a timeline
that is helpful when creating animations. Alternatively, the F6 key can be used to toggle between the
workspace layouts. Verify that the Design Workspace is the currently selected view.

Along the right side of the artboard, you will see three vertically arranged tabs, containing icons that
represent Design, XAML, and Split views. These tabs allow you to change between the active document
view. The top tab is for the Design view, which is the current view and shows only the artboard. Clicking
the middle XAML tab will display only the XAML code for the current file, while selecting the bottom
Split view icon will show both the artboard and the XAML code. You can click the interface tabs or

12

CHAPTER 1

use the F11 key to switch between active document views. Select Split view so that as you are working
through this section you can see how Blend assists in creating XAML code. Figure 1-10 shows what the
Blend interface should look like at this point.

Figure 1-10. Using the Split active document view

Notice in the XAML window that Blend has added some code for you already. This code is the base tem-
plate for a new project and is required in all XAML files. The first line is the opening tag for a UserControl
element, and the next line defines the namespace used by this XAML file. A namespace defines what
elements you can use in a Silverlight application, and always comes after the opening UserControl type.

This is followed by another namespace declaration. The namespace contains information that
controls how XAML interacts with the .NET framework.

The next line identifies this XAML file as an object class within the application that was created when
you selected New Project. The name Blend gave this application is , and the
default XAML file that is created by Blend for every new project is named :

Finally, there are some properties that are self-explanatory:

13

WHAT YOU NEED TO KNOW

You will not typically need to make changes to the first few lines of code within the XAML files you
create. If you would like to run your application, select Project Run Project, or press the F5 key.
Blend will open a browser window that contains your Silverlight application. Currently, the application
does not contain any elements, so the browser window will appear blank. Close the browser window
and return to Blend.

Select the Properties tab at the top right of the interface. The Properties panel contains the various
panes that display the attributes available for the object selected in the Objects and Timeline panel on
the left.

Select [UserControl] in the Objects and Timeline panel by clicking it. On the Layout pane of the Properties
panel, change Width to 800 and Height to 600. Notice that Blend automatically updates the XAML and
the Design view for you, as follows:

After the opening tag, the next line in the XAML file defines a container of type Grid:

Some of the available layout containers, such as Grid and StackPanel, have default behaviors that con-
trol the way objects placed in them are laid out. This is not the case with the Canvas container, so for
simplicity, we will be using Canvas elements as containers. In the XAML window, change the text that
says Grid to Canvas. Click the LayoutRoot element in the Objects and Timeline panel to select it. Any
elements that are added will now automatically be added to the LayoutRoot element.

Let’s look at some of the XAML elements in more detail.

The Canvas element
Canvas elements are containers that allow you to define an area into which
other elements can be placed. Elements placed in a Canvas are referred to
as children of the Canvas in which they reside. Canvases are extremely use-
ful for organizing elements that make up related parts of an interface and
have properties such as , , , , ,

, , , , and .

Locate the Grid element icon in the toolbox. Click and hold the mouse on
the Grid icon until the fly-out menu opens, and select the Canvas element, as
shown in Figure 1-11.

Double-click the Canvas icon to add a Canvas element to your project. Blend will add the new Canvas
to the Objects and Timeline panel and create the XAML for you. Notice that the LayoutRoot Canvas has
changed—it now has a matching closing tag, and the new Canvas element has been added within the
LayoutRoot element:

Figure 1-11. The
Layout panel fly-out
menu

14

CHAPTER 1

Select the newly added [Canvas] item in the Objects and Timeline panel, and use the Layout pane of the
Properties panel to change the Width property to 800 and Height to 600. In the XAML view window, edit
the new Canvas element to add a attribute:

The Brushes pane on the Properties panel will change to show a color picker with the background
color you defined for the Canvas element. You may have noticed that the color code Blend added
contains more characters than you are used to seeing when defining colors via hexadecimal. Whereas
normally you might see a group of three pairs of values for the red, green, and blue values, here you
see four pairs of values. This is because the first two numbers indicate the alpha channel (transpar-
ency) value for the defined color. To the right of the color picker are the individual values that make
up the selected color—Red, Green, Blue, and Alpha. If you have a known value, you may type it in here
rather than using the color picker in the interface.

Keep in mind that the alpha transparency defined for any given color is independent from the overall
opacity of an object. It is possible to have a color that has an alpha value of 25%, meaning it is 25% vis-
ible, while the object to which that color brush is applied has an overall opacity value of 50%, further
diminishing the visibility of the color.

We want to name the newly added Canvas element so it will be easily identifiable. At the top of the
Properties panel is a field called Name, which currently contains the value <No Name>. When an ele-
ment is not explicitly named, it appears in the Objects and Timeline panel by its type—in this case,
[Canvas]. Click in the Name field, enter myCanvas, and press the Enter key. Both the Objects and Timeline
list and XAML code will update. The final XAML for this Canvas element will look something like this:

Later, when we start getting into adding code to control the objects in our XAML files, you will see that
having an property will make accessing objects extremely easy, since they are referenced by
name.

The Image element
XAML Image elements allow you to utilize JPG or PNG images in an application. Image elements have
attributes such as , , , , , , , , , and

.

To add an Image element in Blend, click the Asset Library icon on the toolbox, expand the Controls
item, select All, and then click the Image, as shown in Figure 1-12. Alternatively, you could follow the
same procedure on the Assets panel. The Image icon will appear on your toolbox and remain there
throughout your working session.

Double-click the myCanvas item in the Objects and Timeline panel to select it, and then double-click
the Image icon to insert a default Image object. An alternative method for adding elements is to click

15

WHAT YOU NEED TO KNOW

their icon and then click and drag in the Design Workspace. This allows you to create elements that
are sized differently than the default if you prefer.

Figure 1-12. Using the Asset Library to insert an Image element onto the artboard

By default, Image elements do not point to an image, referred
to as a source attribute. To set the source for an Image object,
select the Choose an image button on the Common Properties
pane (labeled with ellipses points: . . .) and navigate to a JPG or
PNG image on your hard drive. Figure 1-13 shows the Common
Properties pane for an Image element.

When you select an image source in Blend, the image is auto-
matically copied as a resource to the directory where the proj-
ect is saved. Change the newly added Image element’s size to
320 240 pixels, and select Fill from the Stretch select box on the
Common Properties pane. To move an element around on the
artboard, press the V key to change to selection mode, and drag it around using the mouse. Observe
the XAML code as you’re dragging, and how it changes when you release the mouse button. Blend
will add and attributes to describe the Image element’s relationship to its
parent—the container.

When you are finished exploring the Image element, your XAML code should look similar to this:

This XAML describes an image that is 320 240 and will display the image .
The image will be squashed or stretched to fill the 320 240 dimensions of the Image object. The

 property specifies that the Image object will be placed 79 pixels down from the top of

Figure 1-13. The Common Prop-
erties pane for a XAML Image
element

16

CHAPTER 1

the containing canvas, and the property will place the image 247 pixels from the left
of the containing canvas.

The Rectangle element
Rectangle XAML elements are used, as you might expect, to render rectangular shapes. Rectangle
elements have attributes such as , , , , , , ,

, , , , , and .

As with other XAML elements, Rectangles can be added by typing in the appropriate XAML or by using
the Rectangle icon on the toolbox. Click the Rectangle icon or press the M key and then click and
drag on the artboard to create a rectangle. Holding down the Shift key will lock the and
attributes, which is useful for creating squares.

On the Properties panel, at the top of the Brushes pane, verify that Fill is selected, and then click in the
color picker to select a red color.

Move the cursor over the control points on the rectangle’s bounding box and notice how the cursor
changes to indicate that various properties of the rectangle can be directly modified. By dragging any
of the points on the bounding box, the rectangle can be scaled. If the cursor is moved just outside a
corner point, the rectangle can be rotated. If the cursor is moved just outside the noncorner points,
the rectangle can be skewed vertically or horizontally. By manipulating the handles that appear at the
top-left corner of the rectangle, you can modify the radius and round the corners of the rectangle. By
default, the radius handles will affect both the x and y radius values equally. By holding down the Shift
key, you can modify the radius handles independently of each other. As with other objects and prop-
erties, changes can also be typed in directly on the Properties panel. Skew and rotation are referred
to as transforms and are accessible on the Transform pane. The XAML for a rectangle with rounded
corners looks like this:

The preceding XAML describes a Rectangle object that is 147 50. The top-left corner of the rectangle
will be 145 pixels from the left of the container canvas and 378 pixels from the top. The rectangle will
be filled with a dark reddish color, specified by the hex value #FFC60000, and will have a black
stroke. The and values will round the corners of the rectangle.

The Path element
Paths are series of connected lines and curves used to form shapes. Paths have properties such as

, , , , , , , , , , and . If you
are familiar with the Pen tool and the way that Bezier paths work in programs such as Photoshop or
Illustrator, you will find that creating a path in Blend works in a similar manner.

By selecting the Pen tool from the toolbox, you can create a path by clicking the artboard. Each time
you click, a new point is added to the path. By holding down the mouse button after clicking to cre-
ate a point, dragging the mouse will allow you to change the magnitude and bias of the spline as it
passes through the control point. If an endpoint is selected, clicking the opposite endpoint will close
the path. You can remove points that are already on a path by clicking them.

17

WHAT YOU NEED TO KNOW

Once a path has been drawn, you can press the A key or click the white arrow icon in the toolbox to
use the Direct Selection tool and modify the path. Holding down the Alt key while clicking a control
point will toggle the point between peaked and smooth, changing the way the spline appears as it
passes through that point. Figure 1-14 shows an example of both a smooth and a peaked path.

By default, paths are filled with a solid color, referred to as a solid color brush. To remove the
attribute from a path, set the Fill property to No brush. To do this, first select the element by clicking
it in the Objects and Timeline list. Select Fill on the Brushes pane to modify the fill, and then click the
leftmost tab above the color picker to remove the fill, as shown in Figure 1-15.

Figure 1-14. The path on the left is made from smooth Figure 1-15. Setting an object’s fill to
points. The path on the right has a peaked center point. No brush

In the Name field of the Properties panel, type myPath. The XAML code and Objects and Timeline list
will automatically update to reflect the change. The XAML code for the path created in this project
will look something like this:

The portion of the Path element is defined with a minilanguage used to describe geometric
paths. More information regarding the specifics of the language can be found in the Silverlight MSDN
library online, at . Don’t feel intimi-
dated by the looks of the path data—it’s unlikely you will often find yourself typing in the numbers to

18

CHAPTER 1

manually create Path elements. More likely, you will be using a tool such as the one in Blend to create
paths for you.

You may be wondering if it will become necessary for you to re-create your entire collection of path-
based Illustrator artwork in Blend for use in your Silverlight applications. You will be happy to know
that Blend 3 directly supports both Photoshop and Illustrator files. Simply select File Import Adobe
Illustrator File or File Import Adobe Photoshop File, and locate the appropriate file. The file will be
added to your project and opened, preserving the existing layers.

The Ellipse element
The Ellipse element is used to draw ellipse shapes in your Silverlight applica-
tions. Like the previous few examples, the Ellipse element also has properties
such as , , , , , , , , ,

, and . Click and hold the Rectangle icon in the toolbox to access
the Ellipse icon. When the Shapes fly-out menu opens, as in Figure 1-16, select the
Ellipse icon. The shortcut key to create an Ellipse is L.

With the Ellipse icon selected, click and drag on the artboard to draw an ellipse. As
with Rectangle elements, the Width and Height properties are not linked when creating a new ellipse. To
link the Height and Width properties in order to create a circle, hold down the Shift key while dragging.

Once you have created an ellipse to your liking, use the color picker on the Brushes pane of the
Properties panel to select a shade of green. Select the Stroke item on the Brushes pane, and then click
the No brush tab above the color picker to turn off the stroke for this object. The XAML for a green
Ellipse element may look like this:

The XAML code shown here will create an ellipse that is 113 68. The ellipse’s top-left corner will be
82 pixels from the left of the containing canvas and 70 pixels down. The fill color #FF5ED221 will make
the ellipse fill with green. Notice that unlike the Rectangle object, no stroke is defined for the ellipse.
This means that the ellipse will not display a stroke line around its edge.

The TextBlock element
XAML currently offers three types of text elements: PasswordBox, TextBox,
and TextBlock. PasswordBox is a box that accepts input from a user but
masks the input with bullet characters. A TextBox is an editable text box, just
like you would find on an HTML form. In contrast to a TextBox, TextBlocks
are used to display a static block of text that cannot be edited by a user.
They are typically used for providing instructions or other information,
though they can also be useful for debugging by displaying various object
property values within an application as it is running. TextBlocks have prop-

erties such as (color), , , , and . There are also properties
for , , , , and so forth. To add a TextBlock to the artboard, click and
hold the TextBox icon in the toolbar until the Text Controls fly-out menu opens. Select the TextBlock
item, as shown in Figure 1-17.

Figure 1-16. The El-
lipse element icon

Figure 1-17. Adding a
TextBlock to the artboard

19

WHAT YOU NEED TO KNOW

You can now double-click the TextBlock icon, or click and drag on the artboard to create the new text
block. You will notice that the default text, TextBlock, is selected, allowing you to type in the new text
immediately. Once you’re done typing, click the Selection tool icon in the toolbox, or click outside the
TextBlock to deselect it, and then press the V key to change back to selection mode. Alternatively, you
can use the Common Properties pane of the Properties panel, shown in Figure 1-18, to change the text
in a TextBlock. The Text field displays the text that is in the selected TextBlock element. Typing new
text into this field will update the text that is displayed.

Figure 1-18. The Common Properties
pane can be used to modify the text
in a TextBlock element.

The XAML for a TextBlock typically looks like this:

The code shown here will create a TextBlock object that is 332 pixels wide and 92 pixels high. The
TextBlock object will be located 165 pixels from the left of the container canvas and 86 pixels from the
top. The text displayed in this TextBlock will be displayed in the default Portable User Interface font
and will read This is an example of a TextBlock element. The is set to wrap the text if it
exceeds the width of the TextBlock. Because the height of this TextBlock is hard-coded rather than set
to , any wrapped text that exceeds the 92-pixel height will be clipped.

Oftentimes, you may need to use multiple lines of text within the TextBlock, or change styles for differ-
ent portions of the text. This is done by using the and tags within a TextBlock ele-
ment. When entering text via the Text field on the Common Properties pane, pressing Enter will create a
XAML tag. Each line of text is separated into its own tag. While the Blend interface will
create the base tags for you, if you’d like to mix font styles or sizes as shown here, you must modify the
XAML directly. In these cases, the TextBlock serves as a container, with an opening and a closing tag,
and the text runs and line breaks are contained within the TextBlock container, as shown here:

Notice how each can be used to define a different style for the text if necessary. While changing
text styles from line to line is not particularly common, runs and line breaks can be useful for creating
bulleted lists.

20

CHAPTER 1

The Line element
The Line element is used to draw a straight line between two points. Lines are nothing more than
simple path segments that contain only two points. As such, they share the same properties as the
Path element. You can create Line elements by selecting the Line icon from the Shapes fly-out menu
or by using the Backslash key on the keyboard. Clicking and dragging the mouse on the artboard will
draw a line. Holding the Shift key will constrain the angle of the line to 15-degree multiples. XAML for
a Line element looks like this:

The example Line element XAML shown here draws a diagonal line. The top-left corner of the line’s
bounding box is located at 146,146, but the line itself is drawn diagonally from the bottom left of the
box to the top right. This is controlled by the numbers shown in the portion of the XAML. The
first pair of numbers is the starting point for the line (67,317). The second pair of numbers preceded
by the are the endpoint for the line (212,170). The property has to do with the way the
object is contained within its bounding box and how it is affected by explicitly set and
properties. For a simple two-point path, the fill color won’t have any effect—paths are typically filled
shapes, rather than simple lines. The stroke color, which is black in this case, will be what gives the
line its color.

It should be noted that there is an actual element in XAML, which takes four properties in order
to create a line: , , , and . These two coordinate pairs define the line’s beginning point and
endpoint. We will be using both throughout the various tutorials presented in the book, though
the true Line object is typically generated programmatically given that Blend produces paths. A Line
object’s XAML looks like the following code:

The controls elements
In addition to the previously mentioned elements, we will be working with some
of the existing user controls in Silverlight, such as sliders and buttons. Sliders and
buttons are prebuilt controls and will be used at times to modify properties as
applications are running or to reset values. Buttons, sliders, and other prebuilt
controls are added from the Controls fly-out menu, shown in Figure 1-19.

In the following example, you can see that the XAML for both sliders and buttons
looks very simple. If you add them to your application by selecting them from
the Controls fly-out menu and run the application, you will see that they have
some built-in behaviors already. The button changes when you mouse over or
click, and the slider is draggable. However, using them for anything requires a bit
of code to wire them up.

This built-in behavior you see is inherited from the class and is referred to
as a ControlTemplate. We will not be modifying control styles or ControlTemplates over the course of
this book, but it is useful to know that they exist, and that you can find more information on them in
the Silverlight MSDN library online.

Figure 1-19. The Con-
trols fly-out menu

21

WHAT YOU NEED TO KNOW

The following is some sample XAML code for a button and a slider:

More about XAML
As you can see from the preceding simple walkthrough, Blend is a powerful tool that helps cut appli-
cation design and development time by creating XAML code for you as you work. However, even
with the help of Blend, you should take the opportunity to learn more about XAML in general—the
available objects and attributes extend well beyond the few discussed here. If you are interested in
learning more, explore the elements through Blend and use the Silverlight Development Center at

 for detailed descriptions of the available attributes of each element. The
development center has extensive descriptions of all the available elements.

What you need to know about programming
Teaching programming is beyond the scope of this book, so you will want to have some exposure to it
before digging into the more complex examples. While Silverlight supports code-behind files written
in C#, Visual Basic, and JavaScript, the examples here are written in C#.

If you are new to programming or the C# language, don’t panic. You don’t need to have years of pro-
gramming experience to work through the examples. If you enter the code as it is shown, you should
be able to run the projects without too much trouble. If you have experience with a language like
JavaScript or Java, the code should be fairly easy to follow, because the syntax is fairly similar.

If you consider yourself more of a creative type than a developer, you should still be able to find value
in the provided example code and related information. All the examples are available as a download
from the friends of ED website (). You can look at them, dissect them, modify
them, and experiment to see how it all goes together.

A good development environment makes the development process faster and easier, so the process
described in this book relies on Visual Studio and C#. Visual Studio (or Visual Web Developer Express
Edition) is a great way to write code without the editor getting in your way. Visual Studio contains
extensive IntelliSense help—small pop-up windows open as you type in the name of objects or prop-
erties to show you the options available to you. Coding is often as simple as typing the first couple
of letters of your object’s name, and then pressing Enter. If you then type a period (.), all the proper-
ties and methods for that object will be displayed. The IntelliSense available within the programming
environment makes it easy to identify and utilize the properties and methods that are available for
various objects. The examples are written in a way that should be easy to absorb and follow. Once you
have the techniques and concepts down, you can optimize them as you see fit for use in your own
applications.

With regard to specifics of programming, familiarity with the various types of loops, public and pri-
vate variables, methods, and passing data will be helpful, as will some knowledge of object-oriented
programming, though it’s not critical.

22

CHAPTER 1

Silverlight 1.0 applications supported only JavaScript, and in the general context of web development,
there are a lot of developers and designers that are familiar with the language. If you are used to pro-
gramming with JavaScript, you should be able to make the jump to C# fairly easily—the syntaxes of
the two languages are very similar, but C# offers a lot more flexibility.

Anatomy of a Silverlight project
We’re going to be working with a lot of projects. Some of them are created with Blend and some with
Visual Studio. While the basic structure of a project is common between the programs, there are some
important differences, and some important information you need to be aware of. Don’t worry too
much if you don’t get everything in this section just yet. Keep it in the back of your head and refer to
this section if you need to. This is just to get you prepared for what you’ll be seeing later.

Both Blend and Visual Studio produce a group of files referred to as a project. Projects created in Blend
contain a slightly different set of files than those created in Visual Studio, so we’ll start by exploring the
anatomy of a project in Blend. When you begin Blend, a startup pane will display a list of recent projects
on a Projects tab. You also have the option of selecting New Project or Open Project. When New Project
is selected, a New Project dialog like the one shown in Figure 1-20 opens. You can choose between
Silverlight 3 Application + Website or WPF Application. WPF stands for Windows Presentation Foundation,
and was the predecessor to Silverlight. Silverlight’s capabilities are a subset of WPF intended for online
use, whereas WPF is more suited to creating robust Windows applications.

In this book, we will be working exclusively with Silverlight applications. You also have the choice of
specifying either the C# or Visual Basic programming language to use in the code-behind files that you
will be writing later. Since the code samples in this book are done in C#, you will want to choose Visual
C# from the Language drop-down if it is not the default.

Figure 1-20. The New Project dialog in Blend

23

WHAT YOU NEED TO KNOW

Once you have given your application a name, click OK, and Blend will create the project for you. In
Blend, the contents of a project are not as obvious as they are in Visual Studio because the list of files
appears on the Project tab of the Properties panel. To see or access the list of project-related files while
working in Blend, simply click the Project tab. The file list in Figure 1-21 shows an example default file
list after creating a new project in Blend.

Figure 1-21. The default list of files
associated with a new project in Blend

The topmost file in the list is the solution file. The file is placed in the root directory of the project
and has an extension. Solution files can be opened in either Blend or Visual Studio. The solution
file contains a reference to the next file in the list, which is in the project directory and has a
extension. This file is an XML file that contains all the various configuration options for the develop-
ment environment.

Next in the list is the folder, which contains several mysterious-looking DLL files. These files
are referred to as assemblies, and contain the libraries that Silverlight needs to run your applications.
Three of these files, , , and , are required. Three others,

, , and , are included to provide appli-
cation functionality above and beyond the base DLLs that are commonly used.

Inside the folder are two more files— and .
 is updated when an application is compiled to include the assemblies that are

deployed within the client application. The file contains metadata that gets embed-
ded into the assembly file that is generated when you compile. The file contents
look like the following listing:

24

CHAPTER 1

You can see that the listing contains fields for title, description, configuration, copyright, and so on.
For Blend-based projects, you can edit this file with any text editor if you have a need.

The next two files in the list are and . These two files create a class called
and are required by every Silverlight application. Their purpose is to start the application and show
the user interface (UI).

25

WHAT YOU NEED TO KNOW

Finally, we come to and . These two files also create a class,
called . The class is where you will typically be creating the UI for your
application. is a file containing markup that contains elements of the UI, while

 is the code-behind file that controls what happens when your application runs.
Generally speaking, you won’t have to worry about these files too much in the early going. Blend will
take care of putting the right XAML code in the right spot for you.

If you take a look at the folder where the application resides, you will see that the root folder contains
the solution file, and a folder with the same name. Inside the solution folder is the file, as well
as the and XAML and CS files, like those shown in Figure 1-22. Inside the
folder is where the and files reside.

Notice that there is no folder as displayed in the file list in Blend. This is because the
assemblies are located elsewhere and referenced in the project. When you compile a project, the
necessary libraries will be included in the application.

You will also see and folders. When you compile a Silverlight application in Blend, these fold-
ers will contain the final application files Blend uses to display the application to you.

Figure 1-22. The project folder for a Blend-created project

At the same level as the application folder is a folder with the same name and “Site” appended, in
this case, SilverlightApplication2Site. This folder contains the library for installation
checks, JavaScript solutions and error reporting on C#/VB solutions, as well as a file and

 folder.

26

CHAPTER 1

Inside the folder is a file with the project name and a (pronounced zap) extension. This
file is a renamed ZIP archive that contains your application. The file is used to host the
application XAP file. The XAP and HTML files can be used to deploy your application on a web server.

You can edit the HTML file to change the way your application is presented in the page. There are a
few pieces of code that are of interest in the HTML file, so we’ll take a quick look at those. The first
are the styles near the top of the page:

If you’re familiar with CSS, you can feel free to edit these as you choose. For the Visual Studio–based
projects in this book, the tag was removed, and the style has a
style applied in order to give the application a little room across the top.

The style is applied to a that contains the Silverlight tag:

Notice that the object has its height and width set to 100%. This will cause the application to fill the
. The style, in turn, sets the ’s width and height to 100%, which will fill the browser. In many

cases, you will want to control the size of your application. For the book projects, the applications are
800 600, and the style is adjusted accordingly, as shown:

27

WHAT YOU NEED TO KNOW

If you do not adjust the style for the Silverlight application’s container, you may be surprised when
you see your content appear to spill outside the bounds of your application.

There are two other small changes made to the HTML for most of the projects in the book. The first
is the HTML tag’s background. You can change this via the tag or the tag. The back-
ground color of the page is typically set to a medium-gray.

Finally, the content of the page is wrapped in another that is center-aligned on the page. This can
also be handled via CSS rather than HTML code.

Notice that inside the is the tag that instantiates the Silverlight
application. The first line of the tag declares the type of object and size. The param-
eter points directly to the XAP file that contains the application. The parameter points to a
JavaScript function that will run if Silverlight encounters an error. This is useful for troubleshooting

28

CHAPTER 1

but can be removed for release code. The final parameter sets the default background color of the
application. These are just the default parameters with which we will be working.

If you’re using Visual Studio, you will be presented with a New Project dialog when you select File New
Project in Visual Studio. If you have installed Silverlight Tools for Visual Studio, you will see a Silverlight
Application option under the Templates section on the right pane of the dialog box. Figure 1-23 shows
the New Project dialog.

Figure 1-23. The New Project dialog box in Visual Studio 2008

Once you have selected the Silverlight Application template, you can give the project a name, select a
location, and even change the solution name if you so choose. When you click OK on the New Project
dialog, Visual Studio will open a second dialog called New Silverlight Application, like the one shown in
Figure 1-24.

This dialog allows you to have Visual Studio add a web page to the solution for hosting the Silverlight
application. Typically, when this dialog opens, you will want to click OK and accept the defaults. Visual
Studio will then go about creating the project for you.

In Visual Studio’s Solution Explorer, you will see similar project files as those in the Blend project, as
well as the web page and related folder, which contains the application XAP file, as shown
in Figure 1-25. One important difference is that Blend creates and

 files, while Visual Studio creates and files. Both file sets
perform the same function; they are just named differently.

29

WHAT YOU NEED TO KNOW

Figure 1-24. The New Silverlight Application dialog box in Visual Studio 2008

Figure 1-25. Solution Explorer in Visual Studio

30

CHAPTER 1

Visual Studio will create both an ASPX and an HTML file in the web project. By default, the ASPX file will
be used when you compile and run an application. To change this, right-click the HTML file and select
Set As Start Page, as shown in Figure 1-26. The next time you compile, the selected file will be used. The
example projects throughout the book have been set to use the HTML file as the start page.

As with Blend, the web files created as part of your project in Visual Studio can be edited.

You will notice in the project’s file list that the XAML files are shown, but none of the code-behind files
are visible. To view the code-behind files, click the + symbol to the left of the XAML control you want
to edit, and the file list will expand. You can then double-click the file to open it for editing.

When you are editing a XAML file, a long list of available user controls shows up in the toolbox. These
are the same controls available to you in Blend. If you prefer the more visual interface of Blend, keep
in mind that Visual Studio and Blend are well integrated. You can open any XAML file for editing in
Blend by right-clicking the file in Solution Explorer and selecting Open in Expression Blend from the
menu, as shown in Figure 1-27.

Figure 1-26. Changing the default start Figure 1-27. Opening a file from your Visual
page for a Visual Studio project Studio project in Blend for editing is fast and easy.

31

WHAT YOU NEED TO KNOW

Summary
Of the software discussed for creating Silverlight content, Visual Studio and Blend are really must-
haves. The benefits they bring to development really smooth out the process for both designers and
developers. As the backbone of a Silverlight application, it is critical that both designers and developers
familiarize themselves with XAML markup. XAML acts as a bridge between design and development,
giving designers more control throughout the application development process.

In our projects, we’ll only be using a subset of the XAML objects available. The objects we’ll be con-
centrating on include Canvas, Image, Rectangle, Path, Ellipse, TextBlock and a couple of the prebuilt
controls such as Slider and Button. Canvases are generally used as containers for other types of
objects. Images allow you to utilize JPG or PNG images in your applications. Rectangles, Paths, and
Ellipses are all vector-based drawing objects. TextBlocks are used to display noneditable text within an
application.

If you have some experience programming, you should be able to pick up the C# syntax relatively
quickly. Working through the projects in the book will help you identify how various objects and
properties are accessed through code. If you’re used to programming in JavaScript, you should find C#
fairly easy to adopt from a coding perspective, but there’s a lot to learn with respect to the availability
of the .NET libraries. Be patient, and you’ll get it!

New Silverlight projects can be created in either Blend or Visual Studio, though there are some differ-
ences between the two. For example, Blend names the files a bit differently and does not include an
ASPX file to host the Silverlight object.

In Chapter 2, we’ll take a look at the basic transforms available in Silverlight. These include Translate,
Scale, Rotate, Skew, Flip, Center Point, as well as 3D plane projection. We’ll also take a look at object
properties, and how to work with the control points of which objects are composed.

Part 2

SILVERLIGHT ANIMATION: THE BASICS

35

When we talk about animation in Silverlight, we’re really talking about the different
ways we can manipulate the properties of an object within the applications we build.
One of the tools available to change the way an object looks relative to the original
is called a transform. Basic transforms are used to modify an object’s translation (its
location relative to the container in which it resides), rotation, scale, or skewing.
Basic transforms are a common aspect of application UI development, often used to
animate objects over time (such as panels sliding in and out, and objects growing and
shrinking).

We will be working with the transform proper-
ties located on the Transform pane (shown in
Figure 2-1), which can be found near the bot-
tom of the Properties panel. If the full pane is
not already visible, you will see a bar that con-
tains an arrowhead pointing to the right and
the word Transform. You can expand the pane
by clicking anywhere on the Transform header
on the bar.

The top half of the Transform pane contains
tabs that are used to create transforms that
translate, rotate, skew, adjust the center point
of, or flip an object. The bottom half of the Figure 2-1. The Transform pane of

the Properties panel

BASIC TRANSFORMS

Chapter 2

36

CHAPTER 2

pane is used to create 3D plane projection transforms, which are discussed later in this book. The
following sections describe how each of these transforms can be used to make changes to objects on
the artboard.

The Translate transform
By translating an object, we’re moving that object around the artboard, but moving it in a way that is
relative to its original position. This is different than what happens when you drag an object, because
dragging an object changes its position relative to the container in which it resides. Translations are
relative; dragging is absolute.

Translations are useful for creating motions that are self-contained. For example, if a panel “opens”
by sliding 200 pixels to the right, you can freely reposition the panel anywhere in the layout container
without affecting the motion defined by the translation.

Consider an object that is positioned at the x and y coordinates 100,100. If you drag the object 50
pixels to the right and 50 pixels down, the object will now reside at the absolute position of 150,150.
However, if the same object has a transform applied that moves it 50 pixels to the right and 50 pixels
down from its original position, the object will be drawn at 150,150, though its absolute position rela-
tive to the container in which it resides will still be 100,100. The Top and Left fields on the Properties
panel will show the absolute value of 100,100.

This can be a bit confusing, so let’s work through an example that demonstrates the difference
between the two:

1. Create a new project in Blend. Change the default Grid container on the artboard to a Canvas
by editing the XAML, or by right-clicking the element in the Objects and Timeline
list and selecting Change Layout Type Canvas, as shown in Figure 2-2.

2. Select the Rectangle tool from the toolbox by pressing M, and then double-click the Rectangle
icon to add a Rectangle element to the canvas. By default, a 100 100 rectangle will be placed
in the upper-left corner of the canvas on the artboard. Select the rectangle on the Objects and
Timelines panel and use the Brushes pane of the Properties panel to give it a background color
other than the default white.

3. On the Transform pane (shown in Figure 2-1), the square icon on the left with nine points
allows you to select the point of origin for the transform. We’ll take a closer look at this in
another example, but this is useful if you need to make an object scale or rotate about a point
other than the default center. In the X field, enter 100 and press Enter. The rectangle should
oblige by moving to the right 100 pixels. Notice on the Layout pane that the Left position of the
rectangle is still being reported as 0.

Translations define an offset from an object’s current position on the artboard. If you press the V key
to change to the Selection tool and then drag the rectangle to a different location on the artboard,
you will notice the Left property changing in the Layout pane. After dragging, the rectangle is still off-
set 100 pixels from the value being displayed in the Layout pane. You can test this by entering 0 into
the X field on the Transform pane—without a translation applied, the rectangle returns to the position
shown in the Left field of the Layout pane. Y offsets will work the same way as X offsets.

37

BASIC TRANSFORMS

Figure 2-2. The Change Layout Type menu in Blend

Let’s create an animation that will demonstrate a translation that occurs over time:

1. Open the eclipse project from Chapter 2 by selecting File Open Project/Solution. Locate
the file. This project contains two objects: a sun and a darkened moon.

2. In this project, we will be using a Translate transform to move the moon in order to create a
lunar eclipse. If the workspace in Blend is not in the Animation Workspace (with the Objects and
Timeline panel below the artboard), press F6 to change the layout now. Once you’ve done that,
click the New Storyboard button on the Objects and Timeline panel, as shown in Figure 2-3.

Figure 2-3. Click the New Storyboard button to
create a new animation.

3. The Create Storyboard Resource window will open. This window asks for a unique name for
the storyboard that is about to be created. As you work on the artboard creating motions for
your objects, Blend will automatically build out the storyboard for you. We’ll take a more in-
depth look at storyboards in Chapter 3. For now, just click OK to accept the default name of
Storyboard1.

38

CHAPTER 2

4. The Blend interface will switch to timeline recording mode, as shown in Figure 2-4. A timeline
and its associated controls will appear to the right of the Objects and Timeline panel, and the
artboard border will turn red, indicating that timeline recording is on. When timeline recording
mode is on, any changes you make to the properties of an object will create a keyframe on the
timeline. You can toggle timeline recording mode on and off by clicking the red button at the
top left of the artboard. Turning off timeline recording will not close the current timeline—it
simply stops Blend from recording the changes you make as keyframes on the timeline. This
is very useful when you need to make some changes to an object that are not supposed to be
part of the animation.

Figure 2-4. The Blend interface showing the eclipse project in timeline recording mode

The yellow bar on the timeline is called the timeline play head, and it indicates your current posi-
tion within the timeline. If you are coming from a Flash background, there is a significant difference
in the way timelines work in Silverlight. Here, animations are time-based rather than frame-based.
Time-based animations should offer a more consistent end-user experience across a wide array of
hardware, as 1 second is a consistent unit of measure across computers.

5. To move the timeline play head to a specific point on the timeline, use the mouse to click the tri-
angle at the top of the play head and then drag it. For this example, we want to move the moon
in front of the sun over a 1-second period of time, so drag the timeline play head to the 1-second
mark, as shown in Figure 2-5.

39

BASIC TRANSFORMS

Figure 2-5. Move the timeline play head to the 1-second mark on the timeline.

6. Select the darkMoon element on the Objects and Timeline panel by clicking it. On the Properties
panel, make sure that the Transform pane is expanded. On the Translate tab, we want to enter
values that cause the moon to be centered over the sun object. In the X field, enter 280 to
offset the moon object 280 pixels to the right. In the Y field, enter -245 to offset the moon
object up 245 pixels from its current location. Remember that in Silverlight, the x and y offsets
are measured from the top-left corner of an object.

7. Press the Play button above the timeline to preview your animation. You defined the start
point of the object by its placement on the canvas, and the endpoint by the Translate trans-
form you defined. Blend will handle all the in-between frames automatically, and the moon will
glide in front of the sun. As you created the time-based translation, Blend automatically gener-
ated a storyboard in the background. The storyboard is XAML code that tells Silverlight how
the objects in your application should move. I’ll talk a lot more about storyboards in Chapter
3, but just so you can see what’s going on, the following code listing shows the storyboard that
was created for this animation:

8. As mentioned earlier, translations are simply offsets from an object’s actual position within its
parent object. To illustrate this, drag the timeline play head back to 0 or select the Go to first
frame button above the timeline. Click the red button at the top-left corner of the artboard to
turn off timeline recording.

40

CHAPTER 2

9. With the darkMoon element still selected, enter 200 into the Top field on the Layout pane of
the Properties panel. Now, press the Play button for the timeline again to preview the ani-
mation. What happens? The moon moves to the same offset defined in the storyboard, but
because the base object’s actual position has changed, the final frame of the animation now
finds the moon above the sun rather than over it.

This is an important detail to keep in mind when using translations. You may find yourself in need of
a relative offset when animating objects, but remember that changes to the location of the object will
affect the end position.

The Rotate transform
Rotate transforms are used to rotate objects within an application. Rotational angles are expressed
in degrees, and the values input are additive—a value of 720 will fully spin an object around twice
(360 2). For spinning in the opposite direction (counterclockwise), negative values can be used.

To see a Rotate transform in action, open the exhaustFan project from Chapter 2. This project con-
tains a scene composed of a simple static background element and a fan element that will be made
to rotate, as shown in Figure 2-6.

Figure 2-6. A Rotate transform will be used to make the exhaust fan in this project spin.

41

BASIC TRANSFORMS

1. Click the New storyboard button on the Objects and Timeline panel. Click OK when the Create
Storyboard Resource dialog opens to accept the default storyboard name. Once again, verify
that the Blend layout is set to the Animation Workspace with the timeline open across the bot-
tom of the screen.

2. Drag the timeline play head to 2 seconds. Select the fan element from the Objects and Timeline
list. On the Transform pane, select the Rotate tab, and enter 720 into the Angle field. When you
click the Play button for the timeline, you will see the fan element perform two rotations over
the course of the 2-second animation.

If you are interested in seeing the angle at any given point in time on the storyboard, drag the timeline
play head and keep an eye on the Angle field of the Rotate tab. As you move the play head, the value
changes to reflect the fan’s current angle. Once again, Blend has taken the end value you specified
and created all the in-between frames automatically. The storyboard for this project is shown in the
following listing:

As noted earlier, it is possible to change the point of origin for a transform by relocating the center
point. To change the point around which an object is rotating, click the Translate tab of the Transform
pane. The small box with nine points located on the left side of the Transform pane allows you to
change the location of the pivot to one of nine presets.

3. Click the red button at the top left of the artboard to turn off timeline recording, and drag the
timeline play head back to 0.

4. On the Translate tab, click the top-left point, as shown in
Figure 2-7.

Press the Play button for the timeline. The fan should now be rotat-
ing around its top-left corner. This is useful for creating objects
that rotate from locations other than their center point. A more
accurate term for “center point” is render transform origin, as
this is how it is specified in XAML code. Changing the location of
the center point is really just changing the origin of any transform
applied to an object. It just happens that the default position of
the point is in the center of an object’s bounding box.

Try selecting other points for the center point and playing
the timeline to see the effect it has on the object. Figures 2-8
through 2-10 show the effect of changing the center point of the
fan object if it were rotated 15 degrees.

Figure 2-7. Changing the center
point for a Rotate transform

42

CHAPTER 2

a b c

Figure 2-8. Rotation around origin 0,0 (a); rotation around origin .5,0 (b); and rotation around origin 1,0 (c)

a b c

Figure 2-9. Rotation around origin 0,.5 (a); rotation around origin .5,.5 (b); and rotation around origin 1,.5 (c)

a b c

Figure 2-10. Rotation around origin 0,1 (a); rotation around origin .5,1 (b); and rotation around origin 1,1 (c)

43

BASIC TRANSFORMS

The Scale transform
Scale transforms are used to scale objects relative to their original size. The values used in Silverlight
for scaling are relative to 1, with 1 being 100%. Therefore, a value of 2 will scale an object to twice
its original size. Conversely, a value of .25 will make an object one quarter of its original size. When
scaling, values for x and y scale are not linked. This means that to scale an object proportionately, it is
necessary to enter the same value in both the X and Y fields of the Scale tab.

Let’s take a look at how a Scale transform can be used to modify an object over time in order to simu-
late perspective. Open the truck project from Chapter 2. This project contains a scene that consists of
a street backdrop and a truck object, as shown in Figure 2-11. We will be using a Scale transform to
make the truck appear as though it is driving away from us.

Figure 2-11. Scale transforms can be used to make objects appear as though they are moving away.

1. Click the New storyboard button on the Objects and Timeline panel, and click OK when the
Create Storyboard Resource dialog opens. If the Animation Workspace is not set with the time-
line displayed below the artboard, press the F6 key.

2. Select the truck element from the Objects and Timeline panel.

3. Move the timeline play head to 3 seconds.

4. On the Transform pane of the Properties panel, select the Scale tab, and enter .15 in both the
X and Y fields. This will cause the truck to scale from its current value of 1 (100%) to a value of
.15 (15%) over 3 seconds.

44

CHAPTER 2

5. Click Play to preview the animation. The truck should look as though it is driving down the
street, ending near the horizon. Figure 2-12 shows the end position of the truck.

Figure 2-12. A scale translation makes the truck appear to move down the street.

The completed truck animation is shown in the following listing:

Like a Rotate transform, a Scale transform can also have its center point adjusted. This is useful for
making panels that appear to expand or collapse to a point other than the center. To see an example
of this type of scaling, open the panels project from Chapter 2. This project contains a canvas with
two rectangular panels, as shown in Figure 2-13.

45

BASIC TRANSFORMS

Figure 2-13. The panels project upon opening

1. Click the New storyboard button, and click OK to accept the default name.

2. Select panel1 from the Objects and Timeline panel, and on the Transform pane, change the center
point to the middle-left selection (0,.5).

3. On the Scale tab, enter 0 into both the X and Y fields.

4. For the panel2 element, change the center point to the middle-right selection (1,.5).

5. On the Scale tab, scale panel2 down to 0.

Notice that Blend has placed small, oval-shaped keyframe markers on the timeline for both elements,
as shown in Figure 2-14.

Figure 2-14. Blend adds keyframe markers to the timeline as you manipulate objects on the artboard.

46

CHAPTER 2

6. Move the timeline play head to 3 seconds, and change the x-y scale for both objects back to 1.

7. Click the Play button on the timeline to see the animation.

Both objects will scale from 0 to 1 over the same time span, but each one scales from a different point
of origin. The origin point of the scaling is illustrated with arrows in Figure 2-15. You can create a lot
of interesting effects by using different points of origin in a Scale transform that makes use of varied
x and y values to expand panels along the different axes at different rates of speed.

Figure 2-15. The effect of scaling panels from different origin points

The storyboard for this project is a little more complex, since it contains multiple objects with multiple
keyframes. It is shown in the following listing:

47

BASIC TRANSFORMS

In addition to using the center point as a static origin for scaling, you can change the location of the
center point over time. For example, you could make the truck from the previous example weave
down the street by manipulating the center point.

If you would like to try this out, start with the truckCompleted project. Above the list of objects on
the Objects and Timeline panel, there is a select box that will allow you to open an existing storyboard.
Click the Open a Storyboard button, as shown in Figure 2-16.

Blend will present you with a list of available storyboards, as shown in Figure 2-17. This project con-
tains only a single storyboard, Storyboard1, which you should click to open as a starting point. The
storyboard will open and Blend will be in timeline recording mode.

Figure 2-16. The Open a Storyboard Figure 2-17. The list of available storyboards
button on the Objects and Timeline panel in the truckCompleted project

48

CHAPTER 2

1. Select the truck object from the Objects and Timeline list.

2. Drag the timeline play head to .8 seconds.

3. On the Transform pane of the Properties panel, use the Center Point selection presets to pick the
point at the middle left (0,.5).

4. Drag the timeline play head to 2 seconds.

5. On the Transform pane of the Properties panel, use the Center Point selection presets to pick the
point at the middle right (1,.5).

6. Preview the animation. The point of origin for the Scale transform changes as the truck object
scales down from 1 to .15, which causes the truck to appear as though it is swerving as it moves
down the road.

The storyboard for this project is shown in the following listing:

49

BASIC TRANSFORMS

The Skew transform
Skew transforms can be used to skew an object horizontally, vertically, or both. Open the skewTrans-
form project from Chapter 2. This project contains a simple room scene that consists of a background
and a door, as shown in Figure 2-18. We will be using a Skew transform to make the door appear as
though it has opened.

Figure 2-18. Making use of a Skew transform to make a door open

1. Select the door element on the Objects and Timeline panel.

2. On the Transform pane of the Properties panel, select the Translate pane. As with a real door,
we want the door in our project to skew along an edge, not the center. On the center point
selector, select the control point that is in the middle on the right-hand side (1,.5).

3. On the Objects and Timeline panel, click the New storyboard button, and press Enter to accept
the default name.

4. Move the timeline play head to 1 second, and on the Skew pane, enter -10 into the Y field to
skew the door canvas –10 units along the y axis. The door should appear to be ajar, as shown
in Figure 2-19.

50

CHAPTER 2

Figure 2-19. After skewing, the door appears to be open slightly.

Press the Play button for the timeline and watch the animation. The door should look like it swings
open. Now, you are probably saying to yourself that real-world doors rotate about the y axis rather
than skew, and you are correct. This project is really just a demonstration of how Skew transforms are
applied. We’re able to get away with it here because we didn’t overdo the transform. If you would like
to extend the Skew transform to make the door appear as though it has opened wider, you can also
apply some scaling to compensate for the warping that will result from the skew. The storyboard for
this animation is shown here:

You may have noticed in the projects so far that the objects to which the transforms are being applied
are often canvas container objects. In the case of the door, the door’s canvas contains the paths that
make up the door, and even a nested canvas that contains the shapes for the doorknob. In this way,
canvas layout containers are useful in organizing objects in your projects. They also serve a purpose in
that transforms applied to canvases affect all the children inside the canvas being transformed.

51

BASIC TRANSFORMS

The Center Point transform
As you’ve seen in some of the examples, there is an icon on the Translate tab that allows you to choose
one of nine preset locations for the center point of an object. In addition to the presets used to move
the center point, there is a Center Point tab. The presets available on the Translate tab are really just
shortcuts—as you choose different points, Blend fills the fields on the Center Point tab with appropri-
ate values.

The location of the center point for a selected item’s bounding box is changed by manipulating x and y
values between 0 and 1. As with the rotating fan example, the top-left position is 0,0; the top center is
.5,0; and the top right is 1,0. In the middle row, the values are 0,.5; .5,.5; and 1,.5. The bottom row is 0,1;
.5,1; and 1,1. These values are the same and have the same effect whether your object is big or small.

The Center Point tab is useful when you want to place the center point of a transform at a position
other than one of the presets—if you have an oddly shaped object that is supposed to appear as
though it is swinging, for example.

There are two ways to manipulate the center point of an object. The first way is to type values into the
available fields on the Center Point tab. The second way is to select the element on the Objects and
Timeline panel on the artboard with the Selection tool (V) and then manipulate the center point with
the mouse. Because it is more visual, it is often easier to rough in the position with the mouse and
then fine-tune as necessary using the entry fields on the Center Point tab.

When the mouse is over the center point, the cursor will change to a small square
with four arrows on it, as shown in Figure 2-20. The center point can then be
dragged to a new location. Center points can even be located outside of an object’s
bounding box. This is useful in situations where you have objects rotating around
other objects.

Changes to the location of an element’s center point don’t cause any visual changes
to the element itself. They will, however, change the way that transforms affect the
element.

The centerpointTransform project contains two elements for you to experiment
with—an ellipse with a gradient fill and a simple black line. On the ellipse, simply
use the Selection tool (V) to select the center point with the mouse and then drag it to a different
location.

The line element is a little trickier—by default, an object’s center point location is in the middle of
the object’s bounding box, and lines don’t have large enough bounding boxes to make their center
points easily accessible for clicking and dragging. Since a line element’s bounding box doesn’t have
any height, the center point is not visible.

If you need to move the center point of a line, resize the line’s bounding box by dragging the center
point of the bounding box border, as shown in Figure 2-21. This will make the center point of the
line’s bounding box visible/accessible, and you can then drag it where you would like. If you resize
the line object by manipulating the bounding box, the center point will move in relation to the size
of the bounding box.

Figure 2-20. An
object’s center
point can be
dragged with
the mouse.

52

CHAPTER 2

Figure 2-21. Expand the bounding box of a Line object to access its
center point.

The Flip transform
The Flip tab on the Transform pane, shown in Figure 2-22, has shortcut buttons that allow you to flip
an object along the x or y axis. When you use the buttons on the Flip tab, Blend simply creates a Scale
transform for you. Using the Flip X axis button, for example, will cause Blend to simply invert the scale
of the selected element along the x axis. If an object is scaled to 1x, it will be 100% of its size along the
x axis. When you click the Flip X axis button, Blend will make the scale –1x, inverting the object’s scale.
You can see this by clicking the button and then selecting the Scale tab. Because an object’s scale can
be adjusted over time, you can use Flip to create keyframes on a storyboard.

Figure 2-22. The Flip
tab is used to scale
an object along the
x or y axis.

Animating object properties
In addition to transforming objects over time, it is also possible to modify an object’s properties over
time. Different types of objects have different properties. For example, when working with rectangles,
you might change the , , , , , , , , or

 values.

Changes to an object’s properties are different than transforms because they change the object itself.
For example, changing an object’s property or margins will move the object relative to the con-
tainer in which it resides. As shown, this is in contrast to a Translate transform, where an object moves
relative to its original position.

You can animate object properties by creating a new timeline, moving the play head to the appropri-
ate time, and making changes to the properties on the Properties panel. Blend will record the change
by placing a keyframe on the timeline.

53

BASIC TRANSFORMS

Property animations can be used to make animations for use as button rollovers, sliding panels, menus
dropping down, and so on. Take a look at the propertyAnimations project for Chapter 2. This project
contains a couple of panels and a couple of ellipses, as shown in Figure 2-23.

Figure 2-23. An object’s properties can be animated in a manner similar to creating transforms.

Notice that Panel1 at the top left of the artboard is positioned partially off the main canvas. If the
Silverlight object in the base ASP or HTML file is styled appropriately, only the part of an object that
is on canvas will show up when the application runs. Positioning an object partially off-canvas is a use-
ful way to hide parts of that object when an application runs. In this project, we will be creating an
animation that will slide Panel1 onto the main canvas, bringing it into view. We’ll also change some
properties on the other objects in the project to see how they are affected.

1. Begin by creating a new storyboard.

2. Move the timeline play head to 2 seconds.

3. Click Panel1 in the Objects and Timeline panel.

4. Change to selection mode by pressing V on the keyboard, and then use the right arrow key on
the keyboard to move the panel to the right. The Shift key modifier will move an object by 10
pixels each time an arrow key is pressed. Move the panel to the right until it is mostly on the
main canvas, leaving just the left side positioned off-canvas.

5. Preview the animation—you should see a nice little slide action for that panel. The storyboard
that Blend automatically creates is shown here:

54

CHAPTER 2

6. Move the play head to 3 seconds.

7. Select Panel2 in the Objects and Timeline panel, and enter 0 into the Opacity field on the
Appearance pane of the Properties panel.

8. Play the animation again, and you will now see Panel2 slowly fade out as Panel1 slides in from
the left. Blend once again creates the XAML code for the animation that was just added:

9. To make Panel2 delay the fade out a bit and then fade a little more quickly, move the play head
to 2 seconds, and enter 100 into the Opacity field. When you preview storyboard, Panel1 will
now slide in, and then Panel2 will begin to fade.

10. Move the timeline play head to 1, and select ball1.

11. Select Fill on the Brushes pane, and change the color of the gradient that is being used to
fill the ellipse shape. It doesn’t make any difference which color you choose. For reference, I
changed the right gradient stop color to #FF3E6A01.

12. Move the timeline play head to 4 seconds, and select ball2.

13. Change the Width and Height properties to 100.

Now when you click Play, you should have quite a bit of action occurring on your artboard! Blend
continues to augment the storyboard as you make changes to the object properties over time. The
storyboard currently looks like the one shown in the following listing:

55

BASIC TRANSFORMS

Let’s take a quick look at the timeline. At the moment, it should look similar to the one shown in
Figure 2-24.

Figure 2-24. The timeline window shows objects and their keyframes.

56

CHAPTER 2

You can see that each time you make a change to one of the object’s properties, Blend adds a keyframe
to the timeline. From the storyboard code, you can also see that each keyframe on the timeline rep-
resents an entry, or animation, in the storyboard. Not only are keyframes useful visual cues for when
actions are taking place and which objects they will affect but they can also be directly manipulated
in the timeline. You can do this by grabbing the small oval-shaped markers and dragging them. If, for
example, you decide that ball2 isn’t changing size quickly enough, you can drag the marker on the time-
line to the left to speed up the action. Try dragging the keyframe for ball2 to 2 seconds and playing the
timeline. The ball will now resize a little more quickly, and you don’t have to do very much work at all!

If you decide that you want ball2 to grow taller faster than it gains width, you can modify individual
property keyframes as well. Expand the ball2 object in the Objects and Timeline panel. You should see
entries for Height and Width and their associated markers on the timeline. Drag the oval keyframe
marker for the Height property to 1 second. Your timeline should look similar to the one shown in
Figure 2-25. Now when you press Play, ball2 will expand vertically more quickly than it expands hori-
zontally.

Figure 2-25. Keyframe markers are easy to modify in the timeline.

As you spend time fine-tuning animations in the timeline, you may find yourself needing to manipulate
several keyframe markers at once. To do this, simply hold down the Ctrl key as you click keyframe mark-
ers to select/deselect multiple keyframes. You can then reposition the selected markers as a group.

Animating control points
In addition to the transform and property animations available to you in Blend and Silverlight, you
can also manipulate the individual points that make up an object. Technically speaking, you are simply
manipulating the properties of the control points that make up a path, but it is broken out here to a
separate section for the sake of clarity.

Open the controlpointAnimation project from Chapter 2. This project contains a sunset ocean scene,
as shown in Figure 2-26. We’ll use the Direct Selection tool to add a control point animation that makes
the waves roll a bit.

57

BASIC TRANSFORMS

Figure 2-26. You can use the Direct Selection tool to animate the control points that make up an object.

1. Once the project is open, press the A key to change to the Direct Selection tool.

2. Click the water element on the Objects and Timeline panel. The element will change to display
the control points that make up the path for this object.

3. Create a new storyboard and move the timeline play head to 3 seconds.

4. Along the top of the water object path, Shift-click to select the two uppermost points at the
top of the swells. The control points will turn blue as they are selected.

5. Use the down arrow key to move those two points down about 20 pixels.

6. Click one of the two corner points along the top of the object, and then Shift-click the oppo-
site corner and center point so that you have selected the inverse three points along the top of
the wave.

7. Move the selected points upward about 20 pixels.

8. Press Play, and the swells should gently invert over the 3 seconds of the timeline.

The storyboard for this project looks pretty complex. This is because manipulating the points of a
path-based object affects not only the points you are manipulating directly but also the lines that pass
through the control points. I’ll talk more about that in Chapter 3, but for now, here’s a look at the
storyboard for this project:

58

CHAPTER 2

59

BASIC TRANSFORMS

60

CHAPTER 2

61

BASIC TRANSFORMS

3D Perspective Transforms
One thing I touched on earlier in the chapter was the lower half
of the Transform pane, which can be seen in Figure 2-27.

The properties on the lower half of the Transform pane are used
to perform plane projections on objects to rotate them in a 3D
plane. Objects can be rotated along an x, y, or z plane, around an
offset point. While they are a part of the Transform pane within
Blend, I’m going to be covering how to use the projections in
Chapter 7, where we’ll talk more about 3D and how it works.

Summary
The basic transforms available in Blend allow you to change the properties of an object over time, cre-
ating simple animations. The transforms include Translate, Rotate, Scale, Skew, as well as two special
shortcut transforms—Center Point and Flip. Transforms can be applied individually or in combinations
to achieve different effects. As you work in Blend’s visual interface, the software works behind the
scenes for you, adding the necessary XAML to your file in the form of storyboards and animations.

Now that you have had a chance to become more familiar with the types of transforms available to
you in Blend and Silverlight, it’s time to take a closer look at what is happening under the hood. As
you have seen, Blend is creating sometimes complex-looking storyboard and animation XAML code
in the background. Like other objects in Silverlight, storyboards also have properties associated with
them. In Chapter 3, we will take an in-depth look at how all of the storyboard code works, the types
of keyframes and keyframe interpolation available, and how events are used to make storyboards play.
We’ll also start exploring the development aspect of Silverlight a little more by writing some code.

Figure 2-27. The expanded
Transform pane

63

As you have seen, Blend does the heavy lifting when it comes to creating animations
and storyboards while you concentrate on manipulating objects on the artboard.
In this regard, Blend is a great time-saving tool. However, the default animations
produced in Blend may not be ideal in all situations. There are multiple types of ani-
mation available to you in Blend/Silverlight, and being aware of the different types
will make it easier for you to select the appropriate match for your projects. In this
chapter, we will be taking an in-depth look at storyboards and each of the different
types of animation provided by Silverlight. To complete the discussion, you will also
learn how each type of animation can be written entirely in the code-behind file,
with no XAML. Your main take-away should be a deep understanding of the various
animation types and how each affects the motion of your objects.

Before you get started
A brief heads up before you begin: despite the deep integration between Blend
and Visual Studio, they are still separate environments, and as such, invite nuances
between user experiences when working with project files. Blend may not persist the
files that were open in Visual Studio or the start page. Because of this, you may open
a project and find a blank screen staring at you. Don’t panic! The project is open.

STORYBOARDS AND ANIMATIONS

Chapter 3

64

CHAPTER 3

To work through the examples, click the Projects tab in Blend, and then right-click the HTML file and
select Startup—this will ensure that Blend uses the correct page when you run a project. After that,
double-click the file to open it, and you should be ready to go.

Storyboards and storyboard properties
When you think of a storyboard, think of it as a container that will hold a set of animations. As you
move objects around on the artboard in timeline recording mode, Blend automatically adds anima-
tions to the storyboard container for you. In some of the previous examples, you used the New story-
board button in Blend and the default name to create new storyboard containers. When
you do this, an empty storyboard is created in the XAML file that looks like this:

Each storyboard you create must have a unique name, which is assigned through the property.
As you create storyboards, it is a good idea to use descriptive names. In the event that you have a
project containing many storyboards, you will find it much easier to locate the correct one when it
comes time to play them.

Storyboards can contain any number of animations, from a few to dozens. They can also be left blank
and used as timers.

Like other objects in a Silverlight application, storyboards have properties that affect the way the sto-
ryboard behaves. Let’s work through some examples to explore these properties further.

1. Open the StoryboardProperties project from Chapter 3. If you open the project in Blend, you
may need to double-click the file on the Project tab to open the XAML. This
project contains a gradient-filled ellipse named GreenBall and a simple storyboard with one
animation that causes the ball to move from left to right in 2 seconds. The storyboard is named

, and looks like this:

2. Click the Open a storyboard button to open the list of available storyboards, and select
MoveBall.

3. Play the storyboard to see how it moves the Ball object across the canvas.

We’ll talk more about the types of animation that go into storyboards later in this chapter. Right now,
we want to concentrate just on the tag and its available properties. Like most objects in
Silverlight, some storyboard properties have default values. You know that when you add an ellipse
to the artboard, you do not need to specify the or , for example. Even though
those properties are not explicitly written in the XAML code, the ellipse will still show up and have an
opaque fill by default.

65

STORYBOARDS AND ANIMATIONS

Similarly, storyboards have properties that are not explicitly coded in XAML, but still affect the way a
storyboard behaves. This is the case for the first property we’ll look at: .
describes how a storyboard acts when it reaches its end. The default value for this property is ,
which will cause a storyboard to hold its end position when it has completed playing.

Because it is default behavior, it is not necessary to code, but is the
functional equivalent to .

The other possible value for the property is . Using causes a storyboard to
return objects to the position at which they were located prior to the storyboard playing. Using
will cause all the objects affected by a storyboard to return to their initial positions. Let’s take a look.

4. Change to Split view and scroll to the top of the XAML window.

5. Modify the property for the storyboard. After the storyboard name,
type in FillBehavior="Stop". Hand-editing the XAML may cause Blend to close the storyboard.
If this happens, just reopen the storyboard by selecting Open a storyboard on the Objects and
Timeline panel once again.

Test the animation. The ball should move across the canvas to the right, and then move to its starting
position on the left.

You should see a significant difference in the end position for the Ball object when using rather
than the default .

The next storyboard property we will take a look at is . As you might expect,
will cause a storyboard to play backward when it reaches the end. By default, the value for
is , and like the property, is not written into the XAML tag for the storyboard.

6. In Split view, scroll to the top of the XAML window and remove the tag that was
previously added.

7. After the storyboard name, type in AutoReverse="True" so that the storyboard looks like the
one in the following code. Click Play to see how the behavior has changed.

The ball moves to the right, and when the storyboard reaches the end, it reverses and proceeds to
play backward until the ball is brought to a stop at the original starting position. The movement of the
timeline play head will mimic this motion.

Oftentimes, is used in conjunction with the next property we’ll be looking at, called
. The default value for is , meaning that a storyboard will play one

time. There are three ways to specify the for a storyboard. You can enter duration, a
number of iterations, or the string value .

8. Remove the property added in step 7.

66

CHAPTER 3

9. Change the storyboard so that the is set to , as shown here:

Press the F5 key to compile and view the project in a browser. The storyboard that moves the ball from
left to right will play repeatedly. Close the browser when you’re done looking at the application.

While you can certainly edit the XAML directly in XAML or Split view as we have done, you can also
access some of the storyboard properties inside Blend’s interface, as shown in Figure 3-1. To change a
storyboard’s properties, click the storyboard name at the top of the Objects and Timeline list, and then
make any necessary changes on the Common Properties pane of the Properties panel.

Figure 3-1. Storyboard properties can be edited in the Blend interface.

If you have a case where an animation needs to play a specific number of times, you can change the
value of to get the necessary behavior.

10. In the example project, change the value to , like so:

11. Press the F5 key to compile the project and view it in a browser. The storyboard will
play four times. Close the browser when you’re done looking at the application.

67

STORYBOARDS AND ANIMATIONS

Use caution when using iteration values. If you forget the that lets Silverlight know you are using
iterations, the value is instead interpreted as a duration value, and you may be left wondering why
your animation continues to play for a number of hours.

Duration values for are expressed as a string, specified as .
When a duration value is used for , a storyboard will play for the amount of time
specified.

12. To play the example storyboard animation for 4 seconds, change the value of
to , as shown:

13. Press the F5 key to run the project. In this case, the animation of the ball moving only lasts
for 2 seconds, so the storyboard is played through twice. Close the browser when you’re done
looking at the application. What will happen if you specify a duration of 3 seconds ()?
The animation will play through 1.5 times, stopping halfway through the second iteration.

The next property we’ll look at is called , and is used to delay a storyboard from starting
for some period of time. Like the duration values for , values for are also
expressed as .

14. Remove the property from the storyboard.

15. Delay the start of the storyboard for 5 seconds by adding the following property to
the storyboard tag:

16. Press the F5 key to run the project. The ball will stay to the left of the canvas for 5 seconds,
and then the storyboard will move the ball across the screen. When you’re done viewing the
application, close the browser window.

 is a property that can be used to speed up the playback of a storyboard. Values for
 are expressed as a multiplier, with being normal speed.

17. Remove the property set in step 15.

18. To play an animation 8 times faster, set the value as shown here:

19. Press F5 once again to view the effect this change has on the storyboard. The ball should move
across the screen pretty quickly. Close the browser window when you’re done.

Using on a storyboard can help if the overall storyboard playback needs to be adjusted.
 offers an easy way to adjust the playback for all the animations in the storyboard at

once.

68

CHAPTER 3

Combining storyboard properties
Although we examined the storyboard properties individually in the previous exercises, you will often
find yourself combining them to achieve different effects. Let’s look at how to use multiple storyboard
properties at once:

1. Open the ControlPointAnimation project. In Blend, double-click the file on
the Project tab to open the XAML. This is the same project used in Chapter 2 to animate some
wave swells. This project already contains an animation called that moves the con-
trol points that make up the wave object. Press F5 to run the application if you’d like to see the
animation.

2. Change to Split mode and scroll through the XAML window. You will see that the
storyboard is fairly complex, containing over a dozen separate point animations.

3. Since the main wave motion is already created, we are going to focus on adding some prop-
erties to the storyboard that will cause the animation to play to the end, reverse and play
backward to the beginning, and then play forward again, looping this behavior forever. We can
do that by adding two properties to the storyboard— and —as
shown here:

4. Press the F5 key to compile and run the application. The storyboard will play forward until it
reaches the end, at which time the property will cause the storyboard to play
backward. When it reaches the beginning, the property will cause the story-
board to play forward again, and this cycle will repeat endlessly.

Take a look at the following storyboard and try to determine what kind of behavior will result from
using the values shown.

 is unaffected by the value set for a storyboard. As such, this example will delay
10 seconds when the storyboard begins, after which the storyboard will play a total of four times at
twice the speed. In this example, and will essentially cancel each other out—

 doubles the duration of any animations contained in the storyboard, while a
of will play them twice as fast.

5. Paste the properties shown in the listing into the storyboard and run the project to
see the result.

As containers, storyboards are not the real workhorses when it comes to making things move in
Silverlight. For that, animations are used. In the next section, we’ll take an in-depth look at the types
of animation available to you within Silverlight.

69

STORYBOARDS AND ANIMATIONS

Types of animation
One of the important concepts to understand with Silverlight is that all the values you can modify for
objects are of a particular type of data. The C# code we’ll be using later is considered strongly typed,
which means that every object and variable must have a declared data type.

Some common data types are , which contains or values; , which con-
tains values between –2147483648 and 2147483647; , which contains values between
–1.79769313486232E+308 and 1.79769313486232E+308; and , which contains values between 0
and 255. We’ll be dealing with different types of data later when we start doing more programming,
but for the time being, just be aware that different data types exist. In Silverlight, most numeric values
used for properties such as , , and are of the type.

When it comes to animations, Silverlight offers three main types, , , and , each of
which has two variations: from/to and using keyframes. If you are using keyframes, there are four
further variations: easing, linear, spline, and discreet. While that seems like a lot to keep track of,
Blend goes a long way in making animations easier to sort through and use. Unfortunately, no soft-
ware can do it all, and Blend does not offer the ability to work directly with the very useful from/to
type of animation. Luckily, from/to animations are relatively straightforward to code in XAML. Let’s
look at all these animation types in more detail now.

Double
As you might expect, the type changes properties of type over time.

There are two types of double animations: and .
The former is a from/to animation, and simply works by providing target values. The latter becomes a
container for a set of keyframes that define values at specific points along the timeline.

The code for a storyboard with a might look something like the following listing:

From/to animations animate the property of an object from one value to another—hence the name.
The example code specifies a property required for all animations called . This property is
the property of an object in your project. In this case, the object that will be affected by this
animation is called .

Following the target name is a . This tells Silverlight which property of the object will
be affected by this animation. This code tells Silverlight we will be changing the opacity.

As with a storyboard, the specifies how long this animation will take, while the and
properties are the beginning and ending values used in the animation. This animation can be read as
“Change the opacity of from 1 to .5 in 1 second.”

70

CHAPTER 3

The property is not required, and is often left off. When omitted, becomes whatever the
current value is. When used this way, paired from/to animations are effective for creating animations
that need to smoothly reverse on some user action, such as panels that slide in and out as the mouse
enters or leaves an object.

To take a closer look at how from/to animations work, open the DoubleFromTo project for Chapter
3. The project contains a Canvas object called Slider that contains a panel shape. Press F5 to run the
project. As the mouse enters the panel, the panel will slide out, and when the mouse leaves the panel,
it will slide back in. The animations work if the mouse enters or leaves the object at any point. These
movements are created with two s, both of which omit the value. The following
code listing shows the storyboards and their animations:

When the mouse enters the Slider object, the SlideOut animation plays, moving the panel from its
current position to 150 over a duration of .5 seconds. If the mouse leaves the panel at any point, the
SlideIn animation begins, moving the panel from whatever the current value is to 0 over a duration of
.5 seconds. In this particular animation, the value being manipulated is the X Translate trans-
form.

As noted earlier, Blend does not produce from/to animations by default. Instead, Blend generates
a type of animation called a . To see what one of these looks like,
open the DoubleUsingKeyframes project from Chapter 3. This project contains a single Rectangle
object and a storyboard that moves the rectangle 150 pixels to the right over a .5-second duration.
You can test it out by pressing F5.

71

STORYBOARDS AND ANIMATIONS

Keyframe animations are containers that hold keyframe definitions. If you are using Blend, each time a
keyframe is created on the timeline, a corresponding entry is made into an animation container.

Like the type, animations also define
and values. However, the length of the animation is determined by the keyframes
within the animation, not by a duration value.

 is specified to tell Silverlight when the animation should start. In this example,
is , so it will start with no delay when called.

Within the container is an defini-
tion that defines a keyframe at .5 seconds and specifies that the value of the X Translate transform
should be .

Color
Color animations are animations that change colors over time. Instead of manipulating values of type

, color animations change the hex values that define a color. Like animations that use ,
color animations also come in two varieties: and .

With color values in Silverlight, hex values are preceded by a value representing the alpha transpar-
ency of the color being defined. For example, #FFFF0000 is 100% opaque red, while #7FFF0000 is 50%
red. If the alpha transparency value is left off of a hex color, Silverlight will assume the color to be
100% opaque.

The ColorFromTo project for Chapter 3 contains an example . Open the project and
press F5 to run it. When you move the mouse over the red ellipse, it will begin to turn dark blue.
If the mouse leaves the ellipse, it will turn back to red. Each of the two color animations happens
over .5 seconds, and as with the example, the attribute is omitted from the

 to give a smooth animation effect.

When working with color animations in Blend, the default type of animation that will be created is
. Like , this type of animation will

create a container within your storyboard that contains entries for each keyframe you create.

72

CHAPTER 3

In the following code listing, a keyframe has been created at .5 seconds and contains a pure blue value
of #FF0000FF. When the animation runs, the specifies that the ellipse’s color is
to change from the current color to the blue defined by the keyframe in .5 seconds.

Point
Like double and color animations, point animations also come in two flavors: and

. From a code perspective, they also become significantly more com-
plex to work with since you are now dealing with the individual points that sit along a path and form
an object. Even simple objects can become complex when viewed in the context of point animations.
Open the PointFromTo project for Chapter 3. This project contains a simple path that is in the shape
of an ellipse, the XAML for which is shown following:

The containers describe the points along the path that make up a simple circle shape.
Run the project by pressing F5. When the pointer is placed in the red ellipse, the bottom point will
drop down, as shown in Figure 3-2. When the pointer leaves the red circle, the bottom point returns
to its original position, as shown in Figure 3-3.

73

STORYBOARDS AND ANIMATIONS

Figure 3-2. The bottom point of the circle Figure 3-3. The bottom point of the circle
drops when the mouse pointer enters the circle. returns to its starting position when the mouse

pointer leaves the circle.

 definitions are a little more complex than the and
examples shown. The following code shows the storyboards and animations:

74

CHAPTER 3

To this point, the storyboards used to create from/to animations have been relatively simple.
The type has become full of confusing numbers and a very complex-looking

. The values shown in these two storyboards directly relate to values in the XAML
markup for the object. Let’s take a closer look at the pieces that make up the for the
first animation in the storyboard.

The XAML for our object contains a section, which in turn contains a . A
more complex object might contain several elements. Inside of the are four

 entries, each one of which refers to a point on the path and its associated spline, as
shown in Figure 3-4.

When referencing s in the container, they are numbered starting from 0. In
our case, we only have a single , so the first portion of the for the story-
board is saying, “In the path data section, I want the first figure from the list.”

Inside of the container, we can see four segments, numbered from 0 to 3. The next por-
tion of the tells Silverlight to which segment the animation will apply:

75

STORYBOARDS AND ANIMATIONS

Figure 3-4. The BezierSegments that make up the Sphere object

This information directs Silverlight to the second segment in the list (the first segment is), which
is shown here:

Finally, the tells Silverlight which point values are being modified:

The duration value is the same as it has been for the other animation types, but notice that the
value is a pair of numbers separated by a comma:

This is the x,y coordinate where the point will end up. With both and ,
it is relatively simple to make changes to an object using just a single animation. This is not the case
with , because each point affects its adjoining spline segment. As a result, more ani-
mations are necessary.

When creating s that return points to their original position, it is important to pay
attention to the values being used. Unlike a that undoes a translation by returning
it to 0, the values used for s need to come from the XAML markup, because they
represent the x,y location of the point being manipulated.

This becomes especially difficult when the XAML for an object is written in the traditional path mini-
language notation. For example, the preceding elliptical path typically appears in XAML as follows:

76

CHAPTER 3

For this reason, it is often easier to utilize Blend when creating anima-
tions and then convert them to s as opposed to trying to hand-code
XAML.

Blend generates the animation type when the points of an object are
manipulated over time. As points are moved, keyframes are added to the timeline.

The PointUsingKeyframes project from Chapter 3 contains a red path similar to the one in the last
project, as well as a storyboard that will move the bottom point of the ellipse down. As demonstrated
in the previous example, three animations are necessary to move a single point
down.

In Blend, use the Open a storyboard icon on the Objects and Timeline panel to open the
storyboard. Click Play to see the bottom of the path deform downward. The story-
board is shown in the following listing for reference:

77

STORYBOARDS AND ANIMATIONS

Once you have spent a little time working with paths and s, the code will become a
little easier to read. It is best to spend some time with a few simple objects in order to get a feel for
how the code changes in relation to changes you make to an object. As you can imagine, point anima-
tions can get complex very quickly.

A note about from/to
The from/to animation types with which you have been working have an additional attribute called

 that you can use in lieu of a value. The DoubleByAnimation project contains a storyboard that
moves an ellipse using a that is declared as a from/by.

When using the property, leave the property off. The animation will alter the of
an object by the specified amount. In this example, the ellipse’s X transform property is moved from
a value of 0 by 150 pixels over 1 second. One use for this type of animation may be specifying a range
of motion for an object.

Open the project, and press F5 to see the animation in a browser. The storyboard that moves the
ellipse is shown following:

If you wanted to generalize the starting position for the ellipse in this animation, you could remove
the property. The object would then move from wherever it is located by 150 pixels.

Types of keyframes
When working with animations, each animation contains a number of keyframes.
Silverlight has four types of keyframes, each of which creates a unique type of motion for an object.
Depending on user action, Blend may change the keyframe type behind the scenes. This section will
take a look at each of the keyframe types and the type of motion they create.

Linear
Linear keyframes do what you might expect from their name—provide a way to move in a linear fash-
ion from one keyframe to the next.

Open the LinearKeyframe project for Chapter 3. This project contains an example of a rectangle that
uses linear keyframes to move in a diamond pattern. Press the F5 key to compile and run the applica-
tion.

The storyboard is shown in the following listing. Even though the rectangle moves to four positions,
if you look through the code listing, you can count eight. This is because there are two sets of anima-
tions: one handles the X transform, and the other the Y. Each one is four keyframes, for a total of
eight.

78

CHAPTER 3

When using linear keyframes, Silverlight simply calculates the value of the between
keyframes using linear interpolation. The preceding code illustrates , but

and are also available.

Easing
While working in Blend, what you will typically see is easing keyframes added to your animations, even
if the animations define linear movement for your objects. This is because easing keyframes are the
default type of animation. Easing keyframes allow you to utilize one of the 11 built-in easing func-
tions to create interesting or organic movements to your objects. If no easing function is selected, the
motion between keyframes is equivalent to that provided by linear keyframes.

Open the EasingKeyframe project for Chapter 3. If you press F5 to run the project, you will find that
it contains the same rectangle and animation as the linear keyframe example did. In this project, how-
ever, the animations are defined using , as shown following:

79

STORYBOARDS AND ANIMATIONS

As it stands, the motion and timing of the storyboard are iden-
tical to the one that used linear keyframes. The distinction
comes when you select keyframes in the timeline in Blend and
add an easing function to an object. In all likelihood, you’re
going to want to spend some time experimenting with all of
the nuances of the different types of easing functions available
to you, but let’s take a look at how to add easing functions and
the effect doing so has on the XAML.

1. With the EasingKeyframe project open, click the Open
a Storyboard drop-down, and select the Storyboard1
item in the list.

2. The storyboard will open, displaying the keyframes
within the animation on the timeline. Ctrl-click each of
the four keyframes to select them. With the keyframes
selected, the Properties panel should change to show
the Easing pane.

3. Notice that the functions are arranged in three columns:
In, Out, and InOut (both). This allows you to affect the
motion of an object as it approaches a keyframe (In),
leaves a keyframe (Out), or as it approaches and leaves
a keyframe (InOut). Select the Elastic easing function, in
the InOut column, as shown in Figure 3-5.

4. In the XAML, Blend has modified the keyframes and
inserted the , as shown following.
Notice how they differ from the listing shown earlier in
this section.

5. Preview the animation. Notice how the rectangle now bounces around each keyframe rather
than moving smoothly from point to point.

Spend some time experimenting with the different types of easing functions available; you can create
a lot of interesting movements with the functions. Don’t get locked into creating the type of move-
ment shown here either. For example, you can apply the easing functions to the 3D perspective trans-
forms I’ll describe later in the book as well.

Figure 3-5. The EasingFunction pane
in Blend

80

CHAPTER 3

Spline
Spline keyframes act similarly to easing keyframes but differ in that they allow you to create the
motion curve yourself. Spline keyframes contain a property called that defines the easing
motion.

Open and run the SplineKeyframe project for Chapter 3, you will see that it contains the same rect-
angle and animation as the easing keyframe example.

1. To convert the easing keyframes to spline keyframes, begin by clicking the Open a Storyboard
button and selecting the Storyboard1 item from the drop-down.

2. Ctrl-click each of the four keyframes on the timeline.

3. Select the KeySpline tab on the Easing pane of the Properties panel, as shown in Figure 3-6.
Blend will convert the easing keyframes to spline keyframes.

4. The yellow handles on the KeySpline shown on the Easing pane can be manipulated with the
mouse, or you can type in values. As you are working, Blend will add the property
to the XAML code for your keyframes.

Earlier, you saw that without an easing function applied, easing keyframes act like linear keyframes.
Similarly, without the property, spline keyframes also act just like linear keyframes. The

 property affects the way an object moves as it approaches or leaves a keyframe and can
be added to a spline keyframe by directly editing the XAML or by modifying the keyframe via Blend’s
interface, as you saw in the previous exercise.

81

STORYBOARDS AND ANIMATIONS

Figure 3-6. The Key-
Spline pane in Blend

You can test it out—in the example project, edit the XAML, and modify the first
to include a property:

Play the animation, and notice the change in motion. Spline animations are used to add what is known
as ease to an object’s motion. I’ll talk more about ease in the next section of this chapter.

Discrete
Discrete keyframes create a type of motion that holds an object in place until a keyframe is reached,
at which time the object is moved to the value of the new keyframe. This type of motion is useful
when creating frame-by-frame animations.

The DiscreteKeyframe project contains the same storyboard as the linear, easing, and spline projects,
only this time, the storyboard is written with discrete keyframes, as shown in the next code listing.

Once again, you will see that none of the values changed, only the type of keyframe being used. Press
F5 to compile and run the project, and notice how the rectangle holds its position until a keyframe is
reached, at which time it jumps to the value specified in the next keyframe.

82

CHAPTER 3

To convert easing or spline keyframes to discrete keyframes, select the keyframes in the storyboard,
and then select the Hold In tab on the Easing pane of the Properties panel, as shown in Figure 3-7.

Figure 3-7. Select Hold In to convert
keyframes to discrete types.

Even though each of the example projects shown here illustrates the use of a specific type of key-
frame, you can freely mix and match them in your storyboards to achieve different effects. When
working with curves for spline keyframes, motion control can be a little tricky to accom-
plish by hand-coding XAML; this is where a tool such as Blend comes in very handy.

From this look at storyboards, animations, keyframes, and keyframe interpolation, you should have
a pretty good idea of the types of tools available to you when making objects move using XAML in
Silverlight. You should also be able to see that a tool like Blend does a lot of behind-the-scenes work
for you to make the job of animating objects easier. With a solid grip on how storyboards work, it’s
time to take a look at how to go about making storyboards play when you want them to. The next
section takes a look at events and how they are captured in order to give you control over when the
storyboards you have created will play.

83

STORYBOARDS AND ANIMATIONS

Events
To this point, we have worked with animations fairly extensively but always within the confines of
Blend. We haven’t yet done anything to get our animations running in the browser, where Silverlight
applications are usually presented. Events are used to add interactivity to applications, whether from
user input or based on some condition within the application itself. In this section, we’re going to take
a look at what events are and how they can be wired up.

1. Open the Truck project from Chapter 3. This project contains the truck scene from Chapter 2,
as well as a storyboard that will scale the truck down to make it appear to be moving away.

2. Use the Open a storyboard icon, and select the ScaleTruck item from the storyboard list.

3. Play the timeline to preview the animation.

4. Now press F5 to test the project. A browser window will open—and nothing happens. This is
because there is nothing telling Silverlight to play the timeline in the application.

The way to go about telling Silverlight what to do with various storyboards is through events. Events
consist of three parts: an event listener, an event, and an event handler. The event listener, as you
may have guessed, tells Silverlight to listen for a particular event, such as , ,

, or .

When the specified event occurs, the event listener tells Silverlight which event handler to use. The
event handler is a set of instructions that tells Silverlight what to do. Events can be caused by users,
as is the case with a mouse click, or they can occur from within the application, such as when a story-
board has ended. When an event occurs, it is said to be raised.

There are two ways to create events for objects in Silverlight. One is by adding them directly in the
XAML, and the other is by creating them entirely in the code-behind file. When created using XAML,
a typical event hookup looks like this:

This code creates a small red square named . An event listener is added to listen for the
 event. If the pointer is placed over this object, the event will be raised, and

the event handler—in this case, a set of instructions (or function) called —will be
executed.

Remember earlier when you were told that, as a designer, a time would come when you’d have to roll
up your sleeves and get your hands dirty? Start rolling.

The following sections describe adding events first from a designer’s perspective and then from a
developer’s perspective. If you are a designer, there isn’t really a way around having to add some code
to create interactivity, so after reading through your section, take the time to go through the devel-
oper section and see that it’s not difficult or scary to do. You will probably find that it is faster, easier,
and far more flexible.

Getting back to the Truck project, we want to find an event that will cause the storyboard we cre-
ated to play when the application is opened in a browser. The appropriate event in this case is called

, and will be attached to our main Canvas object, called . When the Canvas loads, a
trigger will be used to play our storyboard.

84

CHAPTER 3

For designers
1. With the Truck project open, press F11 until you are in XAML view. Scroll to the top of the

XAML window, and beginning around line 6, you will see a section that contains the storyboard
resources that have been created for this project. It looks like this:

We are trying to avoid diving into the code-behind file, so the goal is to create an event trigger that is
automated as part of the XAML file. To do this, it is necessary to relocate the storyboard and included
animations to a new section of XAML code that we will create. The new section of XAML will define
what are known as triggers for this application. To save you some typing, a blank triggers section has
been provided in the file for Chapter 3.

2. Open , and then cut the storyboard from your Blend project, and paste
it into the code, where it says . You
will have something that looks like the following code listing:

85

STORYBOARDS AND ANIMATIONS

3. Once the storyboard has been copied into the text file, hop back over to Blend and remove the
entire section, starting from and including the opening

 tag, to the closing tag.

4. Paste the entire contents from the text file just after the opening tag for the
Canvas in Blend. Don’t panic if Blend reports that the XAML is invalid—the trigger section
should still compile and run correctly.

5. Press F5 to run the project again, and when the browser opens, you should see the truck high-
tailing it away.

That was a lot of cutting, copying, and pasting of code. What just happened?

By default, storyboards are available to an application as a global resource. Rather than have the
storyboard available this way, we placed it inside of a trigger, which is a XAML method for attaching
an event. The tag in the XAML sets up an event handler that waits for
the Canvas to be loaded, which occurs when an application runs. When the event is raised
for the Canvas, the actions are performed—in this case, the actions list our
storyboard animations.

There’s a significant limitation to using triggers—at this time, is the only trigger available
directly within XAML. This means that, at the moment, if you are hoping for anything more than basic
animations that run when an application loads, it will be necessary to wire them up in the code-behind
file.

If you are now questioning your ability to use Silverlight because it requires some programming, don’t
fret—hooking up events in the code-behind is more automated (and therefore less tedious) than the
process you just worked through. The tight integration between Blend and Visual Studio makes wir-
ing events easier than you may have thought, so work through the next section to get a feel for how
events are added in C#.

For developers
1. Start in Blend with the freshly opened Truck project.

2. Select the Project tab to the left of the Properties tab, and expand the item so
you can see the code-behind file.

86

CHAPTER 3

3. Double-click the code-behind to edit it in Blend. When the file opens, you will be looking at
the code-behind file for the XAML file from the Truck project.

4. Position the cursor at the end of the code, and press Enter to move
the cursor to a new line. You will be adding an event listener to the Canvas.

5. Type LayoutRoot and a period (.). An IntelliSense window will open that shows all the available
objects, properties, methods, and so on to which you have access.

6. We already know we will be using the event, so type lo. Loaded will become highlighted
in IntelliSense. Press Enter, and Blend will fill in the rest of the text.

7. To finish adding the event, type += and press the Tab key. Blend will add a basic event handler
function that is called when the event is raised. The following code listing shows what you
should have at this point:

The function that Blend just added is what will be called when the
Canvas loads when the application runs. The function needs to contain a set of instructions to tell
Silverlight what to do—right now it contains some simple, default placeholder code.

8. Remove the code. In its place, type the
storyboard name followed by a period (ScaleTruck.) to see the list of properties and methods
available. To make a storyboard play, the method is used, so type Beg and press Enter
so that Blend fills in the method; then, type a set of empty parentheses, and end the line with
a semicolon:

You can now test the project in Blend by pressing F5.The storyboard will now play when the applica-
tion loads. The TruckCompleted project includes the code described in this example.

The previous process used only the code-behind to hook up an event to an object, but it is possible
to create the event listener in XAML and only use the code-behind for the event handler. This makes
it a little easier when working in a team to identify which objects have event listeners. It also offers
some flexibility in that a designer may create the event listeners, and then hand off the project for the

87

STORYBOARDS AND ANIMATIONS

developer to create the event handlers. I bet that every developer reading this right now is cringing
at that thought (and so are the designers who prefer to avoid any more code than necessary). The
important take-away is that there is a lot of flexibility in the workflow, and there is more than one way
to get the job done. Find out which one is the most comfortable for you, and run with it.

Let’s take a look at how we can wire up one event listener to a mouse click and another to the end
of a storyboard.

1. Open the Events project from Chapter 3. This project contains three rectangles, each of which
has an associated storyboard that defines a simple Translate transform to slide the rectangle to
the right. We will be hooking up an event listener that causes a storyboard to play when one of
the rectangles is clicked.

2. Begin by selecting the RedRectangle element on the Objects and Timeline panel. At the top of
the Properties panel, select the Events icon, as shown in Figure 3-8.

Figure 3-8. The Events icon on the Prop-
erties panel can be used to add events.

The Events pane displays a list of the available events for this object, such as , ,
, , and . If you look down the list, you will see both

and . When utilizing clicks for input, it is typically preferred to use the up event for
the click to avoid performing an action before the user has released the mouse button.

3. In the MouseLeftButtonUp field, type Red_MouseUp, and press Enter. Two things will happen.
First, Blend will add some XAML to the definition of the object that attaches an
event handler to this object:

Next, Blend will load the code-behind file and automatically create the basic event handler
code for you:

88

CHAPTER 3

4. The storyboards in this project are named , , and . In order to tell
Silverlight to play the storyboard for the red rectangle, place the cursor between the curly
braces, and type MoveRed followed by a period.

5. You know from the previous example that the method to call to play a storyboard is ,
so start typing beg. When Begin becomes highlighted in the IntelliSense window, type an empty
set of parentheses, and end the line with a semicolon so that the completed line looks like
this:

6. Press F5 to test the project. When the browser window opens, click the red rectangle—it
should glide smoothly across the screen to the right.

7. Use Blend to add an event handler to the blue rectangle in a similar manner. Select BlueRectangle
in the Objects and Timeline panel or by clicking the object on the artboard, and then click the
Events icon on the Properties panel.

8. In the MouseLeftButtonUp field, type Blue_MouseUp and press Enter. Once again, Blend will add
the event listener to the XAML for you, and create the event handler in the code-behind. All
you need to add is a call to the method for the storyboard:

Repeat this process for the green rectangle as well. Once all three events have been hooked up, run
the project. As you click each rectangle, the specified storyboard will play. Since each rectangle has
its own event listener awaiting a mouse click, the Rectangle objects can be clicked in any order or at
any speed, and the storyboards will play. A completed version of this project with all the event code
in place is available in the Chapter 3 projects as EventsCompleted.

Storyboard events
Applications that offer a lot of user interaction often use many storyboards and animations, mak-
ing them quite complex. In these cases, it can be useful to segment the storyboards, chaining them
together by using the end of one storyboard to start another. Like most objects in Silverlight, story-
boards also have events associated with them. The event listeners can be added to storyboards in
XAML, but like the previous example, you will still need to add some code to execute the desired
action.

The StoryboardEvents project for Chapter 3 contains the same rectangles and storyboards as the pre-
vious example. The event listener for the red rectangle has already been added,
and the event handler will play the storyboard to move the rectangle. Running the project will allow
you to click the red rectangle and see it move across the screen.

For this project, we want to add an event listener to the storyboard so that when ends, it
calls an event handler that contains code to play the storyboard. When a storyboard ends,
it raises a event.

89

STORYBOARDS AND ANIMATIONS

1. Adding the code to attach an event listener to a storyboard is relatively straightforward but
must be done in the XAML code. With the StoryboardEvents project open, press F11 until you
are in XAML view.

2. Scroll to the top of the window until you see the storyboard.

3. The event listener is written into the opening tag of a storyboard. Edit the XAML
code for the storyboard to look like the following:

4. Save the project. On the Projects panel, expand the file list under MainPage.xaml, and double-
click MainPage.xaml.cs to open it for editing.

5. Unlike using the Events pane in Blend to add events to objects, directly editing the XAML
code does not automatically add any event handler code in the code-behind files. Below the

 event handler code, add the following event handler for the event of
the storyboard:

6. Run the application, and click the red rectangle. The rectangle will slide across the screen, and
when it reaches the end of its storyboard, the event will be raised. At that point,
Silverlight will execute the code in the event handler that was just added, and the blue rect-
angle will move.

7. To hook up a event listener on the storyboard that starts the
storyboard, begin by adding the appropriate event listener to the storyboard in
Blend:

8. Save the project, and once again, edit the code-behind file in Visual Studio.
Add the event handler function that the event listener will call when the
event is raised:

9. Run the application and click the red rectangle. Now what you will see is that when the
storyboard completes, the code will start the storyboard, which in turn has code that
will start the storyboard. For reference, StoryboardEventsCompleted contains the
completed version of this example.

90

CHAPTER 3

As you can see from working through the event examples, the XAML and code-behind files are inte-
grated and work together to capture user interactions and let Silverlight know what to do. Developers
may prefer to keep the event listeners entirely in the code-behind where they can be easily edited or
changed if the need arises.

As demonstrated with the event listener, event listeners and event handlers can be hooked up
completely from the code-behind file. Let’s take a closer look at how the same event listeners look in
XAML and in the code-behind. The XAML for the RedRectangle object used in the previous example is
shown following, and includes an event listener for a mouse button release:

The event listener can be removed from the XAML and added to the constructor in the
code-behind file. The constructor is a method that is called when the
object is created in the Silverlight application. Any user control you add to a project has a construc-
tor, and each control’s constructor is called when that control is instantiated in your applications. Any
code you want to have executed when a control is loaded is placed inside the constructor.

When creating event listeners in code in Blend, let the IntelliSense and code snippets do the work. In
this example, you would type RedRectangle., and then start typing the mouse event name until it was
highlighted. Type += and press the Tab key, and a lot of the code will be created for you:

Whether coded in XAML markup or completely in the code-behind, the same function is called:
. Similarly, the event listener could be moved to the code-

behind. The XAML event listener would be removed so that
 becomes .

Then an appropriate event listener is added to the code-behind:

91

STORYBOARDS AND ANIMATIONS

As with the event handler, the event listener calls the
 event handler the same way the XAML did. This project would function exactly as it did

with the XAML event handlers.

Being able to add event listeners via XAML or the code-behind offers a lot of flexibility when working
on a team composed of both designers and developers, but it also means that it’s a good idea to agree
on a preferred method for dealing with events to avoid unnecessary work.

So far, the examples in this chapter have demonstrated just how much work Blend does behind
the scenes making application development easier by building out storyboards and animations. As a
developer, you may have a desire or need to create storyboards and animations entirely in code. In the
next section, we’ll take a look at how you can do this with Visual Studio.

Programming storyboards and animations
This section of the chapter will be useful if you’re interested in learning how to program storyboards.
As you have seen, there is quite an array of information that goes into storyboards and the animations
they contain. All the storyboards and animations you have worked through can be created entirely
from code. While it is perfectly acceptable to create storyboards in XAML as you have done to this
point, there may be times when you want a little more flexibility in creating animations that are essen-
tially reusable—“reusable” meaning more of a “code once, use many times” approach than, say, using
one storyboard on 20 objects. Let’s dig right in with storyboards.

Storyboards
As you are already aware, storyboards are containers for animations, and they may contain one ani-
mation, many animations, or no animations at all in order to function as a timer. When coding sto-
ryboards, you are creating an empty container to which you will be adding animations. Declaring a
storyboard is as simple as creating a new object of type , and giving it a name, which is
done with the following code. Remember that even though your storyboards are being created from
code, they still must each have a unique name.

Once a storyboard has been declared, you can set any of the properties you did with XAML. For
example, adding a property to would look like the following listing. When cod-
ing, durations are typically expressed as objects. objects represent an interval or a
period of time expressed as days, hours, minutes, seconds, and fractions of a second. Here, the duration
is being set to .5 seconds by defining a duration from just the seconds component of a :

Once a storyboard has been defined, it needs to be made available to the application as a resource.
This is done by adding the storyboard to the resources for the root object by calling the

 method for the root object and passing a string key and value to the method. The string key can
be any string identifier you wish to use, and the value is the storyboard name:

92

CHAPTER 3

You can also add event listeners to the storyboard using the same type of code as you did in the exer-
cises from the last section:

Now that you know how to define a storyboard with code, the next section will take a close look at
how to add animations to the storyboard.

DoubleAnimation
Use Visual Studio to open the DoubleFromToWithCode project. As you might guess from the name,
this project demonstrates how to create a with code. As you can see from the code
listing shown following, this project contains the same sliding panel from an earlier project with event
listeners for and . The event handler code is in place but currently contains
no code.

1. To begin, we will create the storyboard from earlier in the chapter. The code for that
looks like this:

93

STORYBOARDS AND ANIMATIONS

2. Open the code-behind file, and create the object just above
the constructor:

This creates a object named that is accessible to the file in
the application. Checking our original XAML for reference, you can see that there are no other prop-
erties assigned for this storyboard.

3. You can see in the original code that the storyboard contains a single . Add
code just after the storyboard declaration to create a new object:

This creates an animation object named that we need to set a few properties on.
The first property we will be setting is , which is referred to as a dependency property.
Dependency properties provide a way to compute values based on values of other inputs such as user
preferences.

4. Set the property inside the constructor, just after the
 method, by using the method on the

object. The following code tells Silverlight we are using as the :

5. Next, set another dependency property, . is declared through
a . This code tells Silverlight that the property this animation will be affecting is
the third item in the transform group, which is the Translate transform. The transform group in
the XAML looks like this and is numbered from 0 (numbers were added for reference):

The code for this property looks like this:

6. Finally, the and properties of the animation are set:

Aside from the formatting of the code, the values assigned to the object are the
same ones from the XAML.

94

CHAPTER 3

7. Now that the animation has been defined, it can be added to the object. The fol-
lowing code uses the method to place the object in the
collection of children for the storyboard:

8. The storyboard is now made available to the root element of our application. In this case, the
root element is a Canvas object named :

At this point, the main code looks like the following listing. The application will compile and run, but
you will find that nothing happens when you move the pointer over the panel. This is because the
event handlers do not contain any code.

95

STORYBOARDS AND ANIMATIONS

9. The event handler functions are already in place, and need only to have code added that calls
the newly created storyboard. In the event handler, add the following
code to call the newly created storyboard:

10. Press F5 to test the project. When the pointer moves over the panel, the storyboard plays.
When you’re done testing, close the browser window, and return to Visual Studio.

11. Let’s add a second storyboard that will slide the panel back in when the event is
raised. Begin by creating the object. This code goes near the top of the listing,
where the storyboard was declared:

12. Declare a new called :

13. Inside the constructor, assign , , , and
properties to the new animation:

14. Add the animation to the storyboard, and the storyboard to the root object in the applica-
tion:

15. Finish up by adding a call to the method of the storyboard to the event han-
dler for the event:

You should now have something that looks like the code listing shown following:

96

CHAPTER 3

Press F5 to test the project out. When the pointer is placed over the panel, the storyboard
plays, and when the pointer leaves the panel, the storyboard plays. Since both animations
are defined with only a property and omit the property, the transition between storyboards is
seamless and results in a smooth animation. Take a look at the DoubleFromToWithCodeCompleted
project if you’d like to see the final code from this example.

Using functions to create animation
As you can probably imagine, a complex application may have many storyboards, each with many ani-
mations inside them. One of the benefits of using code to produce storyboards and animations is that
you can create generic functions that can be passed variables to create the animations for you.

1. Use Visual Studio to open the GeneratingAnimationsWithCode project. This project is identi-
cal to the skeleton project used in the previous example. This time, you are going to code up a
function that will create an animation for you.

97

STORYBOARDS AND ANIMATIONS

2. In the code-behind, start by declaring a storyboard before the
constructor:

3. Below the closing curly brace for the constructor, declare a function that accepts
a string and a value and returns a type . This function will be passed
a name and a value, from which it will create a and return it to the calling
code:

4. Inside this function, declare a new type:

5. The next step is to use the value passed into the function as to set the
 for the animation. This is done by adding the following code:

6. In this case, we already know what our target property is since the panel simply slides to the
right. The function could be altered to accept an argument for the target property in order to
make it a little more flexible, but for clarity, we will simply hard-code the property here. Add
the following code to specify that the target property is once again the third child in the trans-
form group for our object, which specifies the Translate transform:

7. Next, code up the property:

8. Use the value that was passed to the function to create the property:

9. Finish up the function by returning the newly created animation to the calling code:

You now have a compact, generic function that will create animations on demand. Now all you need
is some code to call it with.

10. In the constructor, add a child animation to the desired storyboard by calling the
function that was just created inside the method. It looks like this:

98

CHAPTER 3

11. In the last step, the function we created is passed the element name
 and value , which it uses to create a that is returned to the

method. Now that the animation has been added to the storyboard, we need to add the story-
board to the root element resources. This code goes in the constructor, right after
the code from step 10:

12. Finish up by calling the method for this storyboard in the event handler
code:

Press F5 to run the project. When the browser window opens with the application, place the mouse
pointer over the panel, and it will slide out.

The really attractive thing about creating animations in this manner is that the hard work is already
done. Another animation can be added with just a few lines of code. Let’s create the story-
board using the same function.

13. Above the constructor, declare another storyboard:

14. Inside the constructor, create the animation with a call to the automated function,
add it to the storyboard, and then add the storyboard to the resources for the root element:

15. Add a call to the method in the event handler, and you’re done:

Your completed code should look like the following listing:

99

STORYBOARDS AND ANIMATIONS

If you run the project at this point, you will find that both the and events start
the storyboards as expected when the pointer enters or leaves the Slider object. The beauty in this
approach is that you could use the function to create animations that will affect
any object, so you could quickly and easily populate multiple storyboards that target many objects.
The code is generalized, so it is reusable and can easily be augmented. The final code for this project
is in the GeneratingAnimationsCompleted project.

DoubleAnimationUsingKeyFrames
As noted earlier, each type of animation you’ve worked with in this chapter can be replicated in code.
Let’s take a look at a few examples, starting with the DoubleUsingKeyframesWithCode project,
which will be used to code up the C# equivalent of the following storyboard, which transforms an
object 150 pixels along the x axis over .5 seconds:

100

CHAPTER 3

Adding keyframes to an animation makes the coding of storyboards a little more complex, but key-
frames still follow the same general pattern: create a storyboard; create an animation; create some
keyframes; and add the keyframes to the animation, the animation to the storyboard, and the story-
board to the resources.

1. Begin work in this project by declaring the object as we did in the previous exam-
ple. This code goes above the constructor in the file.

2. Inside the constructor, beneath the method, create a new
 object called , and set the and

 values. This code will once again be targeting the X transform property of the
object being animated.

3. Declaration of the preceding object is similar to previous
examples. The next step differs a bit, though. Here, you declare the for the anima-
tion, which is expressed as a object. As per the example storyboard, this keyframe
begins at an offset time of 0. This code goes into the constructor after the code
added in step 2.

4. Now, you need to declare any keyframes that will live inside the animation. Begin by declaring
a new object called . The is set to .5 seconds, and
the value of the keyframe is 150. This tells Silverlight to move the rectangle 150 pixels along
the x axis in .5 seconds.

5. After that is done, the keyframe object can be added to the animation. Keep in mind that if
you have many keyframes in an animation, each one needs to have a unique name.

101

STORYBOARDS AND ANIMATIONS

6. Add the animation to the storyboard and the storyboard to the object:

7. All that’s left is to add an event listener and an associated event handler. Add the event listener
at the bottom of the constructor.

8. If you are using the method described earlier, Visual Studio will create the event handler func-
tion for you. All you need to do is add the code that calls the storyboard:

9. Compile and run the project, and place the pointer over the rectangle. The story-
board will play, moving the rectangle 150 pixels to the right. If you wanted to make the rect-
angle move at an angle, it would be as simple as adding a second animation that changes the
Y transform of the object.

10. Add the following code to the project, just after . Notice that
the new animation’s name is and the has been adjusted to affect the Y
transform of the Rectangle object.

Use F5 to compile and run the program again. With the second animation in place, the rectangle now
moves down and to the right, holding the position at the end of the storyboard.

Remember that the on storyboards is set to , meaning that the storyboard will
stay at its last frame when it has finished playing through. If you would like to change the
for a storyboard, you can do this through code as well. The following line of code will change the

 for the storyboard you just created so that when it reaches the end, the rectangle will
return to the starting position of the animation:

If you’d like to take a look at the final version of the code described here, it’s in the
DoubleUsingKeyframesCompleted project.

102

CHAPTER 3

ColorAnimation
Now, let’s take a look at how color animations can be implemented via code. The ColorFromToWithCode
project illustrates how to work with objects. In this example, we will create a

 that turns a red ellipse blue when the event is raised. The storyboard
equivalent for this animation looks like this:

1. In Visual Studio, open the file for editing. Just above the con-
structor, add the following code, which declares a storyboard:

2. On the next line, declare a new object called :

3. Next, code the animation object’s properties inside the constructor. In this case, the
 for the animation is the object, and the is

the object’s fill.

4. In the previous example, data types were being used. In this example, data of type
 will be manipulated. To change a color fill for an object, define the target color as a

color from alpha, red, green, and blue color values. Note that the code shown here is using
an value (alpha, red, green, blue) to specify a color, whereas the storyboard produced in
Blend utilizes a hex value. color values get their value from four byte values (0 through
255), separated by commas. This is probably a familiar format for you if you’ve worked in
almost any paint program. Once a color has been defined, it can be assigned to the property
in the animation.

5. The animation can now be added to the storyboard, and the storyboard added to the
 element:

6. All that’s left is an event listener and a little bit of event handler code. The event listener goes
inside the constructor:

103

STORYBOARDS AND ANIMATIONS

7. The event handler is placed after the closing curly brace of the constructor method:

Compile and run this project, and place the pointer on the red ellipse. The object’s color will shift
to blue. Take a few minutes to add another storyboard and that will turn the
ellipse’s color to red when the event is raised. If you need a little help, look in the
ColorFromToWithCodeCompleted project.

As with the type, you can also create keyframe-based color anima-
tions using the type in the same manner.

PointAnimation
The final type of animation we will be producing with code is a . In the following
exercise, we will be coding up the equivalent of the following storyboard. This is the storyboard we
worked with earlier that causes the lower point of a circular red path shape to droop down when the
mouse pointer enters the shape.

 is handled a bit differently than or . One of the
things to notice in the XAML listing is that each within the storyboard has a
and . You will need to take this into account when creating in code.

1. Open the PointFromToWithCode project in Visual Studio. Open the file
for editing.

2. As with and , everything begins with the declaration of a
storyboard. Before the constructor, add the following code to declare a storyboard
called :

104

CHAPTER 3

3. Inside the constructor, the property for the storyboard is set to the
 object. This is a deviation from the previous examples where the target was set on

the individual animations. While it is also acceptable to set the target for each
object, all three animations affect the same object, so it saves a couple of lines of code doing
it this way.

4. Next, each of the three objects is created. Let’s go through each of them in
order. Begin by declaring a new object for the first point. Place this code just
below the storyboard declaration before the constructor:

5. Now the animation must tell Silverlight which property will be affected. The following code
specifies that we are setting the value for of segment 1.

6. As with the and types, is assigned:

7. Then the property value is assigned. Because this is a , the data type is
expressed as an x,y point. This means that the property must be created as type .

8. Finish up by adding the animation to the storyboard:

9. Points 2 and 3 from the XAML example are coded in the same way. Start by declaring two more
 objects before the constructor:

10. Inside the constructor, use the values from the XAML as a guide to assign values to
the properties of the animation. The code for that looks like the following:

105

STORYBOARDS AND ANIMATIONS

11. Once all three s have been defined and added to the storyboard, the story-
board can be added to the resources:

12. As with the previous examples, an event listener and event handler are used to play the story-
board when the event is raised. Inside the constructor, place the following
event listener code:

13. Just after the closing brace of the constructor, add the following code to the event
handler:

Compile and run the program by pressing F5. When you place the mouse pointer over the red ellipse,
the bottom point will move downward.

One of the nuances in working with types is that an animation to return the point to
its starting location does not return the values to 0, as was done in the examples that used transla-
tions. Instead, the points need to be returned to the locations that are specified in the XAML defini-
tion of the object. Here’s the code for the object:

106

CHAPTER 3

Let’s do a quick walkthrough to see what happens when the points are returned to 0,0.

14. Add a second object to the project above the constructor:

15. Inside the constructor, set the target on the storyboard rather than the individual
 objects:

16. Above the constructor, declare three new objects:

17. Assign the same properties used in the s from the storyboard.
Notice that the property for each of the three s has been set to an x,y point
value of .

18. The newly created storyboard needs to be added to the page resources:

19. Finally, an event listener and associated event handler code are created for the
event. The event listener goes inside the constructor:

107

STORYBOARDS AND ANIMATIONS

20. And the event handler code to call the new animation goes outside of the con-
structor:

Press F5 to run the project. Place the pointer inside the RedEllipse object. The bottom point will glide
down as the storyboard plays. Now move the pointer off the RedEllipse object. The
point returns to the specified coordinate of 0,0, which is located at the top-left corner of the Path
object’s bounding box, rather than its starting point on the ellipse (see Figure 3-9).

Figure 3-9. Returning
points to 0,0 via a Point-
Animation

So how do you know which point from the XAML is the right one to use? Each has
three sets of point data that describe the curve. With the reference storyboard for this project and a
bit of detective work, we can identify the corresponding points between the object and those being
modified by the storyboard.

The first in the storyboard has the following :

The s in the object are numbered as follows:

0.

1.

2.

3.

108

CHAPTER 3

21. From the , we know that the animation is working with segment 1, and
needs the coordinates for point 1, which are 44.7715263366699,200 (which we will clean up to
45,200). Update the property for the animation as shown:

22. The animation targets segment 0, point 2, which is located at 155.228469848633,200
(155,200). The animation is updated to the following:

23. The animation targets segment 0, point 3, which is the point 100,200. Updating the
 animation makes the code look like this:

After plugging in those three sets of coordinates and recompiling, the object now behaves as expected
when the event is raised, returning our point to its starting position.

Summary
If you are new to Silverlight, the amount of information that was presented here may be overwhelm-
ing. You can probably see where the visual interface in Blend can be a big help when getting started—
take the time to create some of your own examples to see how Blend works behind the scenes for
you.

Remember that storyboards are just containers for animations, and animations are containers for
keyframes. I talked about the three main types of animations provided by Silverlight— for
manipulating many of an object’s properties; for changing an object’s fill color using a series of
four 1-byte values to represent the alpha, red, green, and blue channels; and for moving the
points that make up paths.

Each animation type has two variations: from/to animations move an object from one position to
another, while animations using keyframes define a series of keyframes that contain positions to which
an object will move. With keyframe animations, there are different methods of interpolating the move-
ment from keyframe to keyframe. Easing functions allow you to utilize predefined mathematical func-
tions to create interesting motions on your objects. Linear interpolation will move an object smoothly
from keyframe to keyframe in a linear fashion. Spline keyframes define ease, which describes how an
object might accelerate or decelerate as it approaches or leaves a keyframe. Discrete keyframes cause
an object to hold the position of the last keyframe until the next keyframe is reached.

We also took a good look at how storyboards and animations can be created entirely with code. This is
useful if you need to create animations on the fly or create a reusable generic function that produces
animations for you.

As you gain some experience with storyboards and animations, you will find that they become easier
to manipulate. In Chapter 4, we will take a look at a variety of animation techniques that make use of
the methods described in Chapters 2 and 3.

111

In this chapter, we’re going to take a little time and look at some ways to animate
objects using the techniques covered already. The projects presented here should
help open the door for you a bit when it comes to thinking through the different
ways to work with objects that you want to include in your own animations.

Converting objects to paths
Any shape object you work with in Blend can be converted to a path. This can be
used if you want to manually deform an object or text outside of the standard
deformations available via the built-in transforms. Let’s take a look at how to go
about converting a couple of text objects to paths and creating some storyboards to
deform them.

Open the ObjectToPath project for Chapter 4. It contains two text elements—one
says TEXT, and the other WARP. Both text elements in this project are currently
TextBlock objects, meaning that the text is currently live and can be edited. Once a
text object has been converted to a path, the text will no longer be editable.

ANIMATION TECHNIQUES

Chapter 4

112

CHAPTER 4

1. Click the TxtText element in the Objects and Timeline
panel, and then Ctrl-click the TxtWarp object so that both
items are selected.

2. Right-click the grouped elements in the Objects and
Timeline panel, and select Path Convert to Path from
the pop-up menu, as shown in Figure 4-1. Blend will con-
vert both text elements to paths and update the Objects
and Timeline list and the artboard. Note that when an
object is converted to a path, its type changes, and Blend
will change the name of the text objects to [Path] in the
Objects and Timeline list.

3. It’s a good idea to rename the two text elements to
something meaningful in order to keep track of them, so
rename the two paths to TxtText and TxtWarp.

4. Create a new storyboard, and move the timeline play
head to 1 second.

5. Select the TxtText element on the Objects and Timeline panel, and press A to change to the
Direct Selection tool. The control points that make up the path will become visible, allowing you
to manipulate them. You can now modify the objects in whatever way you’d like. Figure 4-2
shows a quick-and-dirty bulge deformation.

Figure 4-2. Simulating a bulge deformation on a Path object

Figure 4-1. Select Path Convert to Path to
convert objects to editable paths.

113

ANIMATION TECHNIQUES

Converting objects to paths with the intention of deforming them works well either as a design technique,
or for animation, as we’ve done here. If you’d like to take a closer look at the final animation shown here,
look at the ObjectToPathCompleted project in Chapter 4. is the animated deformation.

One thing you may find helpful when deforming text is to use a tool like Photoshop or Illustrator to
create an image of text deformed in a way you like. You can then add the image to Blend as a back-
ground layer and lock it from selection in the Objects and Timeline panel in order to avoid accidentally
moving it. Once the image is in place, you can move the timeline play head and start moving the
control points for the object.

If you find yourself needing to animate individual letters, it will be necessary to create a text object for
each letter, and then convert each one to a path. After that, the process is the same.

Ghosting effects
Ghosting is an effect that is used in a lot of interactive applications—you click a button or an element,
and a copy of the element scales up and fades out over a second or two. This lets users know that the
action they took was recognized. The effect can also be used when an application first loads in order
to draw attention to a particular part of the interface.

To create this type of effect, a copy of an object is created and hidden. Event listeners on the original
object are used to capture user input. When the desired action takes place on the original, the copy
is unhidden and animated.

The GhostingEffects project contains a TextBlock that mimics an About Us text menu item and a gra-
dient-filled ellipse. When performing this action on a text object, remember that TextBlock objects have
their and properties set to , so any transforms you apply may look as though they do
not originate from the correct center point. To correct this, add an actual value to the and
properties of your TextBlock. In the example project, the text object already has height and width values.

1. Once the project is open, use Ctrl+C and Ctrl+V to copy and paste the TxtAboutUs object in the
Objects and Timeline list. The new object will paste as TxtAboutUs_Copy.

2. Create a new storyboard named , and move the timeline play head to 1.

3. Use the Scale tab on the Transform pane to change both the x and y scale values for the
TxtAboutUs_Copy object to 3.

4. Enter 0 in the Opacity field.

5. Click Play to preview the storyboard. The copy of the text object should scale up to three times
its original size as it fades out.

6. Close the storyboard, and change the object’s visibility to Collapsed on the Appearance pane.
This will effectively hide the object from view until it is needed.

7. To add event listeners, select TxtAboutUs in the Objects and Timeline list, and click the Events
icon. In the MouseLeftButtonUp field, type AboutUs_MouseUp, and press Enter. Visual Studio
should open with the appropriate function already added:

114

CHAPTER 4

8. The code in this event handler will run when the user releases the mouse button on this object.
The event handler code should start by changing the property of the copied object
to . To change the property of an object, call the object followed by the
property, and then specify which visibility setting to use, as shown:

9. Next, the event handler needs a bit of code to play the animation. The storyboard was called
, and you should already know how to make storyboards play from previous

examples.

10. Press F5 to run the project. Click the About Us text, and you should see the animation play. The
action will only work one time, though—why is that?

Behind the scenes, the animation actually does play each time you click. However, you can’t see it
because the first time the animation plays, the value of the object is animated to a value of
0, and is left there when the animation completes. So every other time you click the object, the ani-
mation plays, but the object is totally transparent. This can be fixed by listening for the storyboard to
finish and then resetting the object’s state.

11. In Blend, press F11 to enter XAML view, and locate the storyboard.

12. Attach an event listener to the event for the storyboard that calls a function called
:

13. In Visual Studio, add the new function to the code:

14. Inside that function, add some code to hide the copied text object. This is done by setting the
 property to :

15. Stop the storyboard in order to reset it to the beginning for the next time it plays:

16. Next, reset the for the text object. Remember that in code, values range from
0 to 1.

Now when the project runs, you can click the text element as often as you’d like, and the storyboard
will play repeatedly.

17. Repeat the process for the RedBall object to add the effect there as well. In Blend, copy and
paste the object to create RedBall_Copy.

115

ANIMATION TECHNIQUES

18. Create a new storyboard called and move the timeline play head to 1.

19. On the RedBall_Copy object, set the x and y scale values to 3 and the to 0.

20. Test the animation to be sure it works as expected, and then close the storyboard.

21. Set the of RedBall_Copy to to hide it until needed.

22. Next, add the event listeners to the original object. Select the RedBall element in the Objects
and Timeline list, and click the Events icon.

23. Add an event handler called to the event listener.

24. In Visual Studio, wire up the event just as you did for the text object:

25. In Blend, add a event listener to the storyboard:

26. Finally, add the event handler code to reset the object in the code-behind file:

Press F5 to run the application. Now, you can click either object and see the effect, as shown in Figure 4-3.
Notice that it doesn’t really matter what type of object you are working with—the process is the same for
each. A finalized version of the code shown here is available in the GhostingEffectsCompleted project.

Figure 4-3. Scaling/fading effects applied to a TextBlock and an Ellipse

116

CHAPTER 4

Image effects
Beginning with Silverlight 3, bitmap image effects/filters are available for you to use to create interest-
ing effects. At the moment, Blend includes two—drop shadow and blur—but there are other effects
libraries available online. Let’s take a look at a couple of examples.

Blur
Using the following technique, you can easily create animations that make images appear to pull
focus, or make blurry images come into focus when a user selects them.

Figure 4-4 shows an image of a yellow flower. We will be using the built-in blur effect to blur the
image and then animating the blur when the mouse is placed over the image. For this project, we will
be using event listeners for and to play the necessary animations.

Figure 4-4. An image of a yellow flower that will be blurred with the built-in blur filter.

Open the ImageBlur project from Chapter 4 to follow along with this example. This project already
has the basic structure in place, which consists of the Canvas element and an Image ele-
ment named Flower. The intended action for this project is that when the user moves the pointer over
the image, it will scale up as it comes into focus. When the pointer leaves the image, the image will
scale back down and become blurred.

The effects filters are available on the Appearance pane in Blend. This pane is shown in Figure 4-5.

117

ANIMATION TECHNIQUES

Figure 4-5. Bitmap effects filters
are accessible through the Appear-
ance pane of the Properties panel
in Blend.

1. Begin by selecting the Flower element in the
Objects and Timeline panel, and then click the
New button on the Appearance pane to add a
new bitmap effect to the image object.

2. In the Select Object window that opens, pick the
BlurEffect item, as shown in Figure 4-6.

The flower image will become blurred as the effect is
applied with the default radius of 5. Blend added the
effect for you in the XAML. If you take a look at the
XAML code, you will see that the image now contains
the following code:

You will also notice that the Appearance pane
has changed to reflect the available properties
for the selected effect. In this case, a Radius
field is available, as shown in Figure 4-7.

Figure 4-7. The Radius property of
the blur effect that was added to the
flower image.

3. Create a new timeline called Flower_Enter.

4. Move the timeline play head to .5 seconds.

5. With the Flower element selected, change both the X and Y scale fields on the Transform pane
to 2.

Figure 4-6. To add a blur to an object, select the
BlurEffect item as shown.

118

CHAPTER 4

6. Expand the Flower element in the Objects and Timeline panel, and select the BlurEffect element.
On the Appearance pane, change the Radius value to 0. Note that the Properties pane will
change to show just the miscellaneous properties for the selected effect.

7. Play the timeline. This is the effect that will be seen when the mouse is placed over the canvas.

The only problem is that this storyboard, shown following, is keyframe-based, and the effect works
more smoothly if it is done as a from/to animation.

Let’s change this storyboard so that it is no longer keyframe-based.

8. Use F11 to change to XAML mode, and scroll to the top of the window. I talked about the
differences between (from/to) and in
Chapter 3.

9. To convert between and , change the
animation type from to , delete the

 property, and add and properties. The value to use for this
conversion is the value shown in the ’s . The value for is the

’s Value field.

10. Once the new item is converted, make it self-closing by adding a slash before
the closing bracket: . You will also need to delete the and closing

 tags.

While all this may sound like a lot of complex work, it’s not too difficult and only takes a moment
before the previous storyboard listing becomes the following:

119

ANIMATION TECHNIQUES

This also makes it super-easy for us to create the storyboard, because it does the exact
opposite action of the storyboard.

11. While still in XAML view, copy and paste the storyboard. Change the storyboard
name to .

12. Change the values in each of the three animations. The property for both the and
 transforms become , and the property for the Flower element’s blur radius is 5.

That’s it, the second storyboard is done!

All that’s left for this project is to create some event listeners and event handler code. The event lis-
teners will be placed on the Flower element.

13. Switch to Design view in Blend, and select the Flower object in the Objects and Timeline list.

14. On the Properties panel, click the Events icon, and in the MouseEnter field, type Flower_
MouseEnter. Blend will open the code-behind and create the empty event handler code for
you. Modify the event handler as shown:

15. Repeat this process to add the event listener to the Flower object. For the
 event, the event handler is called .

120

CHAPTER 4

16. Add code to play the storyboard, shown here:

You can now run the project to see the result. As you move the pointer over the image, it will scale up
slightly and come into focus. Moving the pointer off the image will cause the image to scale down and
go out of focus. The ImageBlurCompleted project contains all the code shown here.

Drop shadows
Like the blur effect, drop shadows are added to objects from the Appearance pane in Blend. Drop
shadows have been around forever, and everybody has seen this type of effect—a button or an image
has a drop shadow, and when the object is clicked, it looks like it is pressed because of the change
between the object and shadow. When the mouse button is released, the image pops back up. The
description I just gave should clue you in as to which events you will need to use:
and . To follow along with this example, open the DropShadows project.

Once again, the project contains just the Canvas and an image element named Flower.
Let’s start by creating the drop shadow effect for the image.

1. In Blend, select the Flower element from the Objects and Timeline panel, and then click the New
button on the Appearance pane on the Properties panel.

2. When the Select Object window opens, select the DropShadowEffect item, and click OK. A default
drop shadow effect will be added to the Flower object. Once again, the Appearance pane will
change to reflect the available properties for the selected effect, as shown in Figure 4-8.

Figure 4-8. The properties
available for a drop shadow

3. On the Appearance pane, enter 10 for BlurRadius, 7 for ShadowDepth, and .6 for Opacity.

4. Change to Split view, and take a look at the XAML that Blend created for you. It looks like the
code shown following:

5. We will need to access the properties of this drop shadow from the code-behind, so add a
name property to the code by modifying it as shown:

121

ANIMATION TECHNIQUES

6. For this effect, we will create our movement without storyboards. Select the Flower element
in the Objects and Timeline panel, and then select the Events icon in the Properties pane. In the
MouseLeftButtonDown field, type Flower_Down.

7. Blend will open the code-behind with a placeholder event handler for you. Edit the event han-
dler so it looks like the code shown following. This code is used to move the Flower element to
the right 7 pixels and down 7 pixels; this is the size of the shadow’s property and
will make the image move when clicked. The last line of the event handler effectively hides the
drop shadow by changing the property to 0.

8. Select the MainControl.xaml tab at the top of Blend to switch back to the XAML file. The Events
properties pane should still be open. In the MouseLeftButtonUp field, type Flower_Up. Once
again, Blend will switch to the code-behind and create an event handler for you.

9. As you might expect, the code for the mouse up event does the exact opposite as the code for
the mouse down event. Edit the event handler to look like the code shown following. This code
moves the flower image back up and to the left 7 pixels and makes the drop shadow visible
once again by setting the Opacity property to .6.

10. Press F5 to compile and run the application. You should see the flower drawn and be able to
click it with the mouse to see the effect in action. One thing you may notice as you work with
the application is that if you mouse down on the image and drag the mouse off the image
before releasing the mouse button, the mouse up event handler doesn’t seem to work. Two
small lines of code will correct this problem, so close the browser window to return to Blend.

11. Blend should still have the code-behind file open for editing. If not, double-click the file in the
Projects pane to open it. Inside the event handler, add the following line of code
at the top of the handler:

12. At the top of the handler, add the following line of code:

122

CHAPTER 4

The code added in step 11 lets Silverlight know that we want to continue using mouse input for the
selected object, even if the mouse is no longer on that object. The code in line 12 lets Silverlight know
it’s OK to stop taking input for that object. If you press F5 to run the project again, you will see that
you can now mouse down over the object, move the mouse elsewhere, and release the mouse—you’ll
still get the expected result, which is to have the image pop back up and the drop shadow reappear.

The code described in this example is available in the DropShadowCompleted project for Chapter 4.

Creating custom, animated cursors
We haven’t talked much about cursors, so let’s do a quick overview before looking at how to create
custom animated cursors. All the objects used in your Silverlight applications currently have eight
cursors to choose from, plus the ability to turn the cursor off altogether—Arrow, Eraser, Hand, IBeam,
None, SizeNS, SizeWE, Stylus, and Wait. In order to change the cursor that is displayed for an object,
you simply add a property to the object, and specify the type of cursor you would like dis-
played when the pointer is over that object, like this:

The default cursor for all objects is Arrow, so when a cursor is not specified, it will be an Arrow. This
means that both of the following XAML snippets will produce an identical red ellipse that has an
Arrow cursor when the pointer is over the object.

The display of cursors is hierarchical and inherited—if an ellipse with no cursor specified in the XAML
is placed within a canvas that has the cursor set to , no cursor will be displayed. However, if the
ellipse is given a cursor property of , the pointer will display an Arrow when over the Ellipse
object. Alternatively, if the Canvas object has set to , the cursor will display
normally.

When working with cursors, just associate them mentally with the and events
for an object, and you should have no problems with their hierarchical nature. Anywhere a
or event can be raised, cursors can be controlled.

With that said, animated cursors aren’t really cursors as far as Silverlight is concerned. To make custom
cursors, the actual cursor for an object is hidden by setting its property to . A custom object is
then built that will become the cursor, and it can even have animations associated with it. Then a bit
of code is used to attach the object to the mouse location via the event.

Take a look at the AnimatedCursors project to follow along with this example. It contains a duck, an
ellipse, and two objects that will be turned into custom animated cursors each in its own canvas—one
is an arrow, and the other is a simple crosshair.

1. We’ll start with the arrow. Create a new storyboard called .

2. Move the timeline play head to .5 seconds. Select the Arrow object inside the CurArrow
Canvas.

3. Use the Direct Selection tool to select the two points at the bottom of the arrow shape, and
move them to the right 10 pixels.

123

ANIMATION TECHNIQUES

4. Move the timeline play head to 1.5 seconds, and move the same two points left 20 pixels.

5. When you click Play, the tail of the arrow should swing right, and then back to the left.

6. We want this animation to play constantly. Select the storyboard by clicking the ArrowCursor
name in the storyboard list. The Properties panel will change to show the available properties
for the selected object.

7. Place a check in the AutoReverse check box, and from the RepeatBehavior select box, choose
Forever, as shown in Figure 4-9.

Figure 4-9. The Common
Properties pane for a
Storyboard object

8. Change back to Design view.

With the Arrow object inside the CurArrow Canvas still selected, the artboard will show the object and
its bounding box. At the moment, both the object and its container canvas are the same size. Thinking
ahead to our implementation, our custom cursor will be attached to the mouse pointer at the top-left
corner. To ensure that our pointer is accurate, we want to rotate the arrow within the canvas so that
the point of the arrow is right at the top-left corner of the canvas container.

9. With the arrow selected, enter a rotation value of –35. You’ll get a result something like the
one shown in Figure 4-10. It’s rotated correctly but not yet positioned where it needs to be.

10. A slight adjustment to the and properties will place it in the right spot. –2 left and –3
top should place the tip of the arrow right at the corner of the canvas, as shown in Figure 4-11.

Figure 4-10. The arrow path is rotated within Figure 4-11. The arrow path after being
 a container canvas. repositioned within the container canvas

Earlier in this chapter, I talked about the flag and how it can be used to hide an
object from the mouse when the pointer is positioned over it. In this case, when the pointer enters
the Ball object’s bounds, we are going to display another object at the mouse’s location. Because the
custom cursor is an object, and will always be located under the pointer location, it will always be
hit-tested as .

124

CHAPTER 4

11. To avoid conflicting hit tests between the object using the custom cursor and the cursor itself,
we want to set the flag to for both the CurArrow Canvas and the
Arrow object. The check box to change this flag is located near the bottom of the Common
Properties pane on the Properties panel. You may need to expand the pane to see it. If you forget
to set this flag, you may get some undesirable behavior when the custom cursor is displayed.

12. Once you have set each object’s flag to , select the CurArrow object,
and change the property to to hide it from view until needed.

13. Select the Ball object from the Objects and Timeline list and use the Common Properties pane of
the Properties panel to select None from the Cursor drop-down. The object is now set so that
when the pointer is placed over it, no cursor will appear. If you run the project at this point,
you can confirm that as the pointer enters the ellipse, the cursor will disappear.

14. With the ball still selected, add an event listener for , and call the event handler
. Visual Studio will open and create the shell of the event handler for you.

15. Inside the handler, add some code that will place the custom cursor object at the current
mouse position, begin the animation for the cursor, and then display the cursor:

16. Create a event listener that will call an event handler called
when raised. Inside this event handler, we want to hide the cursor and then stop the animation
that is associated with it.

At this point, placing the pointer inside the ellipse will display the custom cursor and its animation,
while moving the pointer out of the ellipse will hide the cursor and stop the animation. All that’s left is
to position the cursor at the current mouse position as the mouse is moved inside the Ball object.

17. Add an event listener to the event for the Ball object. The event handler should be
called . This is an event that will fire continuously while the mouse is moving
inside the Ball object. In order to place the custom cursor in the right spot, get the mouse position
from the arguments passed to the event handler, and then place the cursor at that location.

125

ANIMATION TECHNIQUES

18. That’s all there is to it. Run the project. When you place the mouse over the Ball object, the
cursor will change to the custom, animated arrow.

For the other object in the project—the Duck—we want to do the same thing using the crosshair cur-
sor. Rather than work through this one step by step, let’s just touch on a couple of things you need
to keep an eye on. To follow along with the code, look in the AnimatedCursorsCompleted project.
While the concept for the duck is identical to the ball, the technique is a little bit different, because
unlike the Ball object, the duck is a collection of paths inside a container canvas.

If we try to use the Canvas to capture the , , and events, we’ll run
into two problems. First, events won’t register on the Canvas, because it has no fill brush, and is there-
fore invisible to the mouse. If the Canvas is given a fill color with an alpha value of 0 to make it visible
to the mouse, the Canvas will register events, but bring us to the second problem. The mouse events
will be raised any time the pointer enters the canvas. Since the object does not fill the entire
canvas, the cursor will show at inappropriate places, as shown in Figure 4-12.

Figure 4-12. Make certain to attach the event listeners to
the appropriate objects when using custom cursors; other-
wise, the cursors may show up in unintended places.

The best way to handle this is to attach the event listeners to the path or paths that make up the
object itself. In this case, the paths that form the duck’s body and bill are adequate. Remember to turn
off for the wing, collar, and eye. This will allow the event listeners for the body to
bubble up to the top.

Using clipping paths
In Silverlight, clipping paths allow you to take one shape and use it to clip another. The overlapping
area remains visible, while the rest of the clipped object is hidden from view. I have found that a great
way to make use of clipping paths is to apply them to a container object such as a Canvas. Then, as
objects are added to the canvas, they can be positioned outside the boundaries of the canvas to keep
them hidden, or inside to bring them into view. You can also position objects within a clipped canvas
to display only parts of an object, such as a formed media element in a video player.

There are three ways to create clipping paths. The first is from the code-behind file. Since we’ll be
working with clipping paths specifically in Blend, we won’t be going into code-based clipping paths
here.

The second method is to select an object you want to clip on the artboard in Blend and then Ctrl-click
a second object.

126

CHAPTER 4

By then right-clicking the grouped objects in the Objects and Timeline list and selecting Path Make
Clipping Path from the pop-up menu, the second object will clip the first. This operation adds a
property to the XAML object, as shown here:

The third way to go about creating a clipping path is to add a clipping region to the XAML directly.
Functionally, the following code is exactly the same as the preceding code, only it is a little easier to
read and figure out what the code is doing. Both of these code snippets will create a 320 240 canvas
that is clipped. Any objects placed on the canvas will show, while those objects that lie outside of the
canvas bounds will be clipped, as illustrated in Figure 4-13.

Figure 4-13. Only the parts of an object inside the bounds of a clipping canvas will show.

Clipping paths are not limited to Canvases and Rectangles—you can clip any object with Rectangle,
Ellipse, Line, or Path geometry. Of course, they can also be animated; otherwise, there’s little need to
include them in a book about animation, right?

127

ANIMATION TECHNIQUES

Let’s take a look at how we can break apart a larger image into 16 equal parts. From a clipping path
perspective, one problem is that only a single clipping path can be applied per object. This means that
to make a mosaic of an image, we will need 16 Image objects, each with a clipping path defined that
will allow a different part of the image to display. The ClippingPaths project contains just such a setup
for you. While it looks like a single image on the artboard, there are actually 16.

The quickest way to do this is to copy and paste the XAML, adjusting the clipping paths as you go
along.

1. Switch to XAML editing mode, and locate the first Image object, named Row0Col0. It starts on
line 14.

2. To add a clipping path to the first Image object, add the following code:

This creates a visible “window” over the image that starts at 0,0 and is 80 60. For each clipping path
across the row, you want to locate the clipping region 80 pixels over from the previous one.

3. To create the second object, copy and paste the first item, change the name to Row0Col1, and
adjust the clipping path to start at 80,0:

128

CHAPTER 4

4. The third item, row 0 column 2, has a clip of 160,0; 80,60. See the pattern here? The code is
creating an 80 60 window for each object, and you’re just moving the window around.

5. Add the fourth item (row 0 column 2) with a clipping path of 240,0; 80,60, as shown:

Once the first row is done, you can copy and paste the whole row, rename the elements, and change
the second value of the clipping region to 60, since you want to clip the next row of the image starting
at 60 y. Here’s what row 1 column 0 looks like:

The third row is at 120 y, and the fourth row is at 180. Once you’ve finished all four rows, you will
have what looks like a single image but is really 16 parts. You can now create a timeline that ani-
mates each of the 16 parts to blow apart the image. The ClippingPathsCompleted project has an
example storyboard in it that you can take a look at. Just run the project and click the main canvas
to see the animation. In addition to animating objects that have clipping paths applied to them, you
can animate the points that make up the clipping paths themselves. This allows you to create some
interesting effects such as wipes or reveals. To animate a clipping path, create a new storyboard, select
the clipped object, and then click the Direct Selection tool. Clipping paths are drawn in red on the

129

ANIMATION TECHNIQUES

artboard, and they have white control points; note that the clipping path is only visible when in Direct
Selection mode.

If an image is placed behind the image mosaic constructed from clipped regions, the clipped regions
can be animated to look as though they are peeling back, creating a sort of checkerboard effect. I’ve
provided an example of this type of effect in the AnimatedClippingPaths project for you to take a
look at. Clicking anywhere on the application will start the animation for you.

You’re probably asking yourself, “Why go about doing it this way? Why not just go into Photoshop
and slice up an image there?” You certainly have the option of doing that. It takes more work to reas-
semble the image that way, but the key reason to do it this way is because it’s reusable. In both of the
example projects, only a single image file was used. If you want to change the effect out, all you need
to do is change the image name that is being used.

If you wanted to make it even easier to change images, you could set all the image source attributes
to empty strings (), add the image to your project in Visual Studio or Blend, and use code to assign
the image name across all the elements being used. In this way, you could create slideshow or video
effects, transitions, and so on. If you took an image and physically cut it into 16 or more parts, you
would create a lot more work for yourself because you would need to cut up each image you wanted
to work with.

Creating user controls
Before digging into the next two topics, I need to take a moment and talk about user controls. When
I say “user control,” I’m not referring to elements such as buttons or check boxes specifically, though
those are examples of user controls. I’m referring to them more as a general method we will be using
to add objects to a project.

To this point, the majority of projects we’ve looked at have had the object just added to the main
XAML file in the project, called . Moving forward, what we will be doing is adding
objects as their own unique XAML file, each of which will have its own code-behind file. This makes
working with the objects programmatically much easier—creating copies, or instances, of an object
takes only a few lines of code. More importantly, adding functionality to an object becomes relatively
easy—you add code to the base object, and any copies of it anywhere in your project will immediately
gain the same functionality. The best part is that user controls are really
easy to add.

1. Open the MakeUserControl project to follow along with this sec-
tion. It contains an ellipse named EllipseElement.

2. There are two ways to add user controls within Blend. The first is
to select an object on the artboard or in the Objects and Timeline
list, right-click, and select Make Into UserControl, as shown in
Figure 4-14. Try this out with the EllipseElement item.

3. The Make Into UserControl dialog will open and prompt you to name
the new control. For this example, use the name EllipseControl,
and then click OK. Blend will open the new control for editing in
a new tab on the artboard.

Figure 4-14. Any object in
Blend can be turned into a
user control.

130

CHAPTER 4

4. By default, the new control is placed into a Grid layout container that has a white background.
Change the background color to No Brush, and save the project.

5. Select the MainPage.xaml tab at the top of the interface to return to that file for editing. You
will see that the control is currently not visible because of the change you made. Press
Ctrl+Shift+B to rebuild the project, and the ellipse will be redrawn. That’s all there is to it. The
new user control you created from an existing item is built and ready to be used.

The second method for creating a new user control is to build one from scratch.
If you examine the Project tab in Blend, you will see a list of all the files associ-
ated with this project.

6. Right-click the project name (MakeUserControl), and add a user control
by selecting Add New Item, as shown in Figure 4-15.

7. Blend will open the New Item dialog box, which allows you to create a new
user control. Type RectangleControl, and click OK. Once again, Blend will
open the control on a new tab. This time, the control is blank, since it was
not created from an existing object.

8. Verify that the background color of the element is set to No
Brush, and make the size 200 200.

9. Add a 200 200 blue rectangle named RectangleElement to the
element and save the project.

10. When you return to the MainPage.xaml tab, you will see that the Rectangle
control has not yet been added to the artboard. Press Ctrl+Shift+B to build
the project.

11. The new control will become available to you on the Assets pane, or in the Asset Library, which
can be accessed through the toolbox, as shown in Figure 4-16. Expand Controls, pick All, as
shown, and then scroll through the controls list until you find RectangleControl.

Figure 4-16. The Asset Library contains all the controls available to your project.

Figure 4-15. In Blend,
right-click the project
name, and select Add New
Item to create a new user
control.

131

ANIMATION TECHNIQUES

12. Selecting a control from the Asset Library will add an icon to the toolbox that you can use to
add the control to your project. Select the RectangleControl object from the asset list. Once the
icon shows up in the toolbox, double-click it. A new 200 200 blue rectangle will be added to
the artboard.

This turns into a lot of fun when the controls are added programmatically, because each instance of a
control exists in its own space and can have its own color, size, and so on.

13. On the Project tab, right-click MainPage.xaml.cs, and select Edit in Visual Studio from the pop-up
menu.

In Visual Studio, we’ll add an instance of this custom control in the same place as variables—just above
the constructor. Each instance that we create is a copy of the original object, but each
copy has its own set of unique properties. Once an object instance has been declared, it is available for
use in the application. To make it visible within the application, it must be added to the
Canvas. This is done by calling the method for .

14. Just above the constructor, add the following code to declare an instance of the
Rectangle object:

15. To add the user control to the Canvas, add the following code inside the
constructor, just after the line:

Now the rectangle will be displayed on the canvas when the project runs.

16. A second instance is equally simple to add—create an object called and add it to
the canvas.

17. This time, we’ll add a little code to modify the object a bit. Because we named the elements
that make up the user control, they are easy to access from code by referencing the object
name and then the member name. In the case of , we want to place the rectangle at
400,200. To do this, add some code before the rectangle is added to the canvas:

This code tells Silverlight to position the object so that it is 400 pixels from the left of the
canvas in which it is being placed, and 200 pixels down. Be careful to use values when setting
properties or the project may throw an error.

Our object is called , so it should probably be green. If you recall when you created the
object, you named the rectangle inside the user control RectangleElement. This is the object you want
to target when changing properties, and it is accessed through the object as

. Since we want to change the fill type/color, the code becomes
. From there, it becomes a matter of assigning a to the

property.

18. Add the following code to the project to change the fill color of the object:

132

CHAPTER 4

19. Add the object to the collection of the element with the fol-
lowing code:

You can compile and run the project to see the results, which should be pretty close to those shown
in Figure 4-17.

Figure 4-17. The UserControlsCompleted project creates two instances from a single Rectangle user
control.

You have now created two instances of the same base object. Even though both objects are derived
from the same base object, they look different. You can create as many instances of an object as you
would like, and each one can have its own unique properties! The MakeUserControlCompleted proj-
ect has a function in it called that will generate a group of rectangle objects all
with different colors. The comments in the project explain what you need to do to use the function.

Implementing drag-and-drop
Drag-and-drop is ubiquitous—people expect to be able to open an application and move things around.
If you’re coming over from Flash, you will find that drag-and-drop operations using Behaviors in Silverlight
are actually easier to implement than those in Flash. To understand what drag operations actually do,
we’ll start by looking at how they are implemented via code. Open the DragAndDrop project to follow
along with this example. If you open the project in Blend, you won’t see much—it contains the layout
canvas and the Rectangle user control created in the previous section of this chapter. The rectangle is

133

ANIMATION TECHNIQUES

instanced three times when the project runs, with each instance being positioned and filled randomly.
What we are about to do is to add the drag-and-drop functionality described in Microsoft’s Silverlight
documentation to the base control, which will then enable drag-and-drop for all three instances of the
object.

1. If you’re in Blend, use the Project tab to locate the code-behind for the
 file. It’s called .

2. Right-click and select Edit in Visual Studio. The code-behind for this object looks just like the
code-behind for the file, only here you are coding behaviors that will be spe-
cific to this object.

3. The first two things we will need are a Boolean value to determine if the selected object is
being dragged, and a object that will be used to help determine the offset between the
selected object’s current location and the mouse pointer location. These variables are consid-
ered private because they belong to the Rectangle user control, so they will not be accessible
from the main code-behind file. These are placed above the
constructor:

4. Next, we need to register three event listeners inside the function. We
will need to know when the mouse button is pressed, when the mouse is moving, and when
the mouse button is released. Notice that we’re using the keyword to wire up event lis-
teners rather than an object name. When is used, it tells Silverlight that the code refers
to this object. Since all this code is placed within the , always refers to

.

In the mouse down event handler, the selected object is the sender passed to the function. This
function sets up a reference to the sender as . The position of the mouse is then stored, and
the Boolean flag indicating whether or not dragging is occurring is set to . The
method ensures that while the mouse button is down, any events being raised are exclusively owned
by the selected object, even if the pointer goes outside the bounds of the object. Finally, the object’s
cursor is changed to a hand.

5. Add the following code to the event handler:

134

CHAPTER 4

While dragging is occurring (the mouse button is down and the mouse is moving), the code in the
event handler once again creates a reference called to the sender object before checking to see
if a drag is in process. If so, the difference between the stored mouse position and the current mouse
position is applied to the selected object. Once the object has been moved, the stored mouse position
is updated for the next time the function is called. As the mouse is moving, this function is executing
repeatedly—calculating the mouse position, moving the object, and getting the current mouse posi-
tion again for the next time through.

6. Add the following code that contains the functionality described previously to the
event handler:

When the mouse is released, the sender object is once again captured as , and the Boolean flag
used to determine that a drag operation is in progress is set to . Mouse capture for the selected
object is released, and the variable is cleared. Finally, the selected item’s cursor
is returned back to whatever the default value is. In this case, the cursor is not defined in the XAML,
so the default arrow will be displayed.

7. Add the following code to the event handler to add the functionality
described:

135

ANIMATION TECHNIQUES

If you now run the project, you will see that even though you only wrote drag-and-drop code once,
you can drag and drop any of the three Rectangle user controls. Notice that when the selected rect-
angle passes behind another, you do not lose control of the drag operation. This is the result of using
the method.

If you wanted to augment the code so that the selected object is always on top, you could add a func-
tion that would manipulate the Z-index for each of the objects, setting them all to 0, for example,
except for the selected object, which would be set to 1.

One of the nice things about this bit of code is that it’s generic. You can place the ,
, and handlers’ code in any user control hosted in a canvas, or place

it in the main code and call it from any object, and it will enable dragging. This means that once you
have it coded up, it’s as simple as copying and pasting a bit of code, and hooking up the event listen-
ers for the object you want to be able to drag and drop. The completed example project is saved as
DragAndDropCompleted.

Behaviors
One feature of Silverlight you may find very useful when you’re going to need to reuse bits of code
often is called Behaviors. Behaviors allow you to define a bit of code and apply the code to an object
in Blend with a simple drag-and-drop operation. As you can imagine, this can shorten development
time dramatically but also creates a situation where Behaviors can be shared. Over time, the library of
available Behaviors will likely increase significantly, meaning you will be able to gain more and more
interactivity with less and less time. There is a lot more to Behaviors than what we’re going to discuss
here, so take some time to learn more online. For our purposes, we’re going to take a look at how to
convert some code into a Behavior.

Let’s take the exact same code we just used for the drag-and-drop project and create a Behavior out
of it. Blend includes a drag-and-drop Behavior out of the box, but you may find it useful to see how to
convert code into one. To code along with this example, open the DragBehavior project. The project
contains two objects, a blue rectangle and red circle. If you press F5 and run the project, you will see
that neither of the objects does anything or interacts with the mouse.

1. Create a new behavior by right-clicking the project name, DragBehavior, in the Project pane
and selecting Add New Item.

2. When the New Item dialog opens, select Behavior from the list of options. In the name field,
type myDrag.cs, and click OK. Blend will open a new code window showing the
behavior class file. In addition, Blend adds a reference to the

 library to the project.

3. At the top of the class file is the code that declares the public class. By default, the class
inherits from . To gain access to mouse events, edit the code as shown
following. This will extend the class from .

136

CHAPTER 4

4. Now, we can generalize and add the drag-and-drop code we used in the previous example.
While I won’t go over each line of code here, there are a couple of notable changes. The first
is the addition of two variables at the top of the class. The first one is used to determine which
element the behavior is attached to, and the second is used to determine the parent object.

For reference, the full class listing is shown following. Take note of the fact that the constructor for the
class has been removed. The code in the method is called when the behavior is attached
to an object.

5. With that said, here is the full code listing for the class. You will notice that aside from being
generalized, the code is identical to the drag-and-drop code you used earlier. Add the follow-
ing code to your file, and then save the file.

137

ANIMATION TECHNIQUES

6. With the behavior added, all that’s left is to make use of the code you just wrote. Click the
MainControl.xaml tab at the top of the interface to switch back to the XAML file. To utilize your
behavior, begin by pressing Ctrl+Shift+B to build the project. Then, click the Asset Library icon
at the bottom of the toolbox or the Assets pane. Select Behaviors. You should see the myDrag
behavior, as shown in Figure 4-18.

7. To use myDrag, simply drag the icon from the Asset Library or Assets pane, and drop it on an
object on the artboard. You can use the behavior on as many objects as you’d like.

138

CHAPTER 4

Figure 4-18. Blend automatically placed the myDrag behavior on the Behaviors tab
of the Asset Library.

This wraps up our quick-and-dirty look at behaviors. As you can probably tell from the example, they
are very powerful and not very time consuming to produce. If you’d like to take a look at the code dis-
cussed in this example, I’ve included the completed code in the DragBehaviorCompleted project.

Frame-based animation sequences
I’ve talked a lot about how to make things move, but haven’t spent a lot of time dealing with actual
frame-based animation. This is the kind of animation that comes to mind when you think of how clas-
sic animation is created. A series of frames is drawn, each one slightly different. As you flip through the
frames, the slight changes from frame to frame create the illusion of motion. Depending upon your
approach to using Silverlight, you have a few choices in how you decide to implement your own frame-
based animations. Because of the flexibility, we will explore three different ways to create frame-based
animations.

Let’s begin by taking a look at the character we’ll be animating. Figure 4-19 shows a series of poses
for a duck. In the first pose, the wings are up. The second pose shows the wings in mid-flap, and the
final pose shows the wings down. To make the flap animation, we’ll create an animation that moves
forward through the frames, then moves backward, and then repeats.

Figure 4-19. The duck poses that will animate into a wing flap cycle

139

ANIMATION TECHNIQUES

This is one of those situations where having an illustrator or animator handy is useful, because getting
the motion to look right if an animation is longer than a few frames can be a little tricky.

The first method for creating frame-based animations is done entirely with a storyboard. This tech-
nique is great if you’re a designer or just prefer to stick entirely to Blend to create your applications.
In your project, you create a new user control that will be the animated item. In the user control, a
Canvas container is created, into which the poses for the action you’re creating are placed. Since most
objects are made up of many paths, it makes organization easier to place each pose inside of its own
descriptively named canvas.

Open the DiscreteFrameBasedAnimation project to build this example. The project contains the
 file, as well as a user control that is in the file. Open the

 file and take a look at how the object is organized. There is a main container canvas named
, inside of which are three more canvases, each of which contains a pose for the

duck. The canvas has the duck with its wings up—the leftmost pose shown in Figure 4-20. The
WingsMid pose is shown in the center, and WingsDown is on the right. The poses are spaced equally
horizontally.

1. Click the DuckFlyingPoses canvas. Notice how the canvas is just large enough to contain a
single duck pose—in this case, the WingsUp pose.

2. Create a new storyboard named , and move the play head to .3 seconds.

3. In the Objects and Timeline list, click WingsUp, and then Ctrl-click WingsMid and WingsDown. All
three poses should be selected.

4. On the Transform pane of the Properties panel, type –300 into the X field. All three poses will
slide to the left 300 pixels.

5. Move the play head to .6 seconds.

6. With all three poses still selected, enter –600 into the X field on the Transform pane.

7. Play the animation.

Not quite what you expected, right? All three duck poses simply slide to the left, and you’re wonder-
ing if you missed something in the instructions. It’s doing what it’s supposed to—we’re not quite done
yet!

Currently, the animation is at a point where the duck’s wings started in the up position, pushed
through the mid position, and are now at the down position. To complete the flap cycle, we need to
work back through the poses in the opposite direction.

8. Move the timeline play head to .9.

9. Enter –300 into the X field on the Transform pane.

10. Move the timeline play head to 1.2 seconds.

11. Enter 0 into the X transform field. The canvases will be back in their original positions at this
point.

At this point, playing the timeline will continue to give you some unexpected results, as the duck poses
simply slide back and forth along the x axis. In fact, it doesn’t look much like the duck is flying at all.

140

CHAPTER 4

What we need to finish off our animation is a tool that can help us change between poses only when
a keyframe is reached, rather than smoothly interpolating the motion between the frames like we’re
currently seeing.

Are you with me here? The tool we need is the reliable discrete keyframe that we discussed earlier.
Remember that discrete keyframes hold their position until the next keyframe is reached, at which
time the object being animated jumps to the position in the next keyframe.

12. To change the type of keyframe being used to a discrete keyframe, hold down the Ctrl key, and
click all 12 of the keyframe markers on the timeline.

13. With all the markers selected, right-click and select Hold In from the pop-up menu, as shown
in Figure 4-20. Alternatively, you could switch to XAML mode and edit the storyboard by hand
to use rather than . Either way, once the
change has been made, playing the storyboard again has it looking a little more like what we
were expecting—the poses jump from keyframe to keyframe rather than sliding. We’re almost
done!

Figure 4-20. Change the keyframes in the animation so that they become DiscreteDoubleKeyFrames.

The last thing needed to finish off this particular animation is a clipping path applied to the
 Canvas in order to hide the poses that are positioned outside of the main canvas.

Assuming the canvas was sized appropriately prior to having the poses added, this is easy to do.

14. Close the storyboard.

15. Click the DuckFlyingPoses Canvas to select it.

141

ANIMATION TECHNIQUES

16. The Canvas is 257 130. Double-click the Rectangle icon in the toolbox to
add a rectangle to the project.

17. In the Width field on the Layout pane, enter 257. For Height, enter 130. The new rectangle now
covers the canvas, as shown in Figure 4-21.

18. With the rectangle selected in the Objects and Timeline list, Ctrl-click the DuckFlyingPoses
Canvas so that both are selected.

19. Right-click the selected group and choose Path Make Clipping Path from the pop-up menu.

Figure 4-21. Create a clipping region over the container canvas to hide the poses that are not in view.

Now when the storyboard is opened and played, there is a nice flapping animation.

20. The animation seems a little slow and needs to be sped up a bit. Switch to XAML view and
scroll up to find the storyboard. Add a property to the storyboard and set it to play
the storyboard twice as fast as it does by default. You can go up or down with the
value depending upon what you need to do with your animation. For now, will
do.

21. We also know that this will be a repeating animation, so add a property to the
storyboard as well. At this point, the opening tag for the storyboard looks like the following:

The duck is flying and looks pretty good in Blend, but how do we put it to work in our application?
All that’s necessary is to create an instance of the user control, add it to the root canvas, and start
the animation. We’ll start the storyboard in the user control. Every time the duck is added to an
application, it will begin flapping automatically.

142

CHAPTER 4

22. Press Ctrl+S to save the project. On the Project panel in Blend, expand so you can
see the file. Right-click Duck.xaml.cs, and select Edit in Visual Studio.

23. Just after the line, add . This line tells
Silverlight to start the storyboard each time a object is instanced. The
keyword always means “this object”—since we’re calling from inside the

 object, saying tells Silverlight to play the animation for this
object.

24. Next, open the file for editing in Visual Studio.

25. Just before the constructor, create an instance of the object called

26. Because this duck isn’t moving relative to the underlying canvas, it needs to be positioned
where we can get a good look at it—200,200 seems like as good a spot as any. Place the fol-
lowing three lines of code after the code. This will position the duck
at 200,200, and add it to the Canvas so that it is visible within the application.

Press F5 to compile and run the program. You should get a white canvas with the duck flapping away.
Want another duck that’s not working quite as hard? No problem! Keep working in the

 file.

27. Create a new instance of the user control:

28. To separate the ducks a bit, position this one at 300,300. Before adding it to the canvas, how-
ever, tell Silverlight you want the animation of to have a of ,
meaning that this duck will flap one-half as fast as the first duck.

Now when the project runs, there are two ducks: one is flapping frantically, while the other takes her
sweet time.

What’s that? Now you want a whole flock of ducks? No problem!

29. Start by declaring a random number generator above the constructor.

143

ANIMATION TECHNIQUES

30. Create a function that accepts an integer argument and uses it to generate the specified num-
ber of ducks. Here, the ducks are placed at random positions and given a random flap speed
between 1 and 3.

31. To call this function and use it to create 20 ducks in addition to the 2 we already have, add the
code to the constructor. Changing the number inside the paren-
theses will change the number of ducks that are added to the application.

The full code for this project is in the DiscreteFrameBasedCompleted project. There are some com-
ments in the code that explain how to enable the function shown previously so you can
see it in action.

Animation with the Visual State Manager
The next technique we’ll look at for working with frame-based animations uses the Visual State
Manager. This tool can be used very effectively for frame-based animations—it provides a quick-and-
easy visual tool with which you can quickly set up an animation cycle. The interface for the Visual
State Manager available in Blend allows you to take a series of objects and create snapshots of their
properties. Once the snapshots have been created, code can be used to flip through them, giving the
illusion of animation.

The setup for this method is a little bit different than the last. We will once again be working with
the duck poses from the previous example, but in the last example objects were spread horizontally,
and then flipped through via keyframes. This time, we want all the duck’s poses piled on top of one
another. The main hierarchy of objects is still the same—there is a Canvas called ,
and three Canvases inside that. Once again, the container canvases are called , , and

. Figure 4-22 shows the base setup for the project.

144

CHAPTER 4

Figure 4-22. When using the Visual State Manager for frame-based animations, all the poses are aligned directly
on top of one another.

Open the VSMFrameBasedAnimation project to follow along with this example. The Visual State
Manager is accessed on the States panel, which is located to the left of the Objects and Timeline panel
when your workspace is set up for animation. In the default design workspace, the States panel is
located on the left side of the interface, above the Objects and Timeline panel, and alongside the
Projects panel.

1. With the VSMFrameBasedAnimation project open, open the file for editing. Create
a state group by clicking the Add State Group button located at the top right of the States panel,
as shown in Figure 4-23. The new state group will automatically be added to the pane.

Figure 4-23. Use
the States panel

to add named
snapshots of

objects.

145

ANIMATION TECHNIQUES

2. As soon as the group is added, the name is selected by default, so you can begin typing to give
the newly added state group a unique name right away. Type WingFlap. The state group is a
container. The group is now created but does not yet contain any state definitions.

3. To add a state to the state group, click the Add State icon, shown in Figure 4-24.

Figure 4-24. Use the
Add State button to
save snapshots of
your object’s proper-
ties.

4. When you click the Add State icon, the interface in Blend will change to State recording mode,
and a new state will be added to the selected state group. Name the first state in the duck
project Up.

5. Expand the DuckFlyingPoses Canvas in the Objects and Timeline list, and select both the WingsMid
and WingsDown poses.

6. On the Properties panel, set the Visibility to Collapsed. Only the WingsUp pose will now be
visible on the artboard. A snapshot of the user control was just created that uses XAML to
describe how this view of the user control now differs from the original state of the object. In
this case, the default base state had all three poses visible.

7. Create a second state named Mid.

8. For this state, set the Visibility for both WingsUp and WingsDown to Collapsed. Only the middle
pose will remain visible on the artboard.

9. Create a third state named Down.

10. For this state, set the Visibility of both the WingsUp and WingsMid poses to Collapsed. Once
you’re done adding states for a user control, you can turn off State recording mode by clicking
the red button at the top left of the artboard.

In the previous example, we moved forward through the frames and then back to the middle pose
before repeating the animation. Here, we will control the states the same way, in the order 1, 2, 3, 2,
1, 2, 3, 2, 1, and so on, which gives essentially the same effect as the previous example.

What exactly does Blend do to the code when you use the Virtual State Manager? Each time you create
a state group, Blend creates a container for the group in the XAML. Each time you add a state, Blend
adds a container for that state. Inside our state containers go—you guessed it—discrete keyframes!

The following listing shows the XAML code for the Up state. You can identify the familiar properties
with which you have been working in storyboards and animations.

146

CHAPTER 4

Click the Base state at the top of the States panel to return to the base object state. Let’s take a look
at how to actually use these states to create an animation. We need a timer, which is just a storyboard
that doesn’t contain any animations. Each time the timer raises a completed event, a set of actions
will be performed.

11. To create a new storyboard in Blend, change to Split view and scroll to the top of the
XAML window.

12. Still working with the file, click the New storyboard button, type FlapWings, and then
click OK. The storyboard XAML will appear in the code you see in the XAML portion of the Split
view. The storyboard needs to have an interval defined via the property. For
the duck project, a of 00:00:00.50 was added to the storyboard:

With this particular example, there’s a bit more code involved than with the prior method that used
a storyboard only. The majority of the code here is unique to the user control, and is located in
the code-behind file, so press Ctrl+S to save the project, and then open
for editing in Visual Studio.

13. There are two variables initialized. One is an integer used to change the visible state, and the
second is a string used to keep track of the current state by name, because the method to
change the state on screen needs a string passed to it. Add the following two lines of code just
above the constructor:

147

ANIMATION TECHNIQUES

14. In the class that is called when the object is instantiated, the empty story-
board we’re using as a timer is started, and a event listener is wired up. Every half-
second (500ms), this storyboard will raise a event that is used to change the visible
state of the duck in the project.

15. The event handler code for the event does all the work. The integer is
used as a counter to keep track of which pose should be in view and is tested by a state-
ment. When the correct statement is triggered, the variable is updated
with the name of the state that should be displayed. is then invoked to
change the state. The flag at the end of the method
tells Silverlight that these state changes do not use transitions.

When called, the Visual State Manager does the work of changing the view rendered on the screen.
After that, the counter is incremented to get ready for the next pose and checked to keep it within the
bounds of our animation, which is four poses. To finish, the storyboard is restarted once again.

The storyboard is the real workhorse here. Every half-second, it causes the code in the
event handler to execute in order to control the state of the object shown on the screen.

With the code in place for the object, move to the code-behind for the main
application. The code here is very simple.

148

CHAPTER 4

16. First, declare a new object:

17. When the application initializes, a bit of prep is done on the duck. First, it is positioned on the
canvas. In this example, it’s being placed at 200,200. Inside the constructor, add
the following two lines of code to position the duck:

18. Next, do a little preset on the object by calling upon the Visual State Manager to set the duck
to the WingsUp pose. Remember that the object has all three poses visible, and they are
piled on top of one another. We do not want the duck to appear on screen with all three poses
showing, so the call to the Virtual State Manager sets the initial view for us. Add the following
line of code immediately after the two lines added in step 17:

19. After that, add the object to the Canvas. This line of code goes immediately
after the one added in step 18:

Compile and run the application. The white background canvas will be drawn, and the animated duck
will be added. The user control object is completely self-contained—it starts itself and hooks up the

 event for the storyboard automatically. As with the last project, you can customize the speed
of the flapping wings animation by tweaking the property of the storyboard in
the user control. To speed up the flap, increase the property. Alternatively, you may
decrease the value—this will have essentially the same effect. All the code covered in this
example is available in the VSMFrameBasedCompleted project. One of the nice things about coding up
an animation in this manner is that the code is relatively easy to follow. It’s fairly easy to track what the
animation is going to do when looking through the statement in the user control code. The
Visual State Manager in Blend makes it really easy to see what a user will see on the screen in each state
as it’s added to a state group. This makes the whole development process flow very smoothly.

A code-based Visual State Manager
Some of you may prefer a solution that is purely code-based. The last frame-based animation method
that we’re going to look at describes a way of creating your own state manager using only code.

The setup for this project is almost identical to the previous example. The hierarchy and organization
for the user control is the same, only it does not contain the state group and associated states
that were created in the last project. This time, we’ll be controlling the visible state entirely with code.
There are two differences. For this project, we don’t have the Visual State Manager to set our initial
pose for us, so the and Canvases are set to . In addition, the
storyboard is already in place.

149

ANIMATION TECHNIQUES

1. The differences between this project and the last one are confined to the user control
code-behind. Open the CodeFrameBasedAnimation project.

2. The integer used for tracking the state is still declared at the beginning of the file. Add the fol-
lowing code just before the constructor:

3. When initialized, the object will start the storyboard that controls the animation and wire up a
 event to that storyboard. Add the following code to the constructor:

4. The difference between the code-based control and the Visual State Manager’s control is in
the event handler. The event handler begins by changing the visibility for each of
the three poses to to hide them. The statement then manually sets the vis-
ibility for the appropriate pose, based on the variable. The rest of the code remains
the same as it was with the Visual State Manager example. The following listing shows the code
for the event handler on the storyboard’s event.

150

CHAPTER 4

5. In the file, the code to create an instance of the object is shown fol-
lowing. This code goes before the constructor.

6. Position the object, and add it to the root canvas in the same way as the previ-
ous example. Add the following code inside the constructor, right after the

 line:

If you want to change the speed at which the duck is moving, you can still adjust the prop-
erty of the storyboard, just as with the prior example. The CodeFrameBasedCompleted
project contains the completed code for this example of frame-based animation.

So there you have it: three different methods for creating frame-based animations.

The first example is probably well suited to designers, but has a tendency to hide the content a bit
because it’s using a clipping path to avoid showing the individual frames that make up the animation.
If a project containing this style of animation were handed off or stored away and referenced later, it
might take a bit of time to recall the technique being used.

The second method, which uses the Visual State Manager, is easy to set up with a tool like Blend, and
makes it easy to see exactly what Silverlight will be presenting on the screen when any given state is
called. It still requires a small amount of code in the code-behind to make it go, but easily adapts to
an object with a large number of poses.

The entirely code-based solution shown in the final example is extremely fast to set up, and works in a
manner very similar to the Visual State Manager. If you’re a code junkie or don’t have access to Blend
to create state groups and states, this one may be your answer.

Summary
In this chapter, I talked about ways to apply some of the techniques discussed in earlier chapters. You
saw how objects can be converted into paths and how the points of the paths can be animated to
create text effects. We also explored how we can use copies of objects to create interesting ghosting
effects for objects when clicked.

With Silverlight’s bitmap effects filters, it’s easy to create animated effects such as blurs and drop
shadows. Effect properties can be directly accessed from code.

Individual animated objects can be turned into custom cursors by hiding the default cursor for the
object that will display the custom cursor and attaching the animated object to the mouse position in
the code-behind. The various mouse event listeners can then be used to show and hide the animated/
custom cursor.

151

ANIMATION TECHNIQUES

Clipping paths allow you to take one shape and use it to clip the visible area of another. They will serve
a wide variety of purposes in your application development, from clipping a canvas in order to show
or hide content, to creating custom transition or image mosaic effects.

User control objects allow you to “divide and conquer” development tasks—separating objects and
their associated code from the main code base of an application. Object-oriented design in Silverlight
makes it very easy to utilize a single code source to create numerous instances of an object, each with
its own set of properties. With user controls, it’s possible for several developers to work on a single
project, each focusing on separate objects and their associated behavior, all of which can be brought
together in the final application.

Drag-and-drop is something you are likely to use quite often. While at the moment it is not as directly
accessible as it is in Flash, it’s still easy to create a set of generalized functions that can be quickly
pasted into the code-behind for an object in order to implement drag-and-drop functionality.

Behaviors give you a way to take some code you may use over and over, and make it easily accessible
via Blend. Behaviors are powerful, because they can easily be reused: a single behavior can be dragged
and dropped onto many objects.

I closed out this chapter by talking about three different techniques for implementing frame-based
animation. The first technique showed how you can utilize discrete keyframes to create the illusion of
motion by jumping between the different frames of an object. The second technique used the Visual
State Manager to define state views for an object. We then used code to call upon the Visual State
Manager to flip between the poses in order to animate our object. Finally, we employed a code-only
technique for performing the same function as the Visual State Manager.

Now that we’ve looked at different ways to apply the concepts described in the first few chapters, it’s
time to break free of the storyboard animation techniques a bit and have some fun exploring vectors
and angles in Silverlight, and how they’re used to work with objects programmatically.

Part 3

ADVANCED ANIMATION

155

Our journey into animating from the code-behind begins with a better look at
Silverlight’s angle and coordinate system. You’ve seen a little bit of this in some of
the earlier examples, but now that you will be directly manipulating objects, it is
important to have a firm understanding of the ideas presented here in order to make
objects move the way you want them to.

The Silverlight coordinate system
It’s a little bit easier to understand coordinates in Silverlight if you first get a little bit
of a refresher of the Cartesian coordinate system. You should remember Figure 5-1
from your school days—it represents a traditional, two-dimensional (2D) coordinate
system. The x axis runs horizontally, and the y axis runs vertically. The point at which
the two axes intersect is referred to as the origin and has an x,y coordinate of 0,0.
The arrows at the end of each axis indicate that they extend forever in their respec-
tive directions. The intersection of the two axes divides the Cartesian plane into four
quadrants, numbered from the upper right (the northeast quadrant), counterclock-
wise.

The points that lie within quadrant I are positive along both the x and y axes. In quad-
rant II, points are –x,+y. Quadrant III contains points that are negative for both x and
y, and quadrant IV is positive along the x axis and negative along the y.

COORDINATES IN SILVERLIGHT

Chapter 5

156

CHAPTER 5

Silverlight’s coordinate system, shown in Figure 5-2, is like working in quadrant IV of the Cartesian
coordinate system, except that the y axis is flipped. This means that in order to move an object toward
the bottom of a canvas, you increase the y coordinate (property) for that object. Placing an object
at 0,0 will position the object such that the top-left corner of the object is aligned with the top-left
corner of the canvas. You can use negative x,y values or x,y values that exceed the width or height of
the canvas to place objects outside of the visible area. This assumes that the styled width and height
for the Silverlight application matches the height and width of the container canvas.

Figure 5-1. The four-quadrant Cartesian coordinate Figure 5-2. The Silverlight coordinate system uses a
system flipped y axis.

Vectors and velocity
When we talk about vectors in Silverlight, we’re really talking about velocity and direction. Using vec-
tors gives us a simple way to describe a direction and distance an object will be traveling over a given
period of time, though time is not specifically a component of vector movement. For our purposes,
the time component of code-based animations will be provided by a timer storyboard, as described
in Chapter 4.

It’s logical at this point to wonder what a vector is. Vectors describe motion by defining the size and
direction of distance. Let’s take a look at a one-dimensional (1D) vector. A 1D vector can be repre-
sented along the number line we all remember from school. We start at 0, and draw a line to the
number 3, as Figure 5-3 shows. This is vector 3. It has direction and distance.

Figure 5-3. Vector 3

157

COORDINATES IN SILVERLIGHT

Let’s draw another vector. This vector extends from 3 to 6, as shown in Figure 5-4. It is also vector 3.
Vectors do not have a position—they simply describe direction and distance. Objects, however, do
have a position, and when a vector is applied to an object, the object’s position will be altered.

Vectors can be added—when the two vectors that were just drawn are added, we get vector 6. The
speed of an object traveling along this new vector would be twice what it is for vector 3.

Figure 5-4. Vector 3, followed by vector 3 again

As you might expect, vectors that point to the left are defined with negative numbers. Negative and
positive vectors can be added together just as two positive vectors are. For example, vector 5 + vector
–3 = vector 2.

The terms that define a vector are referred to as components. This is because they are different from
points, which define a position in 2D space. Vectors can begin anywhere, but their distance and direc-
tion do not change based on the location of the object to which they are applied.

As you can probably imagine, 2D vectors work in much the same way as 1D vectors, only they specify
both x and y components. The vector 5,5 is shown in Figure 5-5.

Figure 5-5. A 2D vector

The concept of making an object move in Silverlight by using vectors is relatively simple. Place the
object on the canvas and start a timer. Each time the specified period of time passes, move the object
by the distance defined in the vector. Let’s take a look at an example of a 1D vector.

One-dimensional vector movement
In this project, we’ll create some code that moves a simple ellipse particle across the screen using a
vector for movement.

158

CHAPTER 5

1. Open the oneDimensionalVector project to code along with this example. The project con-
tains the main page XAML, as well as a user control called “ ” that is a simple yellow
ellipse. The object also contains a storyboard called , which will be used as a
timer to make the particle move.

2. Open the file for editing. Before the constructor, declare an
instance of the object:

3. Inside the constructor, after the code, add the following
code to position the instance on the main canvas:

4. Follow that up with the code that adds the particle to the main canvas:

5. Finally, start the particle’s timer. For this example, the particle has its own timer—if you’re
moving multiple objects on the screen, you would want to place the timer in the

 file and call it from there.

6. Now that our particle is on the canvas, we need to add a bit of code in the code-behind for
the particle. Open the file for editing. Before the constructor,
declare a variable that will be used to store the vector:

7. Next, add an event handler for the event on the particle’s storyboard timer inside
the constructor:

8. Following the closing curly brace of the constructor, add the event handler func-
tion:

9. The code inside the event handler function will run each time the timer completes. Add the
following code inside the function, which will reposition the particle to its current location plus
the value of the vector variable, and then restart the timer storyboard:

Press F5 to compile and run the project. The particle will be drawn on the screen, and as the
storyboard timer completes, the particle will move across the screen. The completed version of the
code for this project is available in the oneDimensionalVectorCompleted project.

159

COORDINATES IN SILVERLIGHT

Two-dimensional vector movement
Working with a 2D vector uses the exact same technique, except that 2D vectors utilize variables for
both the x and y components of the movement vector. Let’s throw down some code that allows a user
to make a particle fly around the screen.

1. Open the twoDimensionalVector project to follow along with this example. This project has a
similar setup as the last one, except that the storyboard is now on the main page. There is
also an instruction screen, which you won’t need to worry about. If you run the project, you’ll
see I’ve already added code to take care of hiding the instruction pane when the OK button is
clicked. We will just concentrate on placing the particle and making it move.

2. Open the file for editing. In this file, we’re going to take care of storing the
particle’s velocity and add some boundary-checking code. We’ll start with the variable declara-
tions, which go before the constructor. The first two will store the x and y velocity,
and the last two will store the height and width of the application.

3. Create a new public function called after the closing curly brace of the
 constructor. This function will be used to update the position of the particle on the

screen and check to see if the particle has gone beyond the boundaries of the application.

4. Inside the function, start with the following two lines of code, which will update the position of
the particle on the main canvas:

5. Follow that up with the following two statements that check to see if the particle
has gone beyond the edge of the application. If it has, the particle is repositioned to the oppo-
site side of the canvas.

160

CHAPTER 5

6. Save the file, and open the file for editing. Before the construc-
tor, declare an instance of the object:

7. Inside the constructor, add the following code to position the particle at the cen-
ter of the main canvas, and initialize the particle’s and variables with
the size of the main canvas before adding it to the main canvas:

8. If you press F5 to compile and run the project at this point, you should see the instruction
pane. Clicking OK closes the pane, and the particle should be positioned at the center of the
main canvas. All that’s left is to make it move. Begin by adding the following code inside the

 constructor. This code will set up an event handler for the event on the
 storyboard and start the storyboard.

9. After the closing curly brace of the constructor, create the
event handler function:

10. Inside the event handler function, call the particle’s function, and restart the
storyboard:

11. If you run the project again, you’ll see that the particle is on the canvas. Even though the sto-
ryboard timer is running, the particle isn’t moving. This is because the velocity of the particle is
still 0,0. We’re going to control the particle’s vector with the arrow keys. Start coding this up by
adding an event handler inside the constructor that listens for the event
on the main canvas:

161

COORDINATES IN SILVERLIGHT

12. After the closing curly brace of the constructor, create the event handler function:

13. Inside the function, add the following statement. This statement handles the up,
down, left, or right arrow keys and then updates the particle’s velocity and the on-screen text
appropriately.

Press F5 to compile and run the program. As you press the arrow keys, the velocity of the particle will
change, as will the motion of the particle on the canvas. The final code for this example can be found
in the twoDimensionalVectorCompleted project. As you can see from this application, vectors are
relatively easily manipulated as an application is running and will affect the movement of the object
to which they are applied in real time.

Changing the direction of a vector
When manipulating objects moving along vectors programmatically, you can change their direction
by multiplying one or both components by –1. For example, given a positive vector of 3, the vector is
effectively reversed when multiplied by –1. This will reverse the vector, as 3 –1 = –3.

The multiplication of two negative numbers results in a positive, so a negative vector multiplied by –1
will become positive. For example, –3 –1 = 3. This is a very useful way to reverse an object’s direc-
tion completely or just along a single axis if necessary.

Take a look at Figure 5-6, which shows the vector 5,5. In the image, you can also see what the effect
would be on the vector if one or both of the vector components were reversed by multiplying the
component by –1. The vectors shown are all the same length, but describe four different directions,
all with a simple math operation.

162

CHAPTER 5

Figure 5-6. The effect of reversing the components of vector 5,5

So when might you find yourself needing to reverse vectors? The two most likely answers to that ques-
tion are based on user input, which you have already seen in the particle flight demonstration project,
and application boundaries, where an object should appear to bounce if a boundary is encountered.

In the next example, we will implement directional changes using this technique. The directional
changes are going to be fairly easy to implement, because we’re going to invoke the law of reflection.
The law of reflection deals with rays of light and states that a ray of light will leave a surface at the
same angle at which it approached, as illustrated in Figure 5-7. You may be more familiar with this
when it is stated as “the angle of incidence is equal to the angle of reflection.”

Figure 5-7. The law of reflection

Granted, we are not dealing with rays of light, but this is a common technique for boundary handling.
If you view the law of reflection in terms of vectors, the angle of incidence could be an approach vec-
tor of 5,5, while the angle of reflection is a vector of 5,–5. Let’s modify the particle project to make the
particle bounce back when it hits a boundary, rather than wrapping to the opposite side.

163

COORDINATES IN SILVERLIGHT

1. Open the VectorBounce project to code along with this example. We will be making all of our
changes in the user object, so open the file for editing.

2. Currently, the code to move the particle looks like the following listing. The particle is moved,
and then tests are done to see if the particle has moved outside the boundaries of the applica-
tion. If it has, it is placed on the opposite side of the canvas.

3. Remove the two statements that currently do the boundary checking and wrap the
particle to the other side of the Canvas. We’ll add some new code to replace them. In order
to make the particle bounce, the vector needs to be manipulated in only two ways. The first is
to reverse the x component. This happens if the particle hits either the left or right boundary
of the application. The second is to reverse the y component. This happens if the particle hits
either the top or bottom boundary of the application.

4. Start by doing a check for the right side boundary by taking the particle’s left position plus its
width, and test to see if it is greater than or equal to the application width, which is stored in
the variable. If so, we multiply the x vector by –1.

5. To test for the left boundary, add an clause to the statement that tests to see if the
particle’s property is less than or equal to 0. If so, the x vector is multiplied by –1.

164

CHAPTER 5

It’s important to remember that the position of the object may not always be exactly equal to the
boundary width or height values, which is why we use or . If an object is at left position 10 with
a vector of –3, its left position will be 10, 7, 4, 1, –2, and so on. Note that 0 is never hit, and we don’t
want to leave a hole there in the logic.

6. For the top and bottom boundaries, the idea is the same. We’ll test the particle’s top location
plus its height to see if it is greater than or equal to the application height. If so, the y vector is
multiplied by –1. Another check is done to see if the particle’s top location is less than or equal
to 0. If so, we multiply the y vector by –1.

That’s all it takes. Press F5 to compile and run the application, and watch the particle bounce around
the application. You’ll be seeing variations on this boundary checking code throughout the book. I
put the code changes covered here into the vectorBounceCompleted project so you can examine
them.

When you run the application, one of the things you may notice is that it can become difficult to con-
trol the particle when large velocity vectors are reached—the particle will cross the application, and
reverse the vector rather quickly. Once the vector is reversed, the key you need to use to change the
direction also changes, so user control can become difficult. In these cases, it’s a good idea to place an
upper limit on the vector to define a maximum speed an object can take.

Now that you’ve seen how vectors can be used to make objects move in Silverlight, let’s take a look at
a classic implementation: a single-player paddle game.

Single-player paddle game
The classic paddle-and-ball game is a great example of how vectors can be used to move objects
around the screen. It also demonstrates how you can begin putting different pieces together to create
a more complete animation experience. In this section, I’ll talk about how to create a simple single-
player paddle game that uses drag-and-drop for the paddle, vectors for the movement of the ball, and
boundary checking to keep the ball on the screen in front of the paddle.

1. Open the PaddleGame project to code along with this example. The project is partially stubbed
out and contains , , and user objects. The object contains a 25 25
white ellipse. The object contains a filled rectangle with slightly rounded corners. The
wall object contains a series of rectangles arranged to look like a red brick wall. There is a
storyboard timer on the main page called , which will be used to create the action. If you
run the project right now, you’ll see the instruction page, which I’ve already coded up. You can
click the Play button, and the pane will hide, but nothing further will happen.

165

COORDINATES IN SILVERLIGHT

2. We’ll start by coding up the objects we will be controlling from the file.
The wall has no function other than providing a visual barrier, so there’s nothing to do there.
The object already contains drag-and-drop code and has no other behaviors, so there’s
nothing to do there either. That leaves the object. Open for editing. Inside
the ball control, we’ll add some variables to store the application height and the velocity of the
ball, as well as a random number generator and a function to place the ball randomly on the
game board. Start by declaring the following variables before the constructor.

3. After the closing curly brace of the constructor, create a publicly accessible function
called . This code will be called each time the ball needs to be placed on the screen—at
the beginning of the game and each time it gets by the paddle.

4. Inside the function, add the following code to initialize the velocity for the ball. The x velocity
will always be 5, and the y velocity will be a random number between 1 and 8.

5. Finish up the function with the following two lines. This will position the ball 65 pixels
from the left of the screen and at a random vertical location.

6. Save the file, and open for editing. At the moment, nothing is here except
for the instruction pane messaging. Let’s add some elements to the game board. Start by
declaring an instance of the , , and objects before the constructor.
We’re also going to be tracking lives, so declare an integer to store that value.

7. Inside the constructor, initialize the object by setting its position on the
main canvas and assigning a value to the variable we created in the object. We’ll
hide it until it’s needed, so set the to before adding the object to the

 canvas:

166

CHAPTER 5

8. Follow that up with code that positions the object and adds it to the
canvas:

9. Next, we’ll hide the ball, set the ball’s variable, and add it to the can-
vas. We won’t need to worry about positioning the ball, since the function we wrote will
do that for us when called.

10. If you look at the event handlers set up inside the constructor, you’ll see one for
the event on the Play button and one for the event of the
storyboard. The flow of the program is that it loads and displays the instruction pane with
the Play button. The Play button is clicked, which plays the storyboard to hide
the instruction pane. Once that storyboard is completed, control goes to the

 function, which is coded but currently empty.

So what needs to happen there? First, the instruction pane is gone, so we’ll show the ball and
paddle. Next, we’ll initialize the ball by calling the function. Finally, we’ll start the timer
storyboard to get everything moving.

11. If you run the application, you’ll see the instruction pane disappear when the button is clicked,
and the ball and paddle show up, but nothing else happens. You started the storyboard in step
10—what’s happening? The storyboard runs but only for one tick. We need to set up an event
handler that keeps it going. Inside the constructor, add an event handler for the

 event on the storyboard:

12. Add the event handler function after the closing curly brace of the
 constructor. This is where all of the action will take place.

167

COORDINATES IN SILVERLIGHT

13. Inside the function, update the position of the ball, and restart the timer:

14. Run the application again, and this time, when you click the Play button, the ball will move.
In fact, it keeps moving until it goes right off the screen. Let’s add some boundary checks for
the top and bottom of the application. In the function, remove the code
that starts the timer, and add the following statement. This will test for the top and
bottom of the application, just as with the particle project. If the ball encounters either, the y
velocity is reversed.

15. Next, we’ll test for the right side of the application, which in this case is really the left side of
the object. If the bricks are encountered, the x velocity of the ball is reversed.

16. Now, we have the ball bouncing off the top and bottom of the application, and the bricks
along the right. We want to test to see if the ball hit the paddle. That starts out with an
statement that checks to see if the ball is inside the upper and lower bounds of the paddle:

168

CHAPTER 5

17. Inside of the statement goes another statement. This one tests to see if the paddle and
ball are contacting. If they are, the x velocity of the ball is reversed.

18. We are recognizing the game boundaries and the paddle. Now, we need to figure out if the ball
gets by the paddle, and if so, what we’ll do about it. The following statement checks to see
if the ball makes it all the way off the screen. If so, the timer will be stopped, and we’ll call a
function called (which we’ll create in a moment). If the ball doesn’t make it off the
screen, the timer will be restarted.

19. Create the function after the closing curly brace of the func-
tion. The ball has made it off the game board, so this is where we’ll put our reaction code:

20. Inside the function, start out by hiding the ball and paddle:

21. Next, decrement the number of lives left, and update the messaging on the screen:

22. Next, add some code to taunt players with a different message each time they lose a life. The
messages will show up on the instruction pane. If a player loses all three lives (zero remaining),
the Play button on the instruction pane will be hidden so that player cannot enter back into
the game loop.

169

COORDINATES IN SILVERLIGHT

23. The function finishes up by starting the storyboard, which is the opposite of
. At this point, the messaging has updated, the pane is visible, and the game is

awaiting user input to go back into the game loop.

This completes the code for the single-player paddle game. Run the application and test it out. Figure 5-8
shows the game in action.

Figure 5-8. A single-player paddle game in action

One of the things this version of the game does not do is allow the paddle to influence the direction of
the ball. The ball simply bounces off the paddle in the opposite direction based on our application of
the law of reflection. It would be nice to add a bit of code so that the direction the paddle is moving

170

CHAPTER 5

when the ball hits it will influence the ball’s direction. To do this, we need a way to determine a move-
ment vector for the paddle. Luckily, this just takes a few lines of code.

24. Open the code-behind for editing. We’ll need a couple of variables: one for
the old position of the paddle and one for the current position of the paddle. Add these vari-
ables above the constructor:

25. We’ll also need a publicly accessible to hold the paddle’s y velocity:

26. Inside the event handler code for the paddle, we’ll keep track of where
the paddle was and where it is now. The difference between the two will give us the magnitude
of the movement, and we’ll dampen that a bit by dividing it in half. The following code goes at
the top of the statement in the event handler:

27. Now, we just add a bit of code to the paddle hit check in the code-behind
file. The code shown in bold takes the calculated velocity of the paddle and adds it to the y
component of the ball when it hits the paddle.

Now when the game runs, the direction and speed of the paddle will affect the reflected angle the ball
travels after hitting the paddle.

All of the code for this project is available in the PaddleGameCompleted project. It compiles into a
tidy little 8KB package.

Think about some of the ways you could modify the program. Can you make the ball speed up the
longer it is on the screen? What about making each successive level more difficult by making the
paddle smaller?

Dressing up the game
This game helps highlight one of the strengths in using XAML for the objects. Each object—the paddle,
ball, and wall—is contained within its own canvas, in its own user control. That offers a lot of flexibility
because you could very easily go into the XAML file for each object and change the look of the object,
or change the type of object being used altogether, and simply recompile the game to get a version
that looks completely different.

171

COORDINATES IN SILVERLIGHT

For example, if you had a rendered image of a wall that you wanted to use, you could replace the
entire set of rectangles that compose the object, and the game would still act the same. This
is because the boundary location values being used are based on the positions of the canvases that
contain the objects, not the objects themselves. The same would be the case if you elected to use an
animated ball in the game. Take a bit of time to experiment with changes to the look and feel of the
game, so you can see how easy the XAML structure makes it to edit the game pieces.

Code-controlled vectors
Let’s take a look at an application of vector movement that you will probably find more interesting.
We’ll use some vectors to move a object around the screen, but we’ll add some interactivity by
allowing the user to drag the ball and add some interest by applying the force of gravity to the ball.

1. To code along with this example, open the gravityBall project—the project contains the main
 file, which provides a background gradient color, and a object,

which is a simple red ellipse. The object contains drag-and-drop code as well as a story-
board timer called .

2. Begin in the file. Before the constructor, declare an instance of
the object:

3. Inside the constructor, position the ball, and add it to the main canvas:

4. Run the application, and see that you can use the mouse to drag the ball around the screen
and release it. Now, we are going to add some code to the file so that, when the
mouse button is released following a drag operation, the ball is affected by the force of gravity.
Start with publicly accessible variables to store the gravity, width, and height properties of the
main application:

5. Follow those up with variables to store the ball’s position and velocity:

6. Next, we’ll add some code to the event handler so that, when
the mouse button is pressed to begin a drag operation, the velocity variables used to move the
ball are set to 0. The lines to add to the function are shown in bold in the following listing.

172

CHAPTER 5

7. In the event handler, add code to store the current position of the
 object, and begin the storyboard:

8. To keep the ball moving, add an event handler for the event on the storyboard
in the constructor:

9. Create the event handler function after the closing curly brace of the constructor.
Inside the function, add code to add the constant to the current y velocity vector of
the object, and then update the values stored in the variable. After that,
the position of the ball can be updated on the screen and the storyboard restarted. This will
cause the ball to accelerate as it falls.

173

COORDINATES IN SILVERLIGHT

10. While the code you’ve added will move the ball, we haven’t yet assigned a value to the
variable in this object. Open the file, and declare a variable for gravity
before the constructor.

11. Inside the constructor, initialize the value of the object with the
value of the variable you just declared:

Run the program and take a look at it. When the program runs, the ball is drawn on the screen and
can be dragged around. When the mouse is released, gravity takes over and the ball falls . . . and keeps
falling, right out of the application!

12. We already talked about how to reverse the vector along which an object is traveling. For the
ball, we’re trying to emulate what a real ball does when it bounces—each successive bounce
a ball makes is going to be a bit lower than the previous bounce. In our case, we’re going to
declare a variable to diminish the bounces, called , which we will set to . This
code goes inside the file, before the constructor:

13. Back in step 4, we added variables in the file called and ,
which will be used to store the height and width of the application. Before we can add in our
boundary checks, we need to initialize these variables. In the constructor inside the

 file, add the following two bold lines of code to the section where the ball
is initialized:

14. Now that the object is aware of the size of the application, we can start doing boundary
checking. Inside the event handler in the file, add the follow-
ing bold code to check for the top and bottom boundaries. Notice that the velocity is being
reversed by multiplying it not by –1, but by the value of our variable, . This
won’t have an obvious effect when the ball bounces off the top of the application because it is
being drawn down by gravity, but it will make a difference when the ball hits the bottom and
bounces up, as it will bounce only a portion of the distance it fell.

174

CHAPTER 5

15. Follow that code up with the boundary-checking code for the right and left sides of the appli-
cation:

16. Now when the application runs, the ball can be dragged, and when released, will drop straight
down and bounce in a fairly realistic fashion until it comes to rest. Trying to drag the ball
again at this point will cause the ball to snap back to its resting location, because the sto-
ryboard that makes the ball drop is still running. To correct this, add code to the

 event handler that will stop the storyboard when the mouse button is
pressed. The application will then permit repeated dragging and dropping of the ball, though
you will still need to drag the ball straight up to avoid the lower boundary-checking code:

17. So far, our application is looking pretty good. One of the things that you may notice is that
the ball always releases straight down, though. We’re going to add some code that allows us to
throw the ball around the application. In order to do this, we’re going to need to capture the
x and y velocity components of the mouse as the ball is dragged around the screen. To store
the mouse velocity, add a variable at the top of the file to store the last
position of the mouse:

175

COORDINATES IN SILVERLIGHT

18. In the event handler code, add the following bold code to store the last
known mouse position:

19. Now that we have the variable and we’re storing the position of the mouse as it drags, we can
calculate the x and y velocity from the movement and the speed of the mouse. This is done at
the very bottom of the statement inside the event handler:

Does this code look familiar? It should—we used the same technique for the y component in the
paddle game to get the direction and speed of the paddle to influence the direction the ball traveled
when hit.

176

CHAPTER 5

20. Run the application again, and check it out. We’ve made only a few small changes, and now,
we can use the mouse to drag the ball and throw it around the screen. It will bounce off of the
application boundaries until it no longer bounces. It will then continue to roll along the base
of the application until it goes beyond either the left or right side of the application. This is
because the ball no longer has any y velocity but does still have an x velocity. No friction has
been applied to slow the ball after it has stopped bouncing. Two small lines of code will correct
this. The first is a variable declared in the file that will contain a value:

21. The second is a bit of code to slow the ball down when it comes in contact with the ground in
our application. This code goes into the logic that tests for the bottom of the application and
simply multiplies the x velocity vector of the ball by the friction value. This will have little to
no effect on the normal bounce action for the ball when the ball is only in momentary contact
with the boundary but will bring the ball to a stop when it is no longer bouncing.

At this point, there are a couple of holes in the logic for the application that we need to plug. If you
played with the application long enough, you would probably find them yourself, but I will save you a
little bit of time. The holes in the logic are quite literally corner cases. In each of the application’s four
corners, the ball can be made to contact two boundaries at once. For example, if the ball is rolling
along the bottom boundary and also touches one of the sides, it will be permitted to continue to roll
off the screen. You may have seen this before adding the friction code. This is because the logic tests
for one boundary or the other but not both.

While the situation exists for all four corners, we really only need to worry about correcting the bot-
tom two for this application, as it is highly unlikely that the ball will touch the top boundary and one
of the sides at the same time. Figure 5-9 illustrates the corner cases.

22. To fix these holes, we can add two more checks in the event handler code for
the storyboard. These two checks test for the following conditions: if the ball is touching the
bottom and right boundaries at the same time and if the ball is touching the bottom and left
boundaries at the same time.

177

COORDINATES IN SILVERLIGHT

Figure 5-9. If the ball touches the lower boundary of the application at the same time it touches one of the
sides, the boundary-checking logic will allow the ball to roll off the screen.

That’s all it takes to correct the problem with the corners. The ball will no longer be permitted to
leave the application even if it is contacting the lower boundary and one of the side boundaries at the
same time.

Now, we can turn our attention to polishing the application. One more bit of functionality we would
like to add is to disallow the object from going off the screen while being dragged. This means
that in the event handler, we need to add a bit of code that checks to see if the ball
is outside of the boundaries, and if it is, start the storyboard.

23. Because each boundary check runs the same code, we’ll create a function to do the dirty
work for us. The following function is a pared-down version of the code in the

 function. Go ahead and add this function to the application. The code
inside the function basically releases the mouse capture, updates the variables,
and starts the timer so that the ball’s movement is then under the control of the application.

178

CHAPTER 5

24. With that function in place, we can update the event handler to check for
the boundaries while dragging and call the function if one is encountered.
Once this code is in place, test it out—run the program, grab the ball, and drag the mouse off
the canvas. The ball should bounce off of the boundary and fall.

179

COORDINATES IN SILVERLIGHT

25. We’re going to make one final tweak to this program before calling it done. To have a little bit
of fun with it, we will add a slider to the file that will allow a user to manipulate
the value in real time. At the bottom of the file, just above the closing

 tag, add the following code to create a slider and an associated label:

26. Inside the constructor in the file, set the minimum, maximum,
and initial values for the object. We’ll also update the label for the slider to indicate the
current value being used.

27. Following that code, add an event listener for the event of the slider:

28. Add an event handler function. Inside the function, the code will change the
value, update the value of the variable in the object, and update the text on the screen as
the slider is manipulated:

That’s it! Now when the application runs, you can manipulate the value in real time via the
slider control. Set the gravity low and throw the ball, and crank up the gravity while the ball is arcing
near the top of the application to see it in action.

All of the code shown here is available in the gravityBallCompleted project. Once again, the applica-
tion is really small—it compiles into a package that is only about 7KB. It’s also pretty flexible. All the
behavior for the ball is stored inside the user control, meaning you could easily add a second ball
to the application if you wanted. You need only declare a second instance of the object, and add
it to the of .

180

CHAPTER 5

Touches and Gestures
The ways in which we interact with our computers have begun to evolve toward a touch-based para-
digm, moving away from the familiar but less tactile mouse that we have all become so accustomed
to. With Windows 7, touch becomes an important way to interact with the machine, so let’s take a
look at how some gestures might be implemented within Silverlight to provide a more integrated end-
user experience.

The basis for the following project is something that you’ve already worked with, twice. In both the
gravity ball and paddle game projects, you created some code that gathers velocity data from the
mouse and does something with it. In the following project, we’re going to take input and allow both
dragging and flicking movements in one of four directions: up, right, down, or left. A flick occurs when
the cursor is moved quickly and released. How the input is gathered is not critical—Silverlight doesn’t
care if it’s a mouse or finger providing the feedback. What we’re going to concentrate on is what to
do with the data coming in.

1. Open the gesturesBuild project to code along with this example. The project contains three
TextBlock elements. One is for instructions, and the other two will provide feedback to the
user as the application is running.

2. We’re going to need some variables to contain the data with which we’ll be working, so begin
by declaring doubles for the mouse (or cursor) x and y velocities. We’ll also need four doubles
to store the old and current x and y positions of the cursor. As with the gravity ball and paddle
game examples, we’ll need a Boolean to test if the mouse input is captured. Finally, finish up
with a double that we will use to determine if a flick action has occurred.

3. Begin coding inside the constructor by adding event listeners for
 and , as shown following:

4. The event handlers for and are simple; we either
set the Boolean to or based on whether or not the button is
down.

181

COORDINATES IN SILVERLIGHT

5. Inside the constructor, add an event listener for the event:

6. The event handler is where the main logic for the application will go. It
begins with a test to see if the mouse is captured.

7. Inside the statement, calculate the old and current positions of the cursor and use those
values to determine the velocity of the cursor:

8. Once we know the velocity of the cursor, we can add code that determines the direction in which
the cursor is moving. Keep in mind that we know from the check we did on in
step 6 that the mouse button (or whatever our input method is) has captured the input on this
element, so we know we’re dragging and can provide appropriate feedback to the user.

182

CHAPTER 5

9. We can now add an clause to the statement we created in step 6. We know if the input
is not captured on an element that we could be in a flick movement. If the cursor has velocity
and the velocity is high enough to exceed whatever we determined was a good tolerance for a
flick (in this case 10 pixels), we act on it.

When the program runs, you will see that you can move or drag the cursor at any speed or direction
you choose, and the program will determine in which of the four directions the cursor is moving and
report back to the user. If the input device is moved quickly and released, the application will report
that as a flick, assuming the velocity is high enough to exceed the tolerance defined in the application.
If you’d like to see the finished version in action, you can check out the gesturesCompleted project.

183

COORDINATES IN SILVERLIGHT

As it stands, the project performs two very specific functions: gather input and report whether a drag
or flick has occurred. If you want to utilize this code as a basis for user input on an object, you would
likely want to augment the flick portion of the code to apply the velocity to the target element, per-
haps with some friction to slow it down over time.

Vectors and frame-based animations
In Chapter 4, we talked about different ways to do frame-based animation in Silverlight. Regardless of
which method you choose, objects that are animated with a series of frames can use vector motion,
too. For instance, one of the examples we discussed was a duck flapping its wings. Once you have the
flapping animation going, you still need a way to move the object on the screen. This would be done
via vectors.

In this example, we’ll take a look at a frame-based animation that is a little more complex than the
duck example. We will be working with a monkey walk cycle that spans 12 frames, each of which is
shown in the following series of illustrations.

184

CHAPTER 5

For this example, the monkey was animated via the Visual State Manager in Blend and a storyboard
timer that switches frames every 5 milliseconds. Slower frame switching still preserves the illusion of
animation, but you will find that you need to balance between the speed of the animation and the
speed the object travels across the screen.

For an object such as a duck that is flying, you won’t notice it as much, but with an object such as our
monkey, the figure may have a tendency to skate across the screen while the animation plays. This is
why the storyboard timing and x velocity of the object need to be managed.

1. To code along with this example, open the monkeyWalk project. This project contains a bit of
code to get things going. In the file, an instance of the user control
called is declared. It is then positioned, added to the Canvas, and made
to start walking via the storyboard timer , which is located in the user control
file:

185

COORDINATES IN SILVERLIGHT

2. To augment this application for user input, we’ll need to add a bit of code to the
 code-behind file. Start by declaring publicly accessible variables to store the x velocity of

the monkey, a Boolean flag that will be tested to see if the monkey is in the process of walk-
ing, and a to store the application width. In addition, add a private variable to store the
monkey’s current position.

3. In the file, add the following bold code shown to the construc-
tor. This code sets the property of the user control for bounds checking.

4. At the top of the event handler, add code to change the flag
to , and update the value of the variable:

5. After the closing curly brace of the statement, add a line of code to update the loca-
tion of the object on the screen:

6. If you run the project at this point, the monkey will be drawn on the screen and animated and
will move very slowly to the right. We want the monkey to walk based on user input, so let’s
modify the file to add this capability. Start by removing the line of code in
the method that causes the monkey animation to begin:

7. Instead of beginning on its own, we will make the animation begin when a key is pressed. To do
this, add a event to the constructor:

186

CHAPTER 5

8. Create the event handler function:

9. When the left or right arrow keys are pressed, the monkey will be made to move in the direc-
tion of the arrow key that was pressed. The flag you just added to the monkey code-
behind will be used to determine if the monkey is already moving. If it is not, the timer that
moves the monkey through its frame poses is started. Of note is the way the monkey is turned
if the left arrow key is pressed—it is scaled to –1 along the x axis, effectively flipping the object.
Because the scaling is applied to the canvas that contains all of the poses for the monkey, all of
the poses inside that canvas are reversed as well. All of this functionality is handled by placing
the following statement inside the event handler function:

10. Run the application. After clicking the canvas area, you will be able to use the arrow keys to con-
trol the direction in which the monkey faces but not the direction in which it moves. To add this
functionality, we’re going to add a variable called to the file:

11. The reason why a variable is being used is because movements to the left and right both need
access to the value, and based on the object being animated, it may take a little bit of tweaking
to get the value set just right. It’s much easier to change a single value than to hunt through
code for multiple instances of a number. The value will be assigned to the x
velocity value of the monkey so that the monkey will move 8 pixels with each completion
cycle of the storyboard timer. To change direction and move the monkey to the left, a negative

 value is assigned to the x velocity vector of the object. To move to the right,
the value is assigned to the x velocity of the monkey as is. Update the
statement with the two bold lines in the following code:

187

COORDINATES IN SILVERLIGHT

In the code, each time the storyboard completes, the monkey is moved the distance defined by the
 variable. Remember that depending on your object’s motion, you may end up needing

to use a larger or smaller value. The idea is to get a number that works well in order to keep the object
from looking as though it is skating across the screen.

After clicking the application to get focus, you will be able to control the monkey with the left and
right arrows, as shown in Figure 5-10.

Figure 5-10. Scaling an object to –1 along the x axis makes it possible to reverse a frame-based object’s direction.

The problem is that given the chance, the monkey will walk right off the edge of the screen. Once
again, we will need to add a bit of code to control where our object is allowed to travel. In this case,
if the left or right edge is encountered, we want to stop the walk cycle timer to stop the monkey
from advancing. This code is added in the code-behind file, near the bottom of the

 event handler code.

188

CHAPTER 5

12. Remove the code that updates the monkey’s position:

13. Add an statement to test for the left and right sides of the application. In this exam-
ple, we’re modifying the edge values by 1 to account for the border around the main canvas.

14. Next, wrap the existing Visual State Manager code in an statement:

15. Finish up by adding the following line of code shown in bold back in to update the monkey’s
position on the screen. This code will be executed if no boundary is encountered.

Finally, the last line of the function is the existing code that restarted the . Notice that
the code to restart the timer is going to run even if the code to stop the timer due to a boundary is
encountered. This is deliberate, because the application is still live and awaiting input. If the
were started inside the clause in the preceding code, when a boundary was reached, pressing the
opposite key would turn the object, but it would stick to the wall since the boundary checks are still
valid conditions. The final code for the function is shown in the following listing:

189

COORDINATES IN SILVERLIGHT

190

CHAPTER 5

Now you can run the final version of the monkeyWalk project. Click the application so it receives
focus for input, and then use the arrow keys. When the right arrow key is pressed, the monkey will
walk until the right side of the screen is reached, at which time it will stop.

If the left arrow key is pressed, the monkey will continue to the left until the edge of the application is
encountered. All of the code covered here is available in the monkeyWalkCompleted project.

Vectors and storyboard animations
For the most part so far, we’ve used storyboard animations to move objects around the screen or
modify their existing properties. However, don’t be afraid to experiment with mixing up storyboard
animations with vector-based animations that you are controlling from code.

Combining both methods can help bring a level of interactivity to an application that neither one
would manage to do really well on its own. The next example we’ll look at combines storyboards with
vector animation to create a mechanical claw that the user can control.

1. Open the clawGame project to code along with this example. The project contains two user
controls. The first is a across which a tram will move. The second object is a tram to which
the claw is attached. The rail is really just there as a visual guide—all the action for this project
will take place in the user control.

2. Start out in the file by declaring instances of each object before the
 constructor:

3. Inside the constructor, position each object’s property, and add it to the main
canvas. The rail does not move, and we’ll be controlling the tram with code, so there’s no need
to set the properties. You can run the project and take a look at the objects at this point
if you’d like.

191

COORDINATES IN SILVERLIGHT

4. Next, we’ll code up the file. Start with a publicly accessible to hold the
application width. Following that, add a private velocity integer variable and a Boolean that will
be used to determine if the claw is in motion:

5. Inside the constructor, add code to begin the storyboard, and create event
handlers for the event of the storyboard and the event of the

 storyboard. The storyboard contains an animation that opens the claw as it
drops toward the bottom of the screen, and then closes the claw and rises back up.

6. Create the event handler function. The code that goes inside the func-
tion is simple. It does nothing more than switch our Boolean flag to .

7. Create the event handler function. This function handles the motion
and boundary checking for the object. At each completion cycle of the timer storyboard,
the tram is moved by the current value contained in the variable. Tests are done
to see if either the left or right walls were hit, and if so, the direction of the velocity vector is
reversed. The function finishes off by restarting the timer that is used to move the tram.

192

CHAPTER 5

8. Two more functions need to be added to this code-behind. The first, , will accept
an integer argument. When called, this function checks to see if the flag is ,
which will only happen if the storyboard animation for the claw is playing. If the storyboard
for the claw is not playing, the current value of is increased by the velocity amount
passed to the function. Then some simple tests are done to keep the speed of the tram within
the range of +2 and –2.

9. The final function to add to this code-behind will be called when the down arrow key is
pressed on the keyboard. The function is called . When called, the code will check to
see if the storyboard is playing. If not, it will set the x velocity vector of the tram object
to 0, set the Boolean to , and start the animation.

10. That does it for the object. Since we added the property, we’ll need to add that
into the file, in the constructor:

193

COORDINATES IN SILVERLIGHT

11. The input for the application will be handled via the keyboard, so inside the con-
structor, add a event listener to gather user input from the keyboard:

12. Create the event handler function after the closing curly brace of the construc-
tor:

13. The event handler code for the keyboard input handles three cases. When the left arrow key
is pressed, the tram’s x velocity is adjusted by a value of –1. If the right arrow key is pressed,
the tram’s x velocity is incremented by 1. Remember that the function is passed
a value that is added to the current x velocity. This means that if the tram’s velocity is 2, when
the left arrow key is pressed, the velocity gets decremented by –1, which results in a slowing
motion (and an eventual change of direction if the arrow key is pressed repeatedly). When the
down arrow key is pressed, the method for the tram object is called.

Compile and run the project. Click the main application to gain focus, and then use the arrow keys to
manipulate the tram’s direction. The claw will drop when you press the down arrow key.

The finalized code for this project is available in the clawGameCompleted project. Take some time to
examine the XAML for the objects. The tram object is composed of three parts: the roller tram that is
the main part of the object, the claw that hangs below the tram, and the cable that lowers and raises
the claw.

The cable canvas has a clipping region applied that hides the cable. Figure 5-11 shows the tram object
with the cable selected. Notice that only the area where the cable should be allowed to show is inside
the clipping region. The clipping region helps to give the illusion that the cable is dropping when the
storyboard is played, as shown in Figure 5-12.

194

CHAPTER 5

Figure 5-11. The cable portion of the tram is hidden with a clipping region.

Figure 5-12. When the claw project is in action, the user controls the movement of the
claw and when it drops.

195

COORDINATES IN SILVERLIGHT

Vector math
How you choose to store vectors for your objects is entirely up to you—you can store vectors as
individual x,y components in different variables, as in the previous examples, or you can use a
object to store both vector components in a single variable. One caveat to be aware of is that if you
attempt to store a vector as a property using a getter and setter, you will not be able to access
the individual components of the point. However, using data types as shown here—as public
variables—will work OK. Whichever method you choose to store your vectors, there is a bit of math
that can be done with them. Next, we’re going to take a look at how that is done.

We’ll start with vector addition. Vectors are pretty simple to add—you simply add the x components
of the vectors and the y components of the vectors. Figure 5-13 illustrates an example. Given the pair
of vectors drawn in white, which are 8,10 and 0,10, the resultant vector, 8,20, is drawn in black. The
magnitude of the vectors used in this example are exaggerated a bit to demonstrate the addition, but
the idea is what we’re after. Vector addition can be used to look ahead and see where your object will
be the next time it moves.

Figure 5-13. To add vectors, add the individual components.

Vectors can also be scaled by multiplying. To scale a vector by 2, for example, you multiply both of
the vector’s components by 2. This will result in a vector that points in the same direction but is twice
as long.

The vectorMath project contains a couple of examples for you to experiment with. There’s nothing
that you really need to code up here, so you can take a breather. I’ll just go through the code so you
can modify it if you’d like.

196

CHAPTER 5

In the file, two objects are declared, each of which will be used to store a
vector:

To get started, I assigned some arbitrary values to the vector objects. The first is 8,10, and the second
is 0,10:

Once that’s done, both vectors are passed to a function called , which simply outputs
the values to the screen:

Following that, the values are passed to the function:

This function takes both vectors, adds their components, and places the result on the screen:

Once that’s done, a vector and a scaling factor are passed to the function:

The function multiplies each component of the vector passed by the scale value that
was passed and then writes the output to the screen:

197

COORDINATES IN SILVERLIGHT

Take a little time and play around with the values that are set for the vectors to see what type of
results the math operations you’re performing will have.

Angles in Silverlight
As you saw earlier when working through the transform types, rotational angles in Silverlight are
expressed in degrees and can be additive or subtractive—for example, both 720 degrees and –720
degrees will rotate an object around twice. The former will rotate an object clockwise, while the latter
will rotate an object counterclockwise.

As you have seen along the way, Rotate transforms are accessible through code. By adding an
property to an object’s Rotate transform, you can easily access the angle of rotation. Take, for exam-
ple, the following rectangle XAML:

You should be able to tell from this code that the rectangle has been rotated 90 degrees via a Rotate
transform. Notice that an attribute, , was added to the defini-
tion. To modify this value via code, you can directly access the member of as
follows:

You may have noticed when working with vectors that the line a vector makes kind of looks like an
angle. With just a bit of code, you can convert a vector into an angle. To do this, however, you’ll need
to know three things.

First off, mathematics uses a unit of measure called a radian to measure angles—1 radian is equal to
about 57.2958 degrees. Second, we use a math function called (arctangent) to determine the
radians. Finally, we need a way to convert the radians to a useful number that represents an angle for
us.

If you’re starting to get nervous because we’re using some mathematics, don’t worry. The math is
presented here as kind of a plug-and-play solution. For now, we want to focus on how vectors and
angles are related.

All of this radian and talk is a fancy way of saying we need the following two lines of code,
into which we plug a vector. The result will be the angle of the vector.

198

CHAPTER 5

The first line uses the math method to calculate the radians from the vector that was passed.
You can see the usage of the function, and how we pass the vector to the function. Notice
that the vector is passed y,x (not x,y). The second line of code contains the formula for converting
radians to degrees.

Converting vectors to angles
To see this code in action, visit the vectorAngleConversion project. This is a simple project that sets
up a object that contains a vector and a variable called :

A value that represents a vector is assigned to the variable, and the angle of the vector
is calculated and output to a TextBlock:

The result produced by this bit of code is 45, which is the correct angle (in degrees) for a vector of
5,5. Go ahead and play with the values of the variable, and run the program to see what
kind of results you get. Don’t worry if you see a few results that surprise you—we’ll be visiting these
two math functions again later.

Let’s take a look at a project that graphically illustrates the math. This project allows a user to adjust
the endpoints of a line. As the endpoints are adjusted, the application calculates the length of the
vector that the line creates, calculates the angle of that vector, and applies the angle to a separate

 object as a sanity check for the calculations. All the code we’re about to discuss is available in
the vectorAngles project.

The file for this project contains four sliders and several TextBlock objects that are
used to provide user feedback. In addition, there is a Path object that is used to draw a simple line.
The default orientation for the line is horizontal.

In the file, the objects needed in the project are declared. The first one is the user-
adjustable line, called . The next two objects are objects, and , and are used to store
the endpoints of the object. The last two declarations are similar to those illustrated in the
previous project— is used to determine the length of the line as a user manipulates it,
and is used to store the angle of the line.

199

COORDINATES IN SILVERLIGHT

The code starts by assigning some default values to the and objects:

Next, the values in the and objects are used to create starting and ending points for the
 object. In Silverlight, a line is defined by two pairs of coordinates: the start point and the end-

point. They are referenced as , and , . Once values are assigned to the object, the line’s
 and are set.

Prior to adding the line to the canvas, a function called is called with the code .
This function uses the start point and endpoint of the object to determine the length of the
vector created by the line. You should recognize the next couple of lines of code from the previous
example—this is where the vector created by the line is converted into an angle.

The object is our sanity check—this object will be rotated the number of degrees cal-
culated by our code, and the angle of the line should match the angle of the object, assuming
the code is functioning correctly. The values are converted to integers for display as they are output
to the canvas.

Now that the initial state of the line has been used to determine the angle and the screen output is
current, the line is added to the Canvas:

Next, the maximum limits for the sliders are set. The sliders will be used to allow a user to change
the starting and ending points of the object, and the application will not allow either point’s x

200

CHAPTER 5

value to be greater than the width of the canvas or either point’s y value to be greater than the height
of the canvas.

Each of the four sliders is then preset to the default value for the endpoints of , and the text
that displays the current value for each slider is updated:

With all of the preliminary setup out of the way, the application then sets up an event listener for each
slider’s event. This event will be raised when a slider is manipulated by a user.

The event handler code for each of the four sliders is fairly similar. The value of the slider is used to
update the corresponding point of the object. The text that shows the slider’s value to the user
is updated, and the function is called to update the angle output on the screen.

The y slider event handler is shown in the following listing. Notice that the functionally it is identi-
cal except that it references a different point of the object, and outputs text to a different
TextBlock.

201

COORDINATES IN SILVERLIGHT

The sliders for follow the same pattern. When the program runs, you can use the sliders to adjust
the endpoints of the object, and the code will calculate the length of the vector that is created
by the line.

The vector length is used to calculate the angle of the line, which is then applied to the object
near the bottom of the screen. Aside from slight differences due to the conversion to an data
type and the imprecision that introduces, you should see that the code is doing what it is supposed to,
as shown in Figure 5-14. Pretty cool, huh?

Figure 5-14. The vectorAngle project allows you to modify the endpoints of a line as it calculates the angle in
real time.

You’ve seen a pretty broad variety of ways to manipulate objects using vectors. You know how to
make objects move using vectors, and you know how to make objects rotate by using vectors. Let’s
take a look at how you can separate the acceleration vector of an object from the directional vector.

202

CHAPTER 5

Separating acceleration from direction
It’s very likely that, as you begin building out your own applications, you will find yourself in a situation
where you will want to be able to separate the direction an object is traveling from the direction it is
pointing. A great example of this type of motion would be the kind found in old arcade games like
Asteroids. We’re going to take a look at how to code this type of movement up.

1. To code along with this example, open the vectorShip project. This project contains the
familiar file, which contains two additional canvases: and

. There is also a object to create a white border around the game board, as
well as a TextBlock that will be used to provide some user feedback.

There are two other user controls in this project. One is called , which contains
a simple 2 2 ellipse that will be used to generate a random star field. The other is called

 and contains a 45 45 spaceship and a timer called that will be
used to make the spaceship move.

2. Start coding in the file by declaring an instance of the rocket called
and a data type called that will be used to generate random numbers. These two
variables are placed before the constructor:

3. Inside the constructor, add code to position the ship at the center of the application:

4. After the closing curly brace of the function, create a new function called
 that accepts an integer argument:

5. Inside the function, add the following code. The integer passed to the function is used to
control a loop that draws stars in the background. For each iteration of the loop, the function
creates a new object, which is randomly positioned. Once the position has been set, a
random color is generated for the star and assigned to the property. The

 is then added to the .

203

COORDINATES IN SILVERLIGHT

6. Call the function from inside the constructor, passing an integer that determines
how many stars are created:

7. Press F5 to compile and run the program. The application will display the ship over a star field
that contains 150 stars positioned and filled at random. The next step is to add the code to the

 code-behind file that will be used to control the rocket, so open that file
for editing.

8. Before the constructor, declare the variables that this object will be using. The
variables include a publicly accessible that will control the direction in which the ship is
pointing and two s for the application’s width and height. There are also three private
variables. One controls the direction in which the ship is accelerating; one controls the thrust,
and one is for holding an angle-to-radians conversion.

9. Inside the constructor, initialize the directional variable with a value of 0 for
both components:

10. Follow that up with code that adds an event handler for the event of the
timer and starts the timer:

11. Create the event handler function after the closing curly brace of the
 constructor:

12. Inside the function, add the following two lines of code that will change the ship’s position by
adding the and components to the and top properties of the ship:

204

CHAPTER 5

13. Follow that with some boundary-checking code. If the ship moves completely off the canvas in
any direction, it is wrapped to the opposite side of the canvas.

14. After the boundary checks, restart the timer to keep the movement going:

15. Next, we’ll add functions that will be used to control the ship’s movement based on user
input. Create a new, publicly accessible function called . This function will convert
the angle the rocket is currently rotated to radians. The radian value is then used to calculate
acceleration along the x and y axes. The ship’s movement vector is then updated by adding the
acceleration vector.

16. Next, add two functions to control the rotation of the ship. These functions will be called
based on user keyboard input. One will decrement the ship’s angle of rotation to turn it coun-
terclockwise; the other will increment the ship’s angle of rotation, causing the ship to rotate in
a clockwise direction. The functions are passed an integer to determine the amount of change
in the rotational value.

205

COORDINATES IN SILVERLIGHT

17. The last function we will need to add to this code-behind file will be used to stop the ship
when the down arrow is pressed. Create a function called , and make it publicly
accessible. This function simply sets both the acceleration and movement vectors to 0.

We just did a whole lot of coding, but you won’t see a lot of benefit from it just yet. If you run the pro-
gram at this point, you’ll see the same result as you did the last time—the ship will sit, quietly centered
on the screen, over a star field. We’ll change all that by making use of the code we just added.

18. Open the file for editing. Since we’re doing boundary checking in the rocket
control, we’ll need to initialize the and variables we set up in the code-
behind for the rocket. Add the two following bold code lines to the constructor:

19. Add another variable declaration above the constructor. This one will be used to
control the speed at which the ship rotates as the arrow keys are pressed.

20. Inside the constructor, add an event handler for the event:

21. Create the event handler function:

22. Inside the event handler, start by creating a statement to listen for the
arrow keys:

206

CHAPTER 5

23. Now, we will make use of the functions created inside the code-behind file. Inside
this event handler, add code to listen for all four of the arrow keys. When the up arrow
is pressed, the ship should thrust in the direction it is pointing. This is done by calling the

 method you added to the ship’s code-behind. The code will update the on-screen
text to show the current x and y movement vectors of the ship as well.

24. Next, we’ll handle the down key. When the down arrow is pressed, the rocket will come to
a stop. This is done by calling the method for the ship before updating the on-
screen text to show the movement vectors once again.

25. When the left arrow key is pressed, the ship should rotate in a counterclockwise direction. The
rotate speed of the ship was declared in the code-behind. In order to rotate
the ship, the method is called and passed the variable as an argu-
ment:

26. Finally, add the code to handle the right arrow key. This code calls the method of
the object, and like the method, also passes the variable.

207

COORDINATES IN SILVERLIGHT

Press F5 to compile and run the program. Click the application to get focus for input. Press the left
arrow key, and the ship will rotate counterclockwise 5 degrees. Pressing the right arrow key will rotate
the ship clockwise 5 degrees. Pressing the up arrow key causes the ship to thrust and move forward.
The more you press the up arrow, the faster the ship will travel.

Notice that as the ship travels in one direction, you are still free to use the left and right arrow keys
to rotate the ship so that it points in any direction you like. Pressing the up arrow key when the ship
is pointed in a direction other than that in which it is traveling will create some thrust in that direc-
tion. However, to fully change the ship’s direction, you need to use the thrust key enough times to
overcome the current inertia of the ship. Figure 5-15 shows a screenshot of the application in action.
The vectorShipCompleted project includes all of the code for this project.

Figure 5-15. The completed vectorShip project, which illustrates how to separate acceleration from direction

Firing a weapon from the ship
To take this application one step further, let’s add the ability to fire a missile from the ship. We already
know in what direction the ship is pointing—it should be relatively easy to fire a missile, right?

208

CHAPTER 5

1. Open the vectorShipMissile project to code along with this example. The project is identical
to the completed ship project from the last example, except that it contains one additional
user control: a that the ship will fire. There was also a small change to the
function in the code-behind. Some checks were added to keep the thrust
within a –2 to +2 range. This was done to keep the ship from overtaking the missile.

2. The file contains the missile shape and a storyboard called that
will be used to make the missile move. While the XAML itself isn’t unusual, take a look at the
file and notice the orientation and position of the missile. The missile’s root canvas is 45 45,
which matches the size of the canvas for the ship. The missile is placed vertically, centered just
outside of this canvas. If you imagine the ship residing within the 45 45 canvas, as shown in
Figure 5-16, you can see where the missile is in relation to the ship.

Figure 5-16. The missile is oriented to the
right and sits vertically centered outside of
a 45 45 canvas.

When the user presses a key that fires the missile, the missile will be drawn in front of the ship. If
the missile were contained in a smaller canvas and positioned at the center of the ship when fired, it
would appear to come out off-center, as the ship would continue to drift in one direction while the
missile fired out in another. Placing the missile centered in front of the ship avoids this problem.

3. The majority of the code necessary to fire a missile goes into the code-
behind, so go ahead and open that file. Begin by declaring two variables. One will contain the
acceleration vector for the missile, and the other will contain a thrust value. This code goes
before the constructor:

209

COORDINATES IN SILVERLIGHT

4. Inside of the constructor, add the following code to set the missile’s
property to . This will keep the missile hidden until fired. In addition, add an event
handler for the event on the storyboard:

5. Create the event handler function for the event:

6. Inside the event handler function, add the following code to update the position of the mis-
sile on the canvas, and then restart the timer to keep it moving. The position of the missile is
updated by adding the vector components to the appropriate position proper-
ties of the missile. Remember that this event handler won’t execute until the timer for the
missile is started once it has been fired.

7. The last thing we’ll add to this file is a public method that will be called when the rocket is
fired. The public method will be passed the rotational angle of the ship, as well
as the ship’s left and top position on the canvas:

8. Inside the function, the following code will match the missile’s angle of rotation with that of
the ship and calculate the acceleration vectors. The missile is positioned at the same x,y coor-
dinate as the ship. It is then made visible, and the timer to control the movement is started.

9. Now, all we need to do is add a bit of code to the file before we can test
out our missile firing. Start by declaring an instance of the object:

210

CHAPTER 5

10. Inside the constructor, insert code to add the missile to the . The
 object is added before the object so that the ship will appear to be on top

of the missile if the two cross paths.

11. All that’s left now is to hook up a key to cause the missile to fire. We’ll be using the Enter key,
so add the for to the statement inside the
event handler, as shown. Remember that the method inside the

 file is expecting three arguments of type . When called, the method is passed the
rocket’s rotational value, and the rocket’s and top properties. The method then rotates
and positions the missile appropriately before starting the timer.

211

COORDINATES IN SILVERLIGHT

That should be all it takes. Press F5 to compile and run the program. Click the application to gain
focus, and use the left and right arrow keys to spin the ship, the up arrow key to thrust, and the Enter
key to fire. Figure 5-17 shows a missile being fired from the ship.

Figure 5-17. The ship fires a missile in the direction it is pointing.

As written, the code only really allows a single missile to be fired, and there is no collision detection
being done, so the missile won’t hit the ship.

212

CHAPTER 5

If you’d like to change the code so the ship can fire multiple missiles, remove the object declaration
and initialization code:

The code can be moved inside the case that handles the Enter key event. By adding the following code,
the application will create a new instance of the missile each time the Enter key is pressed and add it
to the canvas. Be aware of the fact that this code only adds missiles—no cleanup is being done when a
missile is off-screen, so this will eventually bog down the application’s performance if left as is.

All of the code described in this example can be found in vectorShipMissileCompleted.

Summary
We started out this chapter talking about the coordinate system in Silverlight. We’re all familiar with
the Cartesian coordinate system, but the coordinates used in Silverlight don’t quite work the same
way. In order to move an object toward the bottom of an application, you use an increasing y value.
To move an object up, you use a decreasing y value.

With a firm grip on the coordinate system, we spent some time digging into vectors, and you learned
about how they can be used to describe direction and distance for an object. One-dimensional vectors
move along a single axis, while two-dimensional vectors move along two axes. To change the direction
of a vector, one or both of a vector’s components can be multiplied by –1.

Vectors can be used strictly in the code-behind, with frame-based animations, or with storyboard ani-
mations, to create a wide variety of experiences and effects.

The line that represents a vector is related to an angle. To convert from vector to angle, use the
 function, passing the y component and then the x component. The function will return an

angle in radians.

That wraps up our discussion on vectors. In the next chapter, we’re going to dig into a little more math
and see how we can apply that to animate objects.

215

The word trigonometry is enough to strike fear into people’s hearts. This is usually
the part where everyone regrets having slept through their math classes, but not to
worry—you’ve done a bit of trig already. It’s true. In the last chapter when we were
working with vectors, I slipped a little bit in. That wasn’t so bad, was it? Good. Now
we’re going to take a deeper dive and explore what math can do for us when it
comes to animating.

What is trigonometry?
Put simply, trigonometry is the study of how the angles and lengths of sides of trian-
gles relate to one another. The word trigonometry means “three-angle measure” and
was originally developed to help study astronomy. Today, the use of trigonometry is
critical in science, technology, and programming Silverlight! That doesn’t sound too
scary, does it?

We’re going to take a nice, long look at trigonometry and trigonometric functions,
and what they can do for us in Silverlight. However, since trig is about measuring
angles, it makes sense to start with a deeper look at the topic of angles.

USING TRIGONOMETRY FOR ANIMATION

Chapter 6

216

CHAPTER 6

Angles
We touched on an important topic briefly in Chapter 5—degrees vs. radians for angular measurement.
You’re going to be seeing radians, or converting between radians and degrees, a lot in this chapter,
so it’s probably a good time to get a better idea of what they’re all about. This is important, because
while Blend/XAML will take angular measurements in degrees, any rotations you do via trigonometric
functions will give you radians, and you will get unexpected results if you forget to convert between
the two units.

Conversion, as you have already seen, is simple:

radians degrees / 180

degrees radians 180 /

One of the things I have found to be useful is to include two generalized functions in my code to
handle the conversion between degrees and radians on the fly. Internally, all of the calculations are
always done with radians, but to apply a rotation to an object or display the degrees on the screen,
there will be a need to convert. The following two functions will do the necessary conversions when
passed an appropriate value:

The functions can be called like this:

where the value 90 is 90 degrees. This function returns 1.5707963267949 radians. If we then turn that
around to test our function, we get the following:

This returns a value of 90 and some tiny fraction of another degree. You can see that the mathematic
conversions are pretty accurate, and that both of our functions are working as we would expect.

Let’s try to demystify the radian a little bit. I mentioned earlier that 1 radian is equal to 57.2958
degrees. Where does that 57 come from? The mathematical explanation is that the radian is the
subtended angle of an arc that is equal in length to the radius of the circle. Wow, that sounds pretty
complex! It’s a little easier to understand in pictures, so take a look at Figure 6-1, and it should make
a little more sense.

217

USING TRIGONOMETRY FOR ANIMATION

Figure 6-1. The radian is the subtended angle of an arc that is equal in length
to the radius of the circle.

From the figure, you can see that an arc whose length is equal to the radius of a circle will create an
angle that is exactly 1 radian. But how do we figure out that measurement?

To get to the bottom of the specifics of the measurement, we’ll work backward. We can work through
an example angle where the measure in radians is known. We’ll use a “straight” angle, which is 180
degrees. In Figure 6-2, an arc has been drawn that traces the angle, resulting in a semicircle. Because
we know the radius, we can determine the length of the arc. The circumference of a circle is equal to
2 pi r, where r is the radius. In our example, if the radius is 1, the total circumference would be
6.283185[...].

Figure 6-2. Measuring a “straight”
angle of 180 degrees

Because our arc is a semicircle, it is equivalent to half that value, or simply pi r. Since the radius of
this particular circle is 1, that means that 180 degrees = pi radians. To determine the measure of each
radian, we divide 180 degrees by pi, and we get 1 radian = 57.2958 degrees. Since 180 degrees equals
pi radians, 360 degrees must be 2 pi radians. Figure 6-3 shows some common angle measurements in
both degrees and radians to help get you oriented.

218

CHAPTER 6

Figure 6-3. Some common angle measurements shown in both degrees
and radians

So other than being a little overwhelming, what does all this mean to the way you code an ani-
mation? You need to be thinking in radians, but remember that Silverlight objects are rotated in
degrees. Using the two code functions shown previously will save you a lot of trouble. All you’ll really
need to remember is that any number your code produces as the result of a trigonometric function
will be expressed as a radian, and before you apply that rotation to an object, you need to convert
it. Let’s look at how to do that.

The following code creates a rectangle object named that is 250 100 pixels. It is filled with red
and has a black stroke. The corners of the rectangle are rounded by 7 pixels in both the x and y axes.
It also has a Rotate transform called , which rotates the rectangle 45 degrees.

Let’s assume that we have created a program to rotate the rectangle and our program has produced
a rotational value of pi .5, or 1.5707963267949 (90 degrees). Typically, the value will be stored in
a variable, but for the purposes of clarity in this example, we’ll use the value itself. To rotate our

219

USING TRIGONOMETRY FOR ANIMATION

rectangle with code, we call the named Rotate transform, and then the property we wish to access (in
this case,). We can then assign a value based on what is returned from our conversion function:

Our rectangle obliges by rotating to 90 degrees.

Now that you have a little more background on using radians as a unit of measure, it’s time for a little
refresher on triangles.

Triangles
Triangles are classified in one of two ways: either by their sides or by their angles. When categorized by
their sides, they can be scalene, isosceles, or equilateral, as shown in Figure 6-4. A scalene triangle has
no sides that are equal, or congruent. An isosceles triangle has two congruent sides, and in an equi-
lateral triangle, all three sides (and therefore angles) are congruent. Triangles are typically annotated
with letters at each angle, and referred to by their letters. The triangles shown in Figure 6-4 would be
referred to as ABC, DEF, and GHI.

Figure 6-4. When categorized by their sides, triangles fall into one of three categories: scalene, isosceles, or
equilateral.

In Figure 6-4, the isosceles triangle has two equal sides, referred to as DF and EF. Because the two sides
are equal, angles D and E are also equal. In equilateral triangle GHI, all three sides are equal, as are all
three angles.

The other way of categorizing triangles is by their angles, which results in four categories: acute,
obtuse, equiangular, and right, as shown in Figure 6-5. Acute triangles contain angles that are less than
90 degrees. Obtuse triangles have one angle that is greater than 90 degrees. Equiangular triangles have
three equal angles (which also makes them equilateral). Finally, the right triangle contains one angle
that is exactly 90 degrees. Notice that in each type of triangle, the three angles add up to exactly 180
degrees.

220

CHAPTER 6

Figure 6-5. From left to right, the triangles are categorized as acute, obtuse, equiangular, and right.

The triangles we will be concerning ourselves with for trigonometry are right triangles, because as it
turns out, the sides and angles of right triangles have very specific relationships, which are relatively
easy to calculate with just a few basic formulas, called trigonometric functions.

Let’s take a look at the relationships and how they are calculated. Right triangles like the one shown
in Figure 6-6 are typically represented by a small box that is drawn in the right angle. We will need a
meaningful way to refer to the sides of the triangle. A right triangle has two angles that are not right
angles, one of which will be our angle of interest. This angle is labeled with the Greek symbol theta
(), and referred to as angle q. The sides of the triangle can then be labeled based on their relation-
ship to angle q.

Figure 6-6. A right triangle with the sides
meaningfully labeled

The side opposite the right angle is called the hypotenuse. This side will always be referred to as the
hypotenuse regardless of which of the two nonright angles are selected. The other two sides are
referred to as being “opposite to” or “adjacent to” angle q. The side of the triangle that touches angle
q is the adjacent side, while the side farthest from angle q is the opposite.

Now that our sides have meaningful names, we can explore their relationships through trigonometric
functions. For the purposes of working through these functions, let’s assume that angle q measures
35 degrees.

221

USING TRIGONOMETRY FOR ANIMATION

Sine (Sin)
An angle’s sine is the ratio of the angle’s opposite side to the hypotenuse. To calculate the sine of an
angle with code, we use the built-in sine function of C#:

So in code, assuming our conversion functions are in place, we would use the following:

And we get 0.573576436351046.

This does not seem like a meaningful number at first glance, does it? This number describes the relation-
ship of the opposite side of the triangle to the hypotenuse. What we have determined is that sine(35°)

 0.573576436351046 opposite / hypotenuse. We now know that for any right triangle that has a
35-degree angle, the ratio of the opposite side to the hypotenuse will be 0.573576436351046.

I know you’re waiting for me to explain how this helps us. Let’s assume the hypotenuse of our triangle
is 15 feet long. How long is the opposite side?

sine(35°) opposite / hypotenuse

In order to solve for the opposite side, we multiply both sides of this equation by the hypotenuse. This
effectively negates the hypotenuse in the right side of the equation (see Figure 6-7).

sine(35°) hypotenuse opposite / hypotenuse hypotenuse

0.573576436351046 hypotenuse opposite / hypotenuse hypotenuse

0.573576436351046 hypotenuse opposite

0.573576436351046 15 opposite

opposite 8.60'

Figure 6-7. The sine of our
angle multiplied by the length
of the hypotenuse gives us the
length of the opposite side.

So there you have it—we just used the sine function to figure out how long the opposite side of a
triangle is. We’ll put this into a Silverlight context in a bit—right now, we’re going to move on to the
cosine function.

222

CHAPTER 6

Cosine (Cos)
The cosine function is the ratio of the angle’s adjacent side to the hypotenuse. To calculate the cosine
of an angle with code, use the built-in cosine function of C# (see Figure 6-8):

Once again, assuming our degrees/radians conversion functions are in place, we would use the fol-
lowing:

This gives us 0.819152044288992, a number that describes the relationship of the adjacent side of our
triangle to the hypotenuse:

cosine(35°) 0.819152044288992 adjacent / hypotenuse

Now we can calculate the adjacent side of the triangle. Start by multiplying both sides of the equation
by the hypotenuse:

0.819152044288992 hypotenuse adjacent / hypotenuse hypotenuse

This leaves us with the following:

0.819152044288992 hypotenuse adjacent

0.819152044288992 15 adjacent

adjacent 12.28'

Figure 6-8. The cosine of our
angle multiplied by the length
of the hypotenuse gives us the
length of the adjacent side.

You’re becoming a regular math whiz, aren’t you? You used trigonometry to calculate the lengths of
two unknown sides on a right triangle! We can check our work by using yet another trigonometric
function, called tangent.

223

USING TRIGONOMETRY FOR ANIMATION

Tangent (Tan)
The tangent of an angle describes the ratio between the opposite and adjacent sides of a triangle. To
calculate tangent using code, use the tangent function of C#:

Utilizing our conversion functions, that looks like this:

Which gives us the result 0.70020753820971.

Let’s check our calculations by plugging some numbers into our ratio:

tangent opposite / adjacent

tangent 8.60 / 12.28

tangent 0.70032573289902

That’s pretty close! I’m willing to call it pretty accurate given that the final sine and cosine values were
rounded off for readability.

Arcsine (Asin) and arccosine (Acos)
Arcsine and arccosine are just like sine and cosine, only rather than feeding in an angle and getting
back a ratio, you provide the ratio and get back an angle.

Arcsine is utilized with the following code:

Recall that the sine of 35 degrees is 0.573576436351046. Using arcsine, the code looks like this:

Remember that the results are returned in radians, so we’ll need to convert back to degrees:

And the result that’s produced is (drum roll, please) . . . 35 degrees!

To use arccosine, the C# code is the following:

If we plug in the ratio from the preceding cosine example and wrap it up in our
converter, it looks like this:

And once again, the result is 35 degrees.

224

CHAPTER 6

Arctangent (Atan)
Arctangent is similar to arcsine and arccosine—you hand the function the ratio, and it will return the
angle. Arctangent is utilized like this:

The full code wrapped in the converter would therefore look like the following:

This code returns 35.0045438660122.

The function will return the arctangent of the number provided as a numeric value
that is between –pi/2 and pi/2 radians, or in terms you can probably visualize a little more easily, –90
degrees to 90 degrees, as illustrated in Figure 6-9.

Figure 6-9. The Math.Atan()
function returns values between
90 and –90 degrees

Looking at Figure 6-9 should leave you with a big question. How are you supposed to rotate objects
all the way around if the tangent function only provides a set of values that covers 180 degrees? The
simple answer is to use to do the calculations.

 takes two arguments: the measurement of the opposite side and the measure-
ment of the adjacent side. Notice the specific order of the arguments being passed—the opposite
side comes first. If we insert the values we calculated earlier, and wrap the function in our

 converter method, it looks like this:

And the result we get is 35.

also returned a result of 35 when the tangent of our triangle was input. So what’s the differ-
ence between and ? returns angles as numeric values between –pi and pi radi-
ans, or –180 to 180 degrees. Figure 6-10 should help you visualize the rotation a little more clearly.

225

USING TRIGONOMETRY FOR ANIMATION

Figure 6-10. Math.Atan2(y, x) returns angles from –pi to pi.

Now, we have access to a full range of 360-degree rotation! Since Silverlight will allow you to rotate
to either a positive or negative value, the value returned from the function can be converted
to degrees and applied to an object.

Converting between degrees and radians
Let’s code up a couple of examples to take a look at a few of the concepts we’ve covered so far. We’ll
begin with a project that will start getting you used to the idea of converting between radians and
degrees.

1. Open the DegreeRadianRotation project to code along. The project contains two circles, each
with a radius of 100 pixels, as well as a couple of TextBlock labels so we can place some feed-
back on the screen.

2. Start in the file by creating the and
functions:

226

CHAPTER 6

We’re going to create two lines—one radius for each of the circles in the application. One will be
rotated in degrees and the other in radians. The rotation of each circle’s radius is based on the sine
and cosine functions, which will be passed a changing angle.

3. We will need to track two angles and two rotation speeds—one expressed as degrees and the
other as radians. To position the radius correctly, two variables are created to store the
center of our circle elements. Add the following set of variables just before the
constructor. Notice that the variable, which will be used to calculate the radian-
based rotation, is .01745. This is the equivalent of 1 degree.

4. We need to do a bit of initial setup to get our radii to draw on the screen. Inside the
constructor, just below the code that says , add the following code.
These two blocks create the lines that are the radii for our circles. Both have a stroke that is
2 pixels wide. The first one has a blue color applied, and the second is colored red. Once the
strokes have been defined, the lines are added to the canvas.

227

USING TRIGONOMETRY FOR ANIMATION

5. Immediately following that code, we’ll add some code to initialize our variables with the center
values of each circle. Remember that a line is defined by two pairs of points. A circle’s radius
goes from the center of the circle to some point along the circle’s edge. Since we have not yet
calculated the location of our radius lines, we’ll hide them by setting the start and finish x loca-
tions to the center x point, and both the start and finish y locations to the center y point.

6. This project already contains a timer called , so add a event handler, and
then get the timer going:

7. Depending on whether you’re letting Visual Studio create the event handler function for you,
you may also need to add the following handler code after the closing curly brace of the

 constructor. If this code isn’t in your program, you need to add it.

At this point, the program will compile and run, but nothing will happen. We’ll need to code up the
good stuff. We’ll start with the radius that will track degrees for us. Our angle incrementer would
count 358, 359, 360, 0, 1, and so on. We know that 360 degrees is equivalent to 0 degrees, and we
don’t want to calculate the location of the radius line twice, so we’ll put our check in at 360.

8. The following code acts to reset our angle. If the angle is 360, the endpoint of the line is drawn
according to the calculation shown—this draws the line at the correct location (359 degrees)
before the angle is actually incremented to 360 degrees. The angle is then reset to 0 degrees,
effectively skipping 360.

The x location of the line coordinate pair is calculated based on the cosine of the angle
passed, and the y location is calculated based on the sine function. Add this code inside the

 event handler function:

228

CHAPTER 6

9. Still working inside the event handler, add an clause to the statement that will do the
majority of the work. This one starts out similarly to the statement—by calculating the coor-
dinates for the endpoint of the line. The angle is then incremented by 1 degree, the text on the
screen is updated to show the current value of the angle, and the timer is restarted.

You can compile and run the program now if you’d like to take a look. The radius will draw in for the
circle on the left and will be calculated in real time as the angle is altered. This causes the endpoint of
the radius to move around the outside of the circle, and the radius line to sweep through the rotation.

Since the timer is already being used to create the motion for the radius on the left, we’ll cheat a bit
and piggyback the version that will use radians. Even though the second radius is being calculated in
radians, it still moves the same distance over the same period of time, so this will work well.

10. Type in the following code right after the closing curly brace of the clause. Notice that
this works exactly the same, except that the calculations are not converting the angle to radi-
ans first. Since the angle is already expressed in radian values, there is no reason to convert.
Radians have a tendency to be a little lengthy on the screen, so the output is formatted to
display only two decimal places, though the actual number is not changed. The final step is to
increment the angle being used for the radius using radians by the variable.

229

USING TRIGONOMETRY FOR ANIMATION

Now when you compile and run, you’ll see both radii sweeping around their rotations. Note that the
circles drawn in the interface are purely for the reference of the person viewing the application. The
circles around which the radii are traveling can be arbitrarily moved in the code by altering the center
points and radius values. If you are so inclined, you can easily change the application to make one or
both of the radii move counterclockwise, as shown in Figure 6-11.

Figure 6-11. One or both of the radii can be made to rotate counterclockwise.

To change the radian-based radius, simply change the code that increments the angle so that it decre-
ments the angle instead:

230

CHAPTER 6

To change the degree-based radius, it is necessary to change the code that increments the angle, as
well as the conditional statement that checks to see if the end value has been reached:

The final code for this project is in the DegreeRadianRotationCompleted project.

As you can see from the example, working with an angle as a degree value or a radian value will give
the same results, but sticking to radians keeps the code a little cleaner and more straightforward, since
no conversions are taking place. This example was fairly basic—you can probably imagine that a com-
plex application with a lot of conversions could get a little tricky to keep track of. This is why it’s best
to stick with radians in the code as much as possible, as we will be doing moving forward.

How does this relate to work you’ve done in Silverlight?
So you’re sitting there looking at all the trigonometry and related
functions and wondering how in the world right triangles and circles
have anything to do with anything you’ve done in Silverlight. Let’s take
an example vector like the one shown in Figure 6-12.

Looks familiar, right? A vector is the radius of a circle when it comes to
doing calculations, and the start point of a vector (or more accurately,
the coordinates of an object traveling along the vector) is the origin.
Figure 6-13 shows the same vector with a circle drawn for reference.

If we drop a line from the endpoint of the vector to the y coordinate
of the vector’s start, and continue that line back to the origin of the

Figure 6-12. An example vector

231

USING TRIGONOMETRY FOR ANIMATION

circle, we’ll have a right triangle like the one shown in Figure 6-14. All of a sudden, we can use what
we’ve learned to figure out all kinds of useful information about the triangle.

Figure 6-13. A vector is the radius of a circle. Figure 6-14. A vector forms a right triangle.

Think back to the spaceship example from Chapter 5. Our spaceship is traveling along a vector, and
we turn the spaceship and hit the thrust button. Figure 6-15 shows the triangle and calculations that
are used in this case.

Figure 6-15. A vector with the spaceship and
trigonometric functions overlaid

232

CHAPTER 6

If I now throw the following code at you, you’ll probably have a much better understanding of what
is happening. Angle q is converted to radians, and then the and functions are used to
determine the acceleration along the x and y axes:

One thing you don’t see in the calculations is the length of the hypotenuse (or vector). The calculations
are based on a unit circle, which is a circle whose radius is 1. The cosine calculation determines how
far the ship moves horizontally when it moves one unit in the specified direction. The sine calculation
determines the vertical distance per unit. The thrust variable is what will turn “units” into a meaningful
measurement like “pixels” within our application. Starting to see how everything ties together here?

Free-form rotation
Next up, let’s take a look at a real-world example of how we can put the function to
work for us. We’re going to create an application that allows us to rotate an object by dragging a han-
dle with the mouse. To code along, open the ImageRotate project. This project contains a

 file that has a simple blue gradient fill, and a user control called .

1. Open the file, and take a look at how the file is structured. There is a root
Canvas called ItemCanvas, which contains an Image element and a yellow Ellipse element. The
image does not currently have a source assigned—we will be doing this programmatically. The
Ellipse element is named and will be used as a handle to rotate the entire container
canvas. Note that the container canvas has a named Rotate transform available.

2. This time, all of the work is going to be done inside the user control to make the control reus-
able, so open the file.

233

USING TRIGONOMETRY FOR ANIMATION

3. Since we’re creating a handle that will be used to rotate an object, we’ll need a flag to deter-
mine if the mouse has been captured.

We’re also going to use three variables. The first, , is used to get the cur-
rent mouse position. The next, , is used to store the last position of the mouse
pointer. The last, , is a public variable that will be assigned a value when the
object is instantiated and is used to provide easy access to the center coordinate of the canvas
container.

The final three variables we need are all of type . We will be storing a
calculation, a calculation, and the difference between the two as .

The code for all of the variables is shown in the following listing. This code should be added
before the constructor.

4. Following the call in the constructor, add event han-
dlers for and on the element named :

5. Inside the event handler function for the event, add the code shown
in the following listing. This code should look somewhat familiar to you. We are creating a

 object named , on which the mouse is captured. The cursor is changed
to a hand, our Boolean flag that is used to keep track of a drag operation is set to , and
the variable is initialized with the current position of the mouse.

234

CHAPTER 6

6. The code for the event handler function is used to once again create a
 object named , from which the mouse capture is released. The Boolean

flag is changed to , indicating that the mouse is no longer being captured, and the cursor
for the item that was clicked is reset to the default.

7. We will also need to add our function to convert radian values to degrees, because we are
rotating an object. The Rotate transform angle value for an object in Silverlight is expressed in
degrees.

8. Now for the good stuff. The handle will point in the direction of the mouse as the mouse
moves. Since this is a move operation, we’ll need to add an event handler for . This
code goes inside the constructor with the other handlers:

9. Inside the event handler function for , we’ll do the work of figuring out how much
the image should be rotated based on the current location of the mouse pointer. The first
thing the event handler does is get the current position of the mouse and store it in the

 variable.

Then, if the mouse is being dragged, is calculated by passing the coordinates that
result when the center coordinates of the canvas being rotated are subtracted from the last
pointer position to the method. Notice that they are passed y and then x.

Next, is calculated using the same method, but by subtracting the canvas center
position from the current mouse position.

The difference between the two angles is determined, and the Rotate transform angle of the
Canvas object is incremented by the difference after it’s converted to degrees.

The variable is then updated to the current mouse position for the next time the
mouse moves.

235

USING TRIGONOMETRY FOR ANIMATION

Now, all we need to do is add some code to the file to instantiate our
object and see what kind of results we get.

10. We will be assigning images to Image elements, so we’ll need to add a library reference to the
list of references at the top of the page:

The library makes it possible for us to work with bitmaps.

11. Before the constructor, create a new instance of the object called
.

12. Inside the constructor, assign the source of the object’s Image element,
as shown in the following code listing. I’ve already added two sample JPGs to the project for
you to work with. The code tells Silverlight where the image is relative to the
application.

The and properties of the object are then set to 100 to position it near the
top-left corner of the root canvas. Next, the public property for the object is
assigned a value. The angle of the object is preset to –15 degrees so it looks interesting when
it loads, and the object is added to the Canvas.

236

CHAPTER 6

Compile and run the application. You should get something similar to Figure 6-16. Dragging the yellow
handle with the mouse will rotate the image. Notice how the handle always points to the location of
the mouse pointer.

Figure 6-16. The ImageRotate project creates images with rotate handles.

When the program runs, the code that does the rotation is essentially saying “Here are the coordinates
of the mouse. Draw a line from the center of the canvas to these coordinates, calculate the angle
that forms, and then calculate the angle difference between this angle and the last angle.” This code
runs constantly as the mouse moves, calculating the angle offsets in real time. In the application, the
movements can be very small, but Figure 6-17 shows larger-scale movement to illustrate the code
functionality.

237

USING TRIGONOMETRY FOR ANIMATION

Figure 6-17. As the mouse is dragged, the code constantly calculates the new angle based on the distance from
the center of the canvas to the mouse position.

Since the user control is completely self-contained, it takes about a minute to add another
instance of the object. You can add the following code to get a second image in the application.

13. Start by declaring a second object, named :

14. Next, set the initial properties for the new object as per the following code listing. Be sure to
reference the new object () when setting the property, or the rotation
will give unexpected results.

238

CHAPTER 6

If you compile and run the project at this point, you’ll see both of the images drawn, and each can be
rotated independently. If you’d like to use your own images, add them to the project by right-clicking
the project name in Visual Studio’s Solution Explorer and selecting Add New Item from the menu, as
shown in Figure 6-18. They will then be available for use in the same way as the original two. The code
shown in this example is available in the ImageRotateCompleted project.

Figure 6-18. Right-click the project in Solution
Explorer, and select Add New Item to add your
own images to the project.

239

USING TRIGONOMETRY FOR ANIMATION

A little help with the visualization
We’ve gone through triangles, angles, and a lot of math, and perhaps you’re kind of getting it but not
sure how it all pulls together.

At , I came across an applica-
tion originally written by Trevor McCauley that does a great job of illustrating the calculations involv-
ing right triangles for moving objects. With Trevor’s permission, I’ve included a Silverlight version in
the projects for Chapter 6 as RightTriangle.

The application, shown in Figure 6-19, contains a red ball object that is rotating in a circular path. As
the ball rotates, a red right triangle is drawn, with annotations for the and
calculations based on the hypotenuse of the triangle. The angle of the ball object is tracked via a small
blue circular path in the center of the application, and all of the associated calculations are displayed
on the screen. There is also a Pause button on the screen that allows you to temporarily suspend the
action of the application to take a closer look at the number.

This application is not about the “how,” so we’re not going to dig into the code; it’s more for illustra-
tive purposes to help you visualize the calculations you’re performing and how triangles and circles
relate to rotational angles and distances.

Figure 6-19. The RightTriangle application illustrates the right triangles created by trigonometric functions on a
moving object.

240

CHAPTER 6

Sine curves
Sine curves, or waves, like the one shown in Figure 6-20, are probably something with which you are
already familiar. The sine curve is related to the sine function we used earlier—each of the points
along the length of the wave is a result of feeding an angle into the function.

The horizontal points are the values of the angle being used, ranging from 0 to 2 pi radians (0 to 360
degrees), while the vertical points are the resulting sine values for the angle at that particular point.
To help you visualize the association between sine, cosine, and their related curves, I have included an
application called unitCircleSin.

The application, shown in Figure 6-21, draws a real-time graph of both sine and cosine curves as they
relate to the angle of rotation. You can turn off either curve with the check boxes on the interface.
You will also see red lines within the circle that show the right angles created by the rotating radii.
Notice that the values for sine and cosine fluctuate between 1 and –1.

Figure 6-20. A basic sine curve

241

USING TRIGONOMETRY FOR ANIMATION

Figure 6-21. Graphing sine/cosine curves

This application is another intended to illustrate some of the concepts we’ve been discussing, so we
won’t dig into the code, but feel free to explore it on your own.

What we will be building is a sine wave generator application, which will allow a user to modify the
amplitude or frequency of a sine wave by manipulating sliders in the interface. As a slider’s value
changes, the waveform will also change, being redrawn in real time.

In case you’re not familiar with the terms, Dictionary.com defines amplitude as “the absolute value of
the maximum displacement from a zero value during one period of an oscillation.” Think of amplitude
as the overall height of our waveform. Frequency is “the number of cycles or completed alternations
per unit time of a wave or oscillation.” As such, frequency will determine the density of waves along
our curve. Figure 6-22 illustrates both of these definitions against a waveform for you.

242

CHAPTER 6

Figure 6-22. Amplitude and frequency of a sine waveform

To code along, open the SineWaveGenerator project. The file for the project con-
tains the usual Canvas, which is filled with a gradient brush. There is also a Border object
used to make a thin white border for the application. To handle the drawing of the waveform, there
is a Polyline object. For input, there are two sliders and associated TextBlock labels. There is also a
TextBlock label for the application title.

1. All of the code for this project is contained within the file, so open that
file for editing. We’ll begin by adding the variables we’ll need to draw the waveform. The
first is , which is used to calculate the angle that our sine graph is based on. Next is
a , which is literally a collection of points. We will calculate each point for
the waveform, add it to the , and then assign the to the
Polyline to draw the waveform. The variable is used to store the next point being
calculated along the graph of the waveform. Finally, we need variables for the amplitude and
frequency of the waveform. Place these variables before the constructor.

243

USING TRIGONOMETRY FOR ANIMATION

2. The first thing we need to do is to write a function that creates the waveform. The application
is 800 pixels wide, so the calculations will run from 0 to 799. The first line of code within the

 loop in the following listing increments the angle by 2 degrees converted to radians and
multiplies it by the frequency. Smaller angle increments will result in more waves fitting on the
screen, while greater increments will produce fewer waves.

Next, the coordinates for the next point of the waveform are calculated. The wave fills the
screen, so the x coordinate is equal to the value of the variable , while the y coordinate is
equal to the sine of the current angle times the amplitude of the wave. By subtracting this
number from the height of the application divided by two, the wave will be centered verti-
cally.

Once the coordinate has been determined, it is added to the , which is then
assigned to the Polyline object.

This code goes after the closing curly brace of the constructor:

3. As you can see, drawing the curve is a fairly simple procedure. All we need to do now is call the
 function from inside the constructor. The complete code listing at this

point is shown following:

244

CHAPTER 6

When you run the program, you should get a sine wave drawn on the screen like the one shown in
Figure 6-23.

Figure 6-23. The default sine wave generated by the program

4. Let’s hook up the sliders for frequency and amplitude. Inside the constructor, just
below the call, add the following code. This code sets minimum and
maximum values for each of the sliders and also “presets” them to the values already assigned
to the and variables. The label for each slider is also updated to show the
current value of the slider.

245

USING TRIGONOMETRY FOR ANIMATION

5. After that code, add event handlers for the event on each slider. Watch this
code—both event listeners are calling the same event handler— . This
cuts down on some code duplication.

Your constructor should now look like the following listing:

6. The last addition to this program is the event handler code, which is shown following. This code
will execute any time a slider’s value changes. The code clears the current ,
effectively deleting the prior waveform. It then sets the and variables to
the values represented on the slider controls, and updates the text labels for each slider to
show the current value. Finally, the function is called to draw the new sine wave.

246

CHAPTER 6

Now when you run the program, you can manipulate the sliders, and the waveform drawn in the
application will change accordingly. The SineWaveGeneratorCompleted project contains the final-
ized code for the project.

Oscillation
You’re probably playing with the project and thinking it’s pretty nice, but wondering how in the world
this will help you do what you’re trying to do in Silverlight. What happens if you remove the x compo-
nent from the wave? That’s right! You get smooth up-and-down oscillating movement.

1. Open the SimpleOscillation project to code along with this example. We’re going to make
a slight change to the instantiation of the Silverlight user control here, so open up the

 file, and scroll down to the tag shown here:

2. Just beneath the line, add the following line:

247

USING TRIGONOMETRY FOR ANIMATION

As the number of objects we’re moving programmatically increases, this change will help Silverlight
maintain a refresh speed of 30 frames per second (FPS) to keep our motion as smooth as possible.
This should help maintain a more consistent experience from machine to machine.

3. In the file, create an object instance for the object, as well as variables
to hold , , , and values. The code in the following listing goes before
the constructor:

4. Inside the constructor, instantiate the object at the horizontal center of
the application:

5. Initialize the variable with the vertical center of the application:

6. There is a storyboard timer called already in the file. Add an event han-
dler for the event on the timer, and then call the timer’s method:

7. Inside the event handler function for the timer’s event, add the following code. This
code will move the ball using a sine calculation to determine a y range of values before incre-
menting the angle and restarting the timer to continue the animation.

Run the application. The ball object will move up and down smoothly. Remember that the result of the
 calculation will be a value between –1 and 1. This value is multiplied by the to

determine the offset for the ball from the location.

If you would like to change the distance the ball travels, simply modify the variable, and run
the program again. Changing the variable will change the y location around which the ball is
oscillating. Changing the variable will alter the rate at which the changes, which will speed
up or slow down the oscillating motion.

The code shown in the previous example is available in the SimpleOscillationCompleted project.

248

CHAPTER 6

A practical use for oscillation
The movement of the ball is pretty smooth, but let’s take a look at a more practical application.

1. Open the GuitarStrings project to code along with this example. The project contains a guitar
body object and a guitar string object. We’re going to add six strings to the guitar, and make
them vibrate as the mouse passes over each string.

2. We’ll start coding up the file by declaring some variables. Much like the
ball, the object has variables for , , and . There is also a variable
called , which is used to keep track of the setting for each string (the use of
this variable will become clearer in a few moments), as well as a variable. Both and

 are public variables, so they are accessible from the main program. This code goes just
before the constructor:

3. Inside the constructor, is used to store the value that is set
when the object is instantiated from the main code. The object
has a storyboard timer in it called that is used to make the string move, and an event
handler is added to the event for this storyboard.

4. Each string handles its own oscillation movements inside the event handler. When
the storyboard completes, a quick check is done to see if the value is greater than 0. If
so, the string is moved with our familiar oscillation code, and the timer is restarted. Notice that
the value is dampened with each pass. Real guitar strings do not vibrate endlessly, and
neither should ours. By dampening the range, we can make the string vibrate widely when first
hit and then fade down to no motion over time.

If the has dampened down to 0 or lower, the movement is stopped, the angle
is reset, and the value is reset to the original value in order to prepare for the next time
the string needs to move. This code goes inside the event handler, which is placed outside of
the constructor:

249

USING TRIGONOMETRY FOR ANIMATION

5. That’s all we need to do for the strings. Now, we need to work on our interface a bit, so open
the file for editing. We already know we’re going to need an instance of
the guitar body object, as well as six instances of the object. In addition, we will use
the mouse to determine if a string has been plucked, so we need a object to store the
current mouse position, as well as one to store the last mouse position. All of these variable
declarations are placed just before the constructor:

6. Inside the constructor, instantiate all of the objects. Normally, guitar strings are
attached to both the bridge and the tuning pegs at the top of the neck, and vibrate in the
middle. We are going to cheat a little bit and have the whole string vibrate, so we’re going to
get close up on the guitar body. As such, our guitar is scaled up to 450% and positioned appro-
priately before being added to the LayoutRoot Canvas.

Next come the strings. Each has its and property set. Notice that the public vari-
able is set along with the top property in order to create the point of origin for the oscillating
movement that was created in the object. The thickness of guitar strings varies,
and since our object is made with a line stroke, we can adjust the stroke to create
strings of varied thickness. We also define a range—the thicker strings of a guitar vibrate more
widely than the thinner ones. After each string is set up, it is added to the Canvas.

The next-to-last line of this section sets the y component of the variable to
be equal to the height of the application. This avoids having the strings play inadvertently when
the application is loaded if the mouse is being moved toward the top of the application.

The last line sets up the event handler for the Canvas. The event
handler function for is where all the action takes place for the application.

250

CHAPTER 6

251

USING TRIGONOMETRY FOR ANIMATION

7. The event handler code is shown in the following listing. The idea here is to only
strum a string when the mouse is moved toward the bottom of the application. To do this, we
start by getting the current position of the mouse. We can then check the current mouse posi-
tion against the last mouse position to determine which way the mouse is moving, and if it has
encountered the y position where a string is located.

The first check says, “If the mouse is located at 344y or greater, and the last mouse position
was less than 344y (meaning it was above the string), then play that string’s story-
board.” Each of the other five strings is checked the same way, with the appropriate y value
inserted for the tests.

When the application is run, the guitar and strings are drawn in the application, as shown in Figure 6-24.
When the mouse is positioned above the strings and moved downward, the strings will vibrate as they

252

CHAPTER 6

are encountered and continue to oscillate until the range dampening cuts the motion down enough to
reset the string for the next pass.

Ideally, a range of y values would be provided to test for each string hit, as it is possible to move the
mouse over a string without a hit being registered. In addition, a string should not be reset until the
vibration has dampened enough to drop below the threshold set in the user control, so you cannot
continuously strum the strings.

Figure 6-24. The guitar strings oscillate as the mouse is moved across them.

The GuitarStringsCompleted project contains the final version of the code for this project.

Horizontal oscillation
Just as you can create smooth up-and-down oscillation using a sine wave, smooth left-to-right move-
ment can be achieved with cosine. Remember that sine is the y component of our triangle calcula-
tions, and cosine is the x component.

1. Open the SimpleOscillationsCompleted project.

2. Look in the file for the line of code that creates the motion:

253

USING TRIGONOMETRY FOR ANIMATION

3. Update that line of code to the following, in order to make the ball move from left to right:

4. As demonstrated in the application that generated the sine and cosine wave graphs earlier, it
generally won’t make any difference if you’re using sine or cosine—either will generate a range
of values between –1 and 1 multiplied by whatever distance range you choose. For example,
the following code gives the same result as the code in step 3:

5. Once the ball oscillates horizontally, a few lines of code can be added to the project in order
to add some linear motion along the y axis to the ball as well. Start with a variable before the

 constructor to track the y position:

6. Inside the event handler, add two lines of code. The first positions the ball
to the current y position, and the second increments the y position:

Press F5 to run the project. As the project runs, the ball oscillates horizontally as it moves from the
top of the application toward the bottom. Having linear motion combined with oscillating movement
opens up some possibilities.

Falling snow
To code along with this project, open the Snowflakes project. The project contains a snowflake object
with both Scale and Rotate transforms. The file contains the Canvas with
a black/gray gradient fill, and a storyboard timer called . This project has a lot going on, so
let’s get started!

When run, the completed project will create a number of snowflakes that are positioned randomly
about the application. Each flake will be scaled randomly, have a randomly generated y velocity, and
a random transparency. The snowflakes will fall slowly, drifting back and forth. When a snowflake
reaches the bottom of the application, it will be placed back at the top, in order to keep a continuous
snowfall going.

1. Start by coding up the file. We’ll start off with a variable to maintain
the flake’s position. Next are four variables related to the drifting motion of the flake. These
should look similar to our previous examples: , , (or point of origin), and

. Next comes a variable for the speed at which a flake will fall. Finally, we have a public
variable used to hold the height of the main application, as well as a variable that will be used
to generate random numbers.

254

CHAPTER 6

2. This time, we’re going to modify the constructor in order to pass variables as each
flake is initialized by the main application. Normally, the code looks like this:

We want to change ours to accept three values. Our main application will generate
random numbers for the position and opacity and pass them to the object as it is
instantiated.

The object will also do some self-configuration. The code shown in the following few steps
is placed after the method.

3. The first line of the following code generates a random number between 0 and 5 for the flake.
If the number generated is less than 1, then it is made 1. This will ensure that all of the flakes
in the application actually fall.

4. Next, the point of origin for the flake’s drift is assigned using the left position passed when
the flake was instantiated. In addition, a range of up to 50 pixels is generated, and a random
starting angle for the drift is selected. The random angle is important—this adds some variance
to where in the drift motion each flake starts. Without it, all of the snowflakes would drift in
unison, which would not look very natural.

5. Next, a scale value between .25 and 1 is generated for the flake. Once the scale value has been
generated, it is assigned to both the x and y scale values for the flake in order to keep the scal-
ing symmetrical.

255

USING TRIGONOMETRY FOR ANIMATION

6. The last bit of code in the constructor positions the flake, sets the opacity, and
stores the position for when the flake is moving:

7. Now, we need to add a function that is called from the main code in order to move each flake
when needed. This is a public method called that is placed after the
constructor. The function begins by updating the and variables for the snowflake.
The variable simply moves the flake down the screen. The variable calculates the horizontal
oscillation value that causes the snowflake to drift. Following this is a test to see if the flake has
moved below the bottom of the application. If so, the flake is moved to the top of the applica-
tion. Finally, the actual position of the flake is updated, and the angle used to determine the
drift oscillation is incremented. This is a fairly simple bit of code that does a whole lot of work
for us.

8. Now that the snowflake code-behind is all set, move to the file. This is
where we’ll go about generating our snowflakes and getting them moving.

9. Before the constructor, start by declaring three s. In C#, a is similar to an
, only it provides some methods that save time and code later (as you will see). The first

 will contain all of our snowflake objects. The second will be used to hold the starting
x and y positions of each snowflake, and the third will hold the opacity values generated for
each flake:

10. After the s are declared, declare an integer to give us control over how many flakes will be
on the screen, and a random number generator for use in initializing the flakes:

256

CHAPTER 6

11. With the variable declarations in place, move to the constructor. The following
code comes after the method. We’ll start by initializing our s
according to the length specified by the variable:

12. Next, add a loop to generate the necessary number of x and y starting positions and opacity
values:

13. With that in place, we’ll call the function (which we’ll code up momentarily),
add an event handler for the event on the storyboard, and start the sto-
ryboard:

14. The function referenced previously is shown in the following listing. Place this
code after the constructor. The sole purpose of this function is to create snow-
flakes based on the values that were just generated for starting positions and opacity values.
This is done by once again running a quick loop.

The code instantiates a new flake using the corresponding x and y starting positions and opac-
ity. The newly instantiated flake is then added to the of flakes. The flake instance has its
public variable assigned in order to track the application height, and is then added
to the Canvas:

15. The last bit of code to add before compiling and running the application is the event handler
code for the event on the storyboard. This code is very straightforward—
for every flake in the , the method is called. All of the flakes will have
their on-screen positions updated, and then the timer will be restarted.

257

USING TRIGONOMETRY FOR ANIMATION

When the application runs, the snowflake object is instantiated 250 times randomly around the screen.
Each flake is randomly scaled and drifts randomly, as shown in Figure 6-25.

Figure 6-25. The application creates flakes that drift as they fall.

We can add a little polish to the application by making each flake spin as it falls. This can be accom-
plished with just three lines of code inside the file.

16. Add a variable declaration to hold the spin value for each flake:

258

CHAPTER 6

17. Inside the constructor, add the following line of code that generates a random
spin speed between 0 and 5. It’s OK if some of the flakes do not spin as they fall.

18. The final line of code goes into the public method, and simply increments the
rotational angle of the flake by the generated value:

Now, the flakes will spin a bit as they are falling, which makes the application a little more interesting
to look at.

Flashing and blinking
You’ve seen how a sine or cosine calculation can be used to make an object oscillate. You’ve also seen
how to combine linear motion with the oscillations to create interesting applications, like one that
creates falling snowflakes. Try to think outside the box a little bit when working with sine and cosine,
though.

You know that generated sine and cosine values are between –1 and 1. You can apply these values to
other properties on an object to get interesting effects. For example, applying a sine calculation to the
scale of an object would result in the object appearing to pulse. You can also attach such a calculation
to the property of an object to make an object blink or fade in and out. Let’s take a look at
how to do that.

1. To code along with this example, open the Flashing project. The project contains a city street
scene in the file, as well as a storyboard timer called . In addition, it has
a user control, which is a typical construction-type barricade with two orange lights
on top. The lights on the barricade are made of four parts—two “on” versions that have white
gradients, and two “off” versions that are flat orange. The on and off states for the lights are
positioned directly on top of one another, and nothing has been hidden or made transparent.

2. The purpose of this application will be to make the lights blink off and on, opposite one
another. When one light is on, the other will be off, and vice versa. All of the code for this
application will be placed in the file, so open that file for editing.

3. Begin by declaring an instance of the object, and adding variables to handle the
angle and speed of the flashing effect. Add the following code before the con-
structor:

4. Inside the constructor, add the following code after the
method. The first few lines position the object instance and add it to the
Canvas:

259

USING TRIGONOMETRY FOR ANIMATION

5. Next, an event handler is attached to the event for the storyboard, and the
storyboard is started:

6. Add the event handler function. Inside the function, add the following
code that calculates the opacity of the left and right barricade lights. Since Silverlight’s
values run from 0 to 1 (0% to 100%), no extra work has to be done to the calculations. The first
light has set to the direct result of the calculation, and the second
light simply uses the inverse value. The variable is incremented, and the storyboard is
restarted to keep the animation going.

When the application runs, you’ll see the street scene and the barricade flashing, as shown in Figure 6-26.
If you wanted the lights to blink in unison, you could change the code so that both values
were assigned the result of the sine calculation. The finalized version of this project is available as
FlashingCompleted.

Figure 6-26. The barricade’s flashing lights are driven by a sine calculation.

260

CHAPTER 6

Combining oscillations and rotations
Of course, you can get much fancier with the way you’re applying the calculations to various proper-
ties on objects. Let’s code up something a little more complex. The next project, which will create
some falling leaves, will combine many of the concepts we’ve covered. The leaves will be random-
ized much like the snowflakes, but as they fall and drift, they will rotate as well. We’ll also randomize
the fill for the leaves to give the application a little more of a natural feel. We’ll use the concept of
vector-based movement, and sine calculations for the drifting. We’ll also tie a sine calculation into the
rotational angle of each leaf object so that the leaves will float as they fall.

1. To code along with this example, open the FallingLeaves project. This project contains the
 file, which is a simple canvas with a background fill color, and our storyboard

timer, called . There is also a user control, which is a simple alder leaf shape
with a gradient fill. The object has a Rotate transform called and a Scale
transform called .

2. We’ll code up the file first. Begin by declaring variables before the con-
structor. Add a public to store the application height:

3. Next, add the following private variables. We’ll need a to store the starting position, a
 for the speed at which the leaf will fall, and then four s to control the leaf drift.

They include the angle, range of drift, drift origin, and drifting speed. Finish up with a random
number generator.

Currently, the constructor for the object looks like the following code:

4. As we did with the snowflake, we’re going to modify the code so that we can pass variables to
the object for use in initializing. Edit the code, so it looks like the following:

5. Next, we’ll add code after the call inside the constructor. We’ll
start by generating a random number for scale between .25 and .50 (25% and 50%).

261

USING TRIGONOMETRY FOR ANIMATION

6. Next, add the following code to generate a random value between 0 and 5 for the speed. We’ll
test for a value of 0, and change the value to 1 if we find it. Since this will be our y velocity, this
will ensure that our leaf will fall.

7. Add the next few lines to generate random numbers that will be used to make the leaf drift.
The first is the side-to-side range for the leaf, the second is a starting angle seed, and the last
determines the x coordinate point of origin for the drifting based on the values passed to the
constructor.

8. Now, add the following code, which sets the initial left and top positions for the leaf and stores
them in the variable:

9. Now, we’re going to generate some random colors for the leaf’s fill. The fill is a gradient with
two stops, and . For the first stop, we will generate a number
between 185 and 255, and use that as the red component of the color:

10. The second color stop is based on the first. The value generated for the first color stop is
divided in half, and used as the green component of the color. The red component
remains the same as it was in the first stop. This has a tendency to produce a more yellow- or
orange-tinted color.

11. That does it for the constructor. Next, add the following function to move the leaf. Start by
incrementing the variable by the , and then calculate the drift for
with our tried-and-true oscillation code. Increment the for the next pass.

 A quick check is done to see if the leaf has moved beyond the bottom of the application. If so,
it is relocated back at the top. Finally, the leaf is moved to the new position.

262

CHAPTER 6

That’s all we need for the leaf for the time being. It won’t yet be rotating—we want to generate
the leaves and make sure everything is working correctly before adding additional code to this
object.

12. Next, we’ll move to , so open that file for editing.

13. Before the constructor, declare objects to hold our leaves and starting x,y
positions. We’ll also need variables to determine the maximum number of leaves to draw in the
application, and an integer called that will be used to flip some of the leaves
along the x axis to add some randomness to the application. Finally, we have a random number
generator.

14. Inside the constructor, add the code shown in the following listing after the
 method. This code assigns a length to the used in this project.

The positions are then populated via a quick loop. We finish up by calling the
 function, setting up an event listener for the event of our

storyboard timer, and starting the storyboard:

263

USING TRIGONOMETRY FOR ANIMATION

15. Next, write the function. The function runs a loop that creates and positions
each new leaf at the corresponding positions stored in the . The leaf is then
added to the . The leaf’s variable is set to the application height. A
test of the value is done. If it is found to be 2, the leaf is scaled to –1x to flip
it along the x axis. The variable is incremented, and tested to keep within a
range of 0 to 2. Finally, the leaf is added to the Canvas.

16. The last bit of code we need before we can test is the event handler code for .
As with the snowflake example, this code goes through the objects in the
and calls the function for each one before restarting the storyboard that
moves all of the leaves in the application.

At this point, the application should compile and run, and looks like Figure 6-27. We have 250 leaves
on the screen, some are flipped, and there are a variety of colors. The leaves drift from side to side
as they fall.

Changes to the variable will change the number of leaves that appear in the application. If
you would like more leaves to flip, you can adjust the test done against the variable
in the function. If you feel it’s something you may need to change often, you can set up
a variable to make updating the number easy.

264

CHAPTER 6

Figure 6-27. The nearly completed FallingLeaves project in action

Now that we know our application is in good shape and runs, we’ll add the code that makes the leaves
rock back and forth with the drifting as they fall. The nice thing about this addition is that we already
have the values we need. The drifting oscillation has an angle associated with it, and we’ll use that to
determine an angle for the spin.

17. Inside the file, find your function. Add the following line of code.
Recall that the object has a Rotate transform called . This code uses the angle
of drift and existing drift range to determine a rotational value for the leaf as it falls. By multi-
plying the value by .5, the angle is dampened and makes the rotations a little less extreme.

Now when you run the application, the leaves will have a little more natural motion to them, as shown
in Figure 6-28. Since the rotation is tied to the drifting oscillation, the leaf will rotate in the direction
in which it is traveling. The code described in this example is available in the FallingLeavesCompleted
project.

265

USING TRIGONOMETRY FOR ANIMATION

Figure 6-28. The final version of the FallingLeaves application

Circular movement
The next example we’re going to look at will use the sine and cosine of an angle to create circular
motion for an object. This type of motion uses an angle and a radius to calculate the sine and cosine
values that determine the x,y position of an object for the given angle.

1. Open the CircularMovement project to code along with this example. The project contains
a background canvas that contains a gradient fill, a storyboard named , and a user
control.

2. All of the code for this project is placed in the file, so open that file for
editing.

266

CHAPTER 6

3. Add the variable declarations shown in the following listing. This code declares an instance of
the object and then our familiar , , and values. We’ll also be using a
center point in this project.

4. Inside the constructor, add the following code to assign values to the
and variables. In this case, I’ve used the center of the application. Next, the ball is
added to the Canvas. This section is finished off by adding an event handler to the

 storyboard’s event, and starting the storyboard.

5. Add the following event handler function after the constructor. Inside the func-
tion, add the code to move the ball. The x position is determined by the cosine of the angle
multiplied by the radius. The y position is determined by the sine of the angle multiplied by the
radius. The variable is then incremented before restarting the storyboard.

Run the application. The ball will rotate in a perfect circle. One thing you will notice is that it is slightly
off center, even though we specified the center point of the application as the point of origin for the
animation. This goes back to the reference points for objects in Silverlight—remember that they are
positioned by their top-left corner.

6. We can correct this fairly easily by adding an adjustment to the variable. Adjust the
variable assignments as shown:

Now when the application runs, the ball will animate correctly around the center point of the applica-
tion, as illustrated by Figure 6-29.

267

USING TRIGONOMETRY FOR ANIMATION

Figure 6-29. Circular movement created by using sine and cosine calculations

To create elliptical motion rather than circular, simply separate the x and y components of the motion
by using different radius values for the x and y calculations. This is easy to do.

7. Start by changing the from a to a data type.

8. Inside the constructor, assign some values for the x and y radius:

9. Inside the event handler function, use the new radius values:

Now when you run the project, the ball will follow an elliptical path, as illustrated in Figure 6-30. The
CircularMovementCompleted project contains both the circular and elliptical motion code described
here. There are comments in the project explaining how to edit the code to change between the types
of motion.

268

CHAPTER 6

Figure 6-30. Elliptical motion created with sine and cosine

Orbiting
Let’s take a look at an application of this concept that is fun to see in action. The project we’re going
to build will draw a moon object on the screen, and we will use the techniques that were just covered
to make a small space capsule orbit the moon.

1. Open up the MoonOrbit project to code along with this example.

2. The file for this project has a black background and a storyboard timer. We’re
going to want to make the moon draggable, so I’ve already added the necessary drag-and-drop
code to the file for you. As soon as the moon is added to the application, it will
be draggable. All of the code for this project will go into the file, so open
this file for editing.

3. As always, we’ll start by declaring our variables before the constructor. Create an
instance of the object and the object. Following this, we will need s
for and , and s for radius and position. The variable will be used to
determine the elliptical path of the capsule. The variable will store the center point
of the object.

269

USING TRIGONOMETRY FOR ANIMATION

4. Inside the constructor, add code to set the initial values for and
. These values are then used to set the moon’s location on the Layout Canvas. Once

positioned, the object is added to the canvas. Next, the object is added to
the canvas. We do not need to specify a position since we will be doing that through our sine
and cosine operations. The and values that will give the capsule an elliptical
orbit are set. Finally, the event handler for the storyboard is coded, and the story-
board is started. The completed constructor is shown in the following listing:

5. Create the event handler function. Inside the function, begin by updating the values stored in
the variable. If the moon object is dragged around the screen, we want to make sure
we’re keeping track of the current center point in order to maintain proper rotation. Following
this, the capsule is positioned using code similar to some you’ve already seen. Next, the
variable is incremented, and the storyboard is restarted to keep the motion going. The
event handler code is shown following:

270

CHAPTER 6

If you run the project at this point, you’ll see the objects drawn on the screen and the capsule go
zipping along as expected. You can even drag the moon around, and the capsule will maintain its
position. One slight problem is that the capsule never passes behind the moon. We can fix this by
augmenting the event handler code a bit.

6. Right after the line of code that increments the angle, add the following line of code. Remember
that our numbers are being specified in radians, and that 180 degrees is equal to pi radians.
2 pi radians is equal to 360 degrees (or 0 degrees). This code will reset our angle when it
reaches a threshold so that we’re always working within the 0 to 2 pi range.

7. Next, add the following statement to the very top of the event handler code. This
code will check to see if the angle value is greater than pi. If so, the object’s Z-index is set
to 1, and the capsule’s Z-index is set to 0. This will cause the capsule to be drawn behind the
moon. If the angle is less than pi, the moon’s Z-index will be set to 0, and the space capsule’s
Z-index will be set to 1. This will cause the capsule to draw in front of the moon.

As the capsule moves along its elliptical path, the motion is based on angles from 0 to 360 degrees,
or 0 to 2 pi radians. We know that as the capsule passes 180 degrees (pi radians), it should no longer
appear in front of the moon. We also know that after it passes 360 degrees (2 pi radians), the capsule
should be drawn in front of the moon. This code handles that for us.

When you run the program, you should see something similar to Figure 6-31, with the capsule obedi-
ently moving behind the moon with each revolution. If you would like to change the speed of the
capsule’s flight, modify the variable.

271

USING TRIGONOMETRY FOR ANIMATION

Figure 6-31. The space capsule orbits the moon along an elliptical path.

The Pythagorean theorem
The final topic we’re going to cover in this chapter is the Pythagorean theorem. The theorem deals
once again with the measurement of triangles, and looks like this:

a2 b2 c2

Let’s take another look at our right triangle, shown in Figure 6-32.

An illustration of the theorem is shown in Figure 6-33. If you calculate the area of the squares on each
leg of the triangle and add them together, you will get the area of the square on the hypotenuse.

272

CHAPTER 6

Figure 6-32. A triangle with sides labeled Figure 6-33. An illustration of the Pythagorean theorem.
The area of side a2 plus the area of side b2 is equal to
the area of side c2.

I know at this point your vision may be getting blurry
and your mind weary, and you may be wondering how
a triangle and square roots will be of any value to you
in Silverlight. However, the Pythagorean theorem can be
used to determine distances between two points, which
can be applied in many interesting ways. Take a look at
Figure 6-34. Here we have two objects, each one with its
own set of coordinates.

If this chapter has done its job, you should be seeing
right triangles when you close your eyes. If you think you
see a right triangle in Figure 6-34, you are correct. The
distance line forms the hypotenuse of a right triangle. If
we fill in the triangle’s legs and some values for the posi-
tion of the two objects, we get something like what is
shown in Figure 6-35.

As you can see, once we know two points, we can deter-
mine the third, as well as the distances of the two legs of
the triangle. Distance X and Distance Y in the figure are
typically coded as and , or can be stored as
data types, and .

Figure 6-34. The Pythagorean theorem can be
used to determine distances between objects.

273

USING TRIGONOMETRY FOR ANIMATION

Figure 6-35. The right triangle formed between two points, along
with associated measurements

The calculation for distance, then, would look like the following:

This code determines the x and y distances, squares them, sums them, and calculates the square root.
If we plug in the numbers from Figure 6-35, we get the following:

Distance between objects
Now, I suspect you would like to see this in action, and I am happy to oblige.

1. Open the PythagoreanTheorem project to code along with this example. The project contains
the root canvas, which has a simple dark gray fill color. There is a TextBlock in the top-left cor-
ner that we will use to provide output so we can see the results of our calculations. The project
also contains a single user object—a red ball. The ball will be draggable, and I have already
included that code with the user control for you.

2. All of the code for this example will go into the file, so open that file for
editing.

274

CHAPTER 6

3. Start by adding the variables we’ll be using before the constructor. Create two
instances of the control, and two objects that we will use to store the center points
of the balls. We’ll also use a object to store the x and y distances between the points,
and a to store the resulting distance calculation.

4. Inside the constructor, add the following code that positions each ball before add-
ing it to the root canvas. We won’t need a storyboard timer for this project—instead we’ll do
our calculations when the mouse is moving. Create an event handler for the event
on the Canvas:

5. Create the function. Inside the function, add some code to do the
distance calculation. Start by calculating the centers for and .

Next, come the calculations to determine the x distance and y distance. Once we have those,
we can calculate the distance between and . Finally, the value of the vari-
able is output to the TextBlock.

Compile and run the application—you should see an application like the one shown in Figure 6-36.
Use the mouse to drag the balls around the canvas, and see how the distance value is affected. Either
ball can be moved around without affecting the accuracy of the calculation. Since we used the cen-
ter point value for each ball object, placing the balls perfectly on top of one another will reduce the
distance to 0.

275

USING TRIGONOMETRY FOR ANIMATION

The completed version of this project is available as PythagoreanTheoremCompleted.

Figure 6-36. The Pythagorean theorem in action

So you’re sitting there thinking this is kind of neat but not really sure what you’re going to do with it.
Once again, there are plenty of options, and I’m going to show you one right now.

A more practical use for the Pythagorean theorem
1. Open the HotAndCold project to code along with this example. In this project, we’ll place a

, , and object on the canvas. If the space capsule is dragged toward the
sun, it will become hotter (redder), and if it is moved toward the moon, it will become cooler
(bluer).

The project already contains the user controls for the sun, the moon, and the capsule. I have also
already added the code to each to allow drag-and-drop. The XAML for the capsule is a little unique.
The file contains both the blue “cold” capsule and the red “warm” capsule, both positioned over
one another. As we drag objects around the screen, we will manipulate the transparency of the

 Canvas.

2. All of the code for this project will be added to the file, so open
 for editing.

276

CHAPTER 6

3. Before the constructor, add the following code to declare instances of the ,
, and objects:

4. Continue by creating four variables—one each for the center positions of the , ,
and objects, and one to hold the x and y distances for our calculation:

5. The last few variables that need to be added are for determining some distances using the
Pythagorean theorem:

6. Inside the constructor, position the , , and and add all three
objects to the canvas:

7. Once again, we’ll use the event to trigger our calculations, so add an event handler
for . We need to do our calculation after the objects have been added
to the canvas to set the correct value for the capsule so it looks correct before any mouse
input is received. The function will be where we perform our calculations:

8. Because we will create a function to handle the calculations, there is no reason to repeat them
in the event handler. However, as the mouse moves around the application canvas,
we still want to do our magic. Code up the event handler function. Inside the event
handler, add code to call the function:

277

USING TRIGONOMETRY FOR ANIMATION

9. Next comes the function, shown in the following listing. The function starts
by calculating the center positions for each object on the canvas. The distance between the
sun and the moon is then determined. Dividing 100 by the multiplier and then dividing the
resulting number by 100 converts the number to a value that will be used to determine a final
opacity value. The next few lines of code calculate the distance between the moon and the
capsule. To finish up, the opacity of the Canvas in the object is set
to the multiplied by the variable.

By the code, the calculations may look a little confusing, so let’s plug in some numbers to see what’s
happening. If the sun is 700 pixels from the moon, the calculated multiplier is 0.001428.

The distance between the moon and the capsule is then determined. If the capsule is 200 pixels from
the moon, we get an opacity value of 200 0.001428, or .2857[...]. As an opacity value, this results in
the canvas being 28% opaque. The farther the capsule is from the moon, the higher the
value, and the redder the capsule will appear.

Go ahead and run the application to see how it works. You should be able to drag the objects
around the screen, and the capsule will change according to the proximity of the objects to one
another. Figure 6-37 shows the final version of the application, for which the code is available in
HotAndColdCompleted.

278

CHAPTER 6

Figure 6-37. As the ship moves closer to the sun, it becomes redder in color.

Summary
Wow, nice work! Your brain may feel heavy, and it looks like your left eyelid is twitching a little bit,
but you did it! You went 12 rounds with trigonometry and came out on top. This chapter will probably
be one to which you find yourself referring often. It may take a while before some of the ideas, like
converting between radians and degrees, become automatic, but you’ve laid a solid foundation for all
the great work you have yet to do. Let’s recap some of the ideas we discussed.

Trigonometry is the study of how the angles and lengths of sides of triangles relate to one another.
When measuring angles, especially in Silverlight, we’re accustomed to using a measurement of degrees.
However, the trigonometric functions produce angles measured in radians. To convert between
degrees and radians, use the following formulas:

radians degrees / 180

degrees radians 180 /

279

USING TRIGONOMETRY FOR ANIMATION

To make the job of converting between angle types easier, it’s helpful to add conversion functions to
your programs. Since Silverlight objects are rotated in degrees, it’s a safe bet you’ll need to convert
between the two angle types at some point.

We talked about several trigonometric functions—let’s review what they do.

Sine is used to determine the y length of a right triangle for a given angle, while cosine is used
to determine the x length. After working with them a bit, the sine/y and cosine/x associations will
become a little more natural for you.

Arctangent—specifically, the method—can be used to determine an angle from two lengths.
This trigonometric function uses an origin and a given point to create a right triangle, and returns the
value of the angle q.

We took some time to explore how sine and cosine can be used to create oscillating, circular, and
elliptical motions for objects. We also explored how movements created with sine and cosine calcula-
tions can be combined with linear motions to create interesting effects such as snowfall or drifting
leaves. Remember that the calculations for sine or cosine can be used for more than just movement.
The resulting values of these operations can be applied to an object’s scale for pulsing motion, or
opacity for flashing motion. Altering the speed of change for the angle in the calculation will change
the rate at which the object pulses or flashes.

The Pythagorean theorem says that by taking the square root of the squared and summed lengths of
the two legs of a right triangle, we will get the squared value of the length of the hypotenuse. This
theorem is expressed as follows:

a2 b2 c2

The Pythagorean theorem can be used to determine the distance between two objects. By determin-
ing how far apart objects are, we can create animations that cause objects to react to one another in
interesting ways.

In Chapter 7, we’ll take a look at how we can simulate 3D in a 2D environment. This opens the door
for creating some interesting animations, such as orbiting planets, and horizontal or vertical carousel
navigation systems.

281

In this chapter, we’re going to take a look at a couple of different methods for getting
3D effects in Silverlight. The first method is utilizing the plane projection transforms
that are new to Silverlight 3. Plane projections will allow us to create some interest-
ing planar 3D effects very quickly and easily. From there, we’re going to apply some
of the concepts from Chapter 6 to emulate 3D object rotations. While Silverlight
doesn’t yet support full 3D models, you can add a little pop to your applications by
implementing the concepts we’ll talk about here.

Projection plane
Even though we’ve had our noses in the code for a little while now, we’re going to
start talking about projection planes in the context of Blend. Why? Because Blend just
makes it really easy to access the features with which we want to work. I touched on
the projection transforms very briefly earlier in this book. The projections are avail-
able on the Transform pane of the Properties panel, which is shown in Figure 7-1.

SIMULATING 3D IN 2D

Chapter 7

282

CHAPTER 7

Figure 7-1. The Projection
transform pane

When the controls on the Projection portion of the pane are adjusted, an object’s rotation, center point,
and offsets can be adjusted or animated. Rotations occur along the x, y, or z axis, which will allow you to
spin an object as illustrated in Figure 7-2.

Figure 7-2. Projection rotations

The second tab on the pane allows you to define the center of rotation. As with the regular center
point transform, values here range from 0 to 1, with .5 being in the center, as shown in Figure 7-3.

283

SIMULATING 3D IN 2D

The z center of rotation is likely to go unused for the time being but would be useful in the case of a
true 3D model.

Figure 7-3. Projection rotation offsets

The third and fourth tabs allow you to adjust global or local coordinate offsets for your planar rota-
tions. This is basically the equivalent of defining a radius offset for the rotation of the plane.

With a basic understanding of the concepts involved in planar projection transforms, let’s take a look
at a simple example. Use Blend to open the PlaneProjection project for Chapter 7. The project con-
tains the canvas, as well as a simple, gradient-filled rectangle element.

1. Select the BlueRectangle element in the Objects and Timeline panel.

2. On the Rotation tab, enter 45 into the Y field. Notice that the rectangle rotates to the left.
Change the Y rotation back to 0.

3. Select the Center of Rotation tab (the second tab). In the X field, enter 1.

4. Return to the Rotation tab, and enter 45 into the Y field again. Notice that the plane now
rotates around the right edge rather than the center point.

5. Take a few minutes to experiment with the different values and see what types of effects they
have on the object in the application. In a moment, we’ll take a look at a more realistic usage
scenario for projection planes.

284

CHAPTER 7

Think of the center of rotation point as the hinge around which your object is rotating. In the preced-
ing example, we moved the rotation point from the center (.5 X) to the right side (1 X) of the object.
If you remember way back in one of the early chapters when we first talked about transforms, we
used a Skew transform to make a door appear to swing open. While the skewing action did a great job
of emulating the look we were going for, if you truly wanted to get that effect, the plane projections
would make it easy.

If you use Split view, or examine the code as you work, you will notice that Blend adds a
container to your element and fills in the appropriate values. As with other objects in XAML, you can
name the projection and access the properties using code if you’d like.

One last thing to keep in mind—even though the example you just went through was very simple, any
element inside of your applications can have projections applied. If you rotate a canvas object, all of
the content inside the canvas will also rotate. Any controls or interactivity you have set up will remain
working and active, so you can get some pretty interesting effects.

Let’s turn our attention to an example that is probably a little more realistic. In the following project,
we’ll create a rotating group of objects, as shown in Figure 7-4. I’ve left them plain here, but a few
real-world examples, such as contact cards and image galleries, come to mind.

Figure 7-4. An example project that leverages the X projection plane transform

285

SIMULATING 3D IN 2D

1. Use Blend to open the X_Projection project for Chapter 7. The project contains a canvas
called AllItems that contains seven more canvases, each containing a TextBlock so that the
items can be identified as the application runs. All of the item canvases are currently stacked
on top of one another. There are also two buttons: one that says Rotate Up and another that
says Rotate Down.

2. Change to Split view so that the XAML code is visible beneath the artboard.

3. Expand the AllItems canvas if it isn’t already, and select Item_0 by clicking it. On the Center of
Rotation tab of the Projection portion of the Transform pane, put –200 into the Z field. This has
the net effect of offsetting the X rotation 200 pixels from 0 Z. On the Rotation tab, enter 1 into
the X field, and then change it to 0. This will add a XAML container to the
selected canvas and fill in the necessary properties.

4. Select Item_1. Once again, set the Center of Rotation to –200 Z. On the Rotation tab, enter 45
into the X field. You will see the element rotate and shift down on the artboard.

5. Work around the remaining six canvas items. Each one should have the Center of Rotation set to
–200 Z, and for each item, the X rotate value should increase by 45 degrees. Item_2 will be 90;
Item_3 will be 135; Item_4 will be 180; and so on. Once you have finished applying the projec-
tions to each object, the project should look similar to the one shown in Figure 7-5.

Figure 7-5. The X_Projection project taking shape

6. Next, we’ll create a storyboard that we will access from code to spin our objects. Click the New
storyboard button, and type Rotate in the Create Storyboard Resource dialog before clicking OK.

286

CHAPTER 7

7. Our animation will take 1 second, so move the timeline play head to that position.

8. Select Item_0, and in the X Rotate field, enter 1, then 0. The purpose of this is to set a keyframe
at 1 second that contains the current rotation value. It is necessary to change the value and
then change it back to force the keyframe into the animation. The result of this action will be
an animation that looks like the code shown following.

9. Edit the item to add an property as shown. This will allow us to
directly access the values for this keyframe from code.

10. Work through each of the remaining items just as you did for the first in steps 8 and 9.
However, for each item’s X rotate value, change the value before changing it back to the value
that was there to begin with. We just want to force Blend to write the keyframes for us using
the values we set. Your completed storyboard should look like the following:

287

SIMULATING 3D IN 2D

11. The project has now been set up the way we want, but we’ll need to add some code to create
some interactivity. Open the file in Visual Studio for editing.

The code that goes in the code-behind file is relatively simple for this project. We know that
each of the items in our application is rotated in 45-degree increments, so when one of the
buttons is clicked, we either add or subtract 45 from the values in the animations and then play
the storyboard.

12. To achieve this, start by declaring two variables above the constructor. The first
will be used to store the increment value so that it only needs to be changed in one place if
necessary. The second is used to control the direction of the rotation.

13. Inside of the constructor, add code to assign the value to the
 variable.

14. Inside of the constructor, create an event listener for the event on
.

288

CHAPTER 7

15. Inside the event handler, add code to increment each item’s value by the
amount.

16. Inside the constructor, create an event listener for the event on
.

17. The code that goes inside of this event handler is very similar to that for the han-
dler, except that the values are incremented rather than decremented.

Press F5 to run the application. As you click the buttons, the animations are updated on the fly, and
the storyboard is triggered. Since the storyboard values are incremented or decremented when the
mouse button is clicked, numerous clicks of the buttons will still calculate the correct end point, but
the animation will still occur over 1 second. Since the items in the application are all Canvas objects,
you can add any type of content you’d like without having to modify the code in order for the applica-
tion to run.

The code shown here is fairly explicit, so it’s easy to follow, but if there were many more objects, it
would probably be a better idea to create a generalized method that can be called from either event
handler to update the storyboard values. Then, you can simply change the value to –45
or 45, call the method, and fire the storyboard. This would help optimize your code a bit. To give you
some idea of what that might look like, I’ve included that code in the X_ProjectionCompleted project.

289

SIMULATING 3D IN 2D

To give yourself some practice, try two things for me. First, modify the easing options for each anima-
tion in the storyboard. See if you can get the entire set of items to rock back and forth a bit before
turning. Second, start from scratch, and see if you can mimic this behavior with a Y rotate (horizontal)
projection.

The projections are a lot of fun and certainly add a lot of flexibility to the feature set of Silverlight.
However, there is more you can do if you’re willing to get your hands dirty and work with a little more
code. In the next section, we’re going to talk more about 3D and how to simulate 3D effects in 2D
with code.

3D
As you are aware, the coordinate system in Silverlight has only x and y axes, where x is the horizontal
axis and y is the vertical. To imagine a 3D coordinate system like the one shown in Figure 7-6, a z axis
line is drawn straight into your computer screen.

We’re not going to be coding up a true 3D coordinate system—instead, we’ll fake the visual cues
that make people see objects as being farther away using some of the trigonometry you learned in
Chapter 6.

Figure 7-6. The z axis for a 3D coordinate system in Silverlight
would run perpendicular to your monitor.

Z axis rotation
We’ll start out with an easy one: z axis rotation. Any object you rotate around the z axis on the screen
would be moving in a circular or elliptical pattern, as shown in Figure 7-7.

290

CHAPTER 7

Figure 7-7. Z axis rotation results in a circular or elliptical rotation.

As such, z axis 3D movement isn’t really emulating any 3D motion. It will still become part of your
toolbox, however, so it’s worth taking a look at. You saw how to create circular movements in Chapter
6, but let’s do a quick review project that puts our terms in a context that works for 3D. In this exam-
ple, we will build a project that moves a ball around the z axis.

1. Open the ZAxis3D project. This project contains a gradient-filled object and the main
page. The file also contains a storyboard timer named .

2. If you were building an application that supported multiple objects traveling in circular or
elliptical paths, you might choose to place some of the code in the object’s code-behind files.
However, for this project, we’ll just take a look at the one ball, so all of our code will go into
the file. Open for editing.

3. Start by declaring an instance of the object:

4. Next, declare the variables we’ll be using for the movement. will be the origin point for
the motion, and will determine the radius of the circle the ball will travel. and

 will be used to determine our sine and cosine calculations, and will determine
where on the canvas the ball will be placed.

291

SIMULATING 3D IN 2D

5. Inside the constructor, add the following code to initialize the variable.
We’re adjusting the location of the point of origin for the size of the ball by subtracting half of
the ball’s height or width from the center point on the canvas. This adjustment accounts for
the fact that objects are identified by the point at the top-left of the object rather than the
center.

6. Continue adding code inside the constructor. The following three lines will place
the ball object at the position calculated in step 5, and add it to the
Canvas.

At this point, you can compile and run the application if you’d like. The main canvas will be drawn, and
the ball will be positioned at the center of the canvas. When you’re done looking at the application,
close the browser window and return to the file.

7. The next thing we need to do is make the ball move. The following two lines also go into the
 constructor. They set up an event listener for the event of the

storyboard, and start the storyboard.

8. The code block shown here is the complete code for the event han-
dler. The code calculates a new x and y position for the ball based on the cosine and sine of the

. The ball’s position is then updated on the canvas before incrementing the and
restarting the storyboard.

That’s all there is to it—compile and run the application, and the ball will move in a circular pattern
around the center of the canvas. With a couple of small changes, the path the ball follows can be
made elliptical.

9. Change the data type to :

292

CHAPTER 7

10. Inside the constructor, initialize and with some values:

11. Finally, in the event handler, change the calculations to use
the values:

Take some time and look at the ZAxis3DCompleted project, shown in Figure 7-8. It contains the code
shown here in the example, but I also added a few sliders so you can manipulate some of the values
in real time as the application runs.

Figure 7-8. The ZAxis3DCompleted project

293

SIMULATING 3D IN 2D

A model of the inner solar system
So you’ve built this project and put some thought into it, but maybe you’re not entirely sure where
something like this can be applied in your own applications. As an example, let’s build a real-world,
working model of the orbits of the inner planets in our solar system. We will write the program in a
way that supports elliptical orbits—the inner planets travel in more circular orbits than the outer plan-
ets, but you may choose to augment the program with elliptical orbits at a later time.

1. Open the InnerSolarSystem project. The project contains the sun and four planet objects:
Mercury, Venus, Earth, and Mars (the planets are not to scale). We will be coding up each plan-
et’s code-behind file in order, starting at the center of the solar system and moving outward.
There is also a timer storyboard called .

2. Open the file for editing. Since we’re starting from the center and work-
ing our way out, we’ll begin with the sun. Declare an instance of the object just above the

 constructor:

3. Inside the constructor, add the following code to position the sun and add it to the
main canvas:

4. If you compile and run the application, you will see the sun object near the center of the black
canvas. Next, we’ll add Mercury, the planet closest to the sun. Still working in

, create an instance of the user control:

5. Inside of the constructor, add the Mercury object to the main canvas. Notice here
that we’re not positioning the planet. We’ll be calculating its location mathematically, so it’s not
necessary to specify a starting location. It will automatically be added at 0,0.

6. We’ll add a little code to make the planet move. Open the file for editing.

7. Before the constructor, declare the following variables. We’ll declare s for
 and and for and . The smaller a planet’s orbit, the faster the

planet travels. As such, Mercury will be our fastest-moving planet, and the speed of all of our
other planets will be determined using Mercury’s speed as a base.

294

CHAPTER 7

8. Inside the constructor, initialize the and variables as shown in the
following code. The values being used were determined by me from a reference image. Notice
that we are once again adjusting the location of the center point to accommodate the way
Silverlight references objects by their top-left coordinate.

9. The last bit of code we need for Mercury will be used to move the object. The following public
method is used to update Mercury’s position on the screen based on the calculated
value. Each time the method is called, the is decremented to move the planet in a coun-
terclockwise direction.

10. To make Mercury orbit the sun, we’ll need to add a little more code to the main code-behind,
so return to the file. In the constructor, add the following code
to attach a event listener to the storyboard, and start the storyboard:

11. The event handler code for the event is shown following. This code
calls the method of the object, which will update the location of the
planet on the main canvas. The storyboard timer is then restarted.

Compile and run the program. Mercury should be orbiting the sun, as shown in Figure 7-9.

295

SIMULATING 3D IN 2D

Figure 7-9. Mercury orbiting the sun

12. The next planet is Venus. In the file, declare an instance of the user
control:

13. Add to the main canvas:

14. Open the file for editing. Add the following variable declarations just above the
 constructor. Notice the value here. The average speed of the planet Mercury

is 48km/second. For , we used a value of .05, and we need to make the other
planets move relative to ’s speed. The average speed of the planet Venus is 35km/
second. To determine the speed of in relation to , we take 35 / 48 .05.

296

CHAPTER 7

15. Next, add the following bold code to the constructor to initialize the and
 variables:

16. Finish up the Venus code-behind by adding the method. The code inside the
method is identical to that used for Mercury.

17. In the file, locate the event handler code. Add a
call to the method on the object:

Compile and run the application. Both Mercury and Venus should be in view, as shown in Figure 7-10.
Notice that Venus is moving more slowly than Mercury as both planets orbit the sun.

18. The last two planets follow the same pattern, so we’ll advance the pace a bit. In the
 file, create an instance of the user control, and inside of the con-

structor, add it to the main canvas:

19. In the file, declare the necessary variables. The planet Earth orbits the sun at
about 30km/second, so to determine ’s speed, we take 30 / 48 .05.

297

SIMULATING 3D IN 2D

Figure 7-10. The InnerSolarSystem project with both Venus and Mercury in view

20. Inside the constructor, initialize the and variables by adding the code
shown in bold in the following listing:

298

CHAPTER 7

21. Create the method:

22. In the file, call the method to add the object
to the storyboard’s event handler:

23. Running the application at this point will show our first three planets orbiting the sun, which
means we have only one more to code up!

Still in the file, create an instance of the user control, and add it to the
main canvas of the application:

24. In the file, declare the requisite variables. The planet Mars orbits the sun at
about 24km/second. In relation to ’s orbital speed, we get 24 / 48 .05.

25. Add the following bold code to the constructor to initialize the and
values:

26. Create the method as shown:

299

SIMULATING 3D IN 2D

27. In the file, locate the event handler, and add a
call to :

Compile and run the program, and you’ll see all four planets orbiting the sun. The
InnerSolarSystemCompleted project, shown in Figure 7-11, contains the code covered in this exam-
ple. I also added a check box that allows you to toggle the orbits of the planets, which are ellipses that
were manually added.

Think about some of the ways this program could be augmented. Certainly, adding more planets is an
option. What about adding moons? How would you go about doing that? Can you figure out a way to
“seed” the starting angle for each planet so it starts at a random location along its orbit? Is it possible
to calculate each planet’s distance from the sun?

Figure 7-11. The completed InnerSolarSystem project with orbits visible

Y axis rotation
In this section, we’re going to look at how we can go about emulating movement of an object around
the y axis, as illustrated in Figure 7-12.

300

CHAPTER 7

Figure 7-12. Y axis rotation
causes an object to

move up and down,
front to back.

One of the biggest visual clues we have to tell how far we are from an object is scale. Objects closer
to us are larger, and those farther away are smaller, as illustrated by Figure 7-13. Our brains are pretty
good at comparing the relative sizes of objects we know, such as houses, trees, and vehicles, in order
to estimate how large an object may be.

Generally speaking, the farther away an object is, the harder it is to see—our view becomes obscured
by haze, and distant objects are not as well defined. Next, you’re going to learn how to exploit scale
and translucency in order to make objects appear to be moving either toward or away from the
viewer.

Figure 7-13. Objects
appear to get more
distant as they are

scaled down and made
more translucent.

301

SIMULATING 3D IN 2D

Let’s code up another example. This time, we’ll write some code that emulates motion around the y axis.

1. Open the YAxis3D project. This project contains a simple layout Canvas, our trusty user
control, and a storyboard timer called .

2. All of the code for this project will go into the file, so open that file for
editing.

3. Above the constructor, declare an instance of the object as well as the vari-
ables shown. will be used as the origin for the rotation. As with the previous examples,

 determines the distance the ball will travel. and handle the rotation for
us. and are not things you have seen yet. These two variables work
together to create a modifier for scaling the object during rotation. is used to place
the ball on the Canvas.

4. Inside the constructor, add the following code to initialize the variable, and
place the ball object at that location before adding it to the main canvas. As with the previous
examples, the variable is adjusted to align to the center point of the ball rather than
the top left.

5. Continuing with variable initialization, set the variable to match the value.
This is where the ball is currently located.

6. Assign values to the variable. This will control the height and width of the movement.

7. Finish up the constructor code by adding a event listener to the
storyboard and starting the storyboard:

302

CHAPTER 7

8. Add the code to the event handler. The first two lines calculate the
position of the ball. The third line calculates the scale modifier based on the y position of
the ball and the variable. The next line adjusts the scale of the ball based on the

 calculation. The position of the ball on the Canvas is then updated before increment-
ing the value and restarting the storyboard.

9. Compile and run the application. The ball will follow a circular path that appears to be
3D. There’s one small addition we can make to help with the illusion. Inside the

 function, adjust the property of the ball along with the scale. Now the
ball will also fade out as it scales down on the back side of the rotational movement.

10. Try some different values and see what happens when you run the program. One of the things
you’ll notice is that the variable, when used in conjunction with a decreasing X

, will act similarly to the depth of field on a camera, “flattening” the motion. Here are a
couple of values with which you can experiment:

a. : and :

b. : , : , and :

All of the code for this example is in the YAxis3DCompleted project. I also added a few sliders and
a check box to the project, as shown in Figure 7-14. The sliders will allow you to change the ,

, and values as the application is running. The check box allows you to toggle the
transparency, so you can see what effect that has on the object.

303

SIMULATING 3D IN 2D

Figure 7-14. The YAxis3DCompleted project includes some sliders to change values in real time.

Now, I bet some of you reading this are thinking that the motion looks a bit like what you might use
on a carousel-style interface, and you’d be right. Getting from here to there requires a few extra steps,
but it’s not as hard as it might seem. In the next exercise, we’re going to take a detailed look at how to
create a horizontal carousel. We’ll create a carousel that uses proxy containers for the carousel items,
to which you can add whatever functionality you’d like (images, movies, etc.).

A horizontal carousel
This time, you’re going to do almost all of the work. I’ve set up a base project so you can follow along,
but to really understand how everything fits together, it will be of more value to you to work through
the project from the very beginning.

1. Open the HorizontalCarousel project. The project currently contains only the main page
XAML, which consists of a gradient background and a storyboard timer called .

2. Right-click the HorizontalCarousel C# project name in Visual Studio’s Solution Explorer and select
Add New Item, as shown in Figure 7-15.

304

CHAPTER 7

Figure 7-15. Adding
a new item through

Visual Studio’s
Solution Explorer

3. When the Add New Item dialog opens, select Silverlight User Control. Type the name CarouselItem,
and click the Add button. Visual Studio will create the new object for you and add it to Solution
Explorer. This object will become the basis for each carousel item added to the application.

4. Edit the file—you can do this either directly in Visual Studio or by right-
clicking CarouselItem.xaml in Solution Explorer and selecting Open in Expression Blend from the
pop-up menu.

5. Change the container type from Grid to Canvas, and then change the size of the user
control to 150 100—change both the user control and Canvas dimensions. Add a
white rectangle with a black stroke that is 150 100 with rounded corners—both the
and properties should be 5. Name this rectangle RectBackground. In addition, add two
TextBlocks. These will be used to identify which item is which. Center the first TextBlock near
the top of the rectangle and add the text Carousel Item. Name the TextBlock MsgItem. Center
the second TextBlock beneath the first, add the text 00, and name it MsgNumber. Also, add a
transform group to the Canvas. Name the ItemScale. The XAML that
goes inside the user control for this object is shown in the following listing. Figure 7-16 shows the
object.

305

SIMULATING 3D IN 2D

6. Open the file for editing. We will be using code to distribute the carousel
items along an elliptical path when creating the carousel. In order to position each item appro-
priately, we need to store a unique angle for each carousel item. Above the
constructor, add the following code to create a publicly accessible variable:

7. Open the file for editing. This is the main application page. One thing I have
found useful when working with carousels is to create a canvas to contain the carousel rather
than generating it directly on the main canvas. This makes the carousel much more manage-
able later—move the canvas and the carousel goes with it.

 Add a canvas container to . Enter the following code two lines up from the bot-
tom of the XAML, just before the closing tag. Notice that this canvas is identical in
size to one of the carousel items. This will make adjustments for centering later very easy.

8. Now, we’ll start coding up the carousel. Open the file for editing, and add
the following variable declarations just before the constructor. Each element
added to the carousel will be stored in a called . The variable allows easy
modification to the number of elements in the carousel. By now, you should be familiar with
the functionality provided by , , , , and .

Figure 7-16. This fig-
ure shows what the
carousel item should
look like.

306

CHAPTER 7

9. Inside the constructor, add code to define a length for the in the car-
ousel. The length of the list is determined by the variable initialized in step 8.

10. Add code to initialize the variable. Using a negative value for the radius will make the
carousel appear to be tipped forward.

11. Position the canvas that will contain the carousel:

12. Next, we will build a function called that will be used to populate the carou-
sel. The process of defining each element is done inside of a loop. The basic structure for
the function is shown in the following code listing:

13. Begin filling in the loop with the following code. Here, we create an instance of
 called . Once the instance has been defined, we populate one of the

TextBlocks with the element number. This is strictly for reference for this carousel—if you had
a set of images or videos in your carousel, this is where you would assign the prop-
erty.

14. Next, each has a value assigned to its public variable. The is then used to
calculate the variable:

15. Once has been calculated, place the element at the value stored in the variable:

307

SIMULATING 3D IN 2D

16. The variable is calculated to determine a modifier value that will be used for scaling
the elements and adjusting their opacity. With calculated, the and
are adjusted.

17. To finish out the function, add the to the and the :

18. The function that was just created needs to be called from the constructor in
order to create the carousel when the application is loaded. Add the following code as the last
line in the constructor:

Compile and run the application. When the browser opens, you should see an application similar to
the one shown in Figure 7-17. The application calls the function, which adds eight
elements to the . The elements are evenly distributed based on the and
variables that were defined.

Figure 7-17. The carousel is populated and drawn on the screen.

308

CHAPTER 7

19. Now, we need to make it move. If you’re thinking this is done by manipulating the angle of each
object, you’re right! To start, we’ll need to add a bit of code at the bottom of the
constructor. The two lines shown following attach an event listener to the event of
the storyboard, and start the storyboard. Notice that the event handler being called is
named .

20. The event handler takes advantage of the loop, which will step
through each element in a like the one we’re using. The basic structure for the event
handler is shown in the following listing:

21. Inside the loop, add the following code. This code decrements the angle for each ele-
ment, recalculates the position, and repositions the object on the .

22. As the objects rotate, the Z-index needs to be adjusted—the items in the front need to appear
in front of the items in the back. To do this, the Z-index is tied to an item’s y position. A test
is done against the y value to determine if it is greater than or equal to 0. If so, the
distance is calculated and the Z-index of the item adjusted. If the y radius is less than 0, the
distance calculation is performed opposite the first method. This ensures that the carousel will
draw correctly regardless of the y value. Be careful when you type in this code—the
difference between the two distance calculations is very small but makes a big difference in the
end result.

309

SIMULATING 3D IN 2D

23. With the variable having been recalculated based on the y position of the carousel
item, the scale and transparency of the object can be updated:

24. That’s all for the loop, but we still need to restart the storyboard. Just after the closing
curly brace () for the loop, add the following code to restart the storyboard:

Now when you compile and run the program, the carousel will load, draw, and begin spinning from
right to left (clockwise when viewed from above). If you wanted the carousel to spin in the opposite
direction, you would increment the variable in step 21 rather than decrement it. We still need
to augment our functionality a little bit—the carousel isn’t going to be very useful unless it’s interac-
tive. Let’s begin adding to the carousel by creating some mouse events for the carousel items.

25. Inside the function, add event listeners for and .
Since we’re creating our carousel items inside of a loop, we only need to add the following two
lines to create event listeners for every item on the carousel:

26. Inside the event handler, add code to stop the carousel from spinning:

27. When the mouse pointer leaves an item, we want to restart the carousel spinning. The
 event handler code is shown here:

Now when you run the application, placing the mouse over any of the items on the carousel will
cause the carousel to stop spinning. Moving the mouse off of the item will start the carousel back up.
Chances are you will at some point need to further augment the functionality to access the properties
of each carousel item.

For example, if the carousel contained images, when a user clicked on one of the images, you might
want to display the image on another panel elsewhere in the application. The basis for retrieving infor-
mation from the carousel items is the same regardless of the type of property you’re trying to get, so
we’ll add some basic functionality to access which item has been clicked.

28. Open the file for editing. Just below the code that defines the
element, add the following code to create a TextBlock named :

310

CHAPTER 7

29. Back in the function in the file, add a
event listener.

30. Since we know that the items being clicked are of the type , the code inside
the event handler captures the as a . We then have access to all of the
objects, properties, and so on that are part of the , so it’s easy to assign the value
of the TextBlock in the selected item to the TextBlock we just added to the main
page.

Compile and run the application. Each time you click an item in the carousel, the text in the TextBlock
at the top-left of the screen should update, as shown in Figure 7-18.

Figure 7-18. The carousel with some click functionality in place

311

SIMULATING 3D IN 2D

The last bit of functionality we will be adding to the carousel will allow the mouse to control the speed
and direction of spin. A lot of carousel controls have a tendency to be a little twitchy when it comes
to control, so I’ll show you a way to make the carousel behave the way we want, and you can change
it as you see fit.

The functionality we will add is to place a rectangle in the object and hook up a
 event to the rectangle. As the mouse moves, we will determine the offset from the center

of the canvas, and use that calculation to spin the carousel in one direction or the other, allowing the
speed to change as the mouse moves farther from center.

31. Open the file for editing. Add a rectangle called inside of the
 container. The rectangle size will be manipulated via code, so a 100 100 rect-

angle is fine. Save the file.

32. Open the file for editing. Since the rectangle has already
been added to the XAML, we will make some adjustments to its size and location. The follow-
ing code goes into the constructor. Start by adjusting the property—here,
the code makes the element twice as wide as the value and adds the

 of the to account for the top-left positioning Silverlight uses. Otherwise,
our control would stop at the left side of the rightmost carousel item. The height of 100 is fine
as-is. If you need a taller control for mouse input, you can modify the property to suit
your needs.

33. Next, we will position the element. The element is moved left the equivalent of
the value. The top is moved down twice as far as the value. Note that while
these values work well for the settings on this carousel, they may not work for every carousel.
As the y radius is increased or decreased, you may need to adjust the top location for the

. An easy way to see where it’s located is to set the of the
rectangle to .5. Once it has been positioned where you want it, you can then set the
back to 0. The location of the rectangle for this example is shown in Figure 7-19.

34. Finish up the work in the constructor by adding an event listener for the
event on the element:

35. The following code shows the event handler function. This code
adds the functionality illustrated in Figure 7-20. The farther the mouse pointer moves from the
center of the control rectangle, the faster the carousel will spin in the direction the mouse is
moving. As the pointer approaches the center of the rectangle, the movement of the carousel
slows or stops, eventually changing direction as the pointer crosses the center point.

312

CHAPTER 7

Figure 7-19. The location of the MouseControl rectangle for the carousel project

This code gets the current position of the mouse pointer, and then calculates an offset from the
center of the control rectangle. The speed is then calculated by dividing the offset by 10,000. The
divisor you use depends on the initial speed of your carousel, so you will likely need to modify that
value based on your carousel design. The fewer decimal places represented in your variable, the
lower the divisor you will use. The function finishes up by checking the value and limiting it to
a maximum of two times the original speed.

313

SIMULATING 3D IN 2D

Figure 7-20. The mouse control for the carousel application

Now the application is pretty much complete. You can compile and run it to see the results. Moving
the mouse just below the carousel will change the speed and/or direction of spin. Placing the mouse
over an item on the carousel stops the movement, while moving the pointer off an object restarts
the movement. Clicking an item in the carousel reports back which item was selected. While I am
certain there are some further code optimizations that can be made, the end result of this application
is worth mentioning—6.5K. Of course, the application size would grow as content were added to the
carousel items, but we packed a lot of functionality into just about 130 lines of code.

All of the code described in this example is included in the HorizontalCarouselCompleted project.
I also added an extra project for you to compile and run: HorizontalCarouselHelper. This project,
shown in Figure 7-21, contains sliders that allow you to control the x and y origin, x and y radius, per-
spective, speed, and number of items for the demonstration carousel. You may find the application
helpful in determining what settings you want to use for your own carousel applications before you
dig in and start building. Take a good look at the code for the helper application—it illustrates how to
move a carousel in two axes—the x to tilt, and the y for the rotation of the carousel.

314

CHAPTER 7

Figure 7-21. The HorizontalCarouselHelper application may help you determine optimal settings for your
carousel application before you build.

Can you figure out how to add reflections to each object added on the carousel? What about rotating
it with buttons rather than the mouse control? Would it work to put 30 items on a carousel, each item
containing a frame from an animation, and then spin the carousel fast enough to see the motion from
the individual frames?

X axis rotation
In this section, we’ll finish out our look at emulating 3D movement in a 2D environment by looking at
x axis rotation, which is illustrated in Figure 7-22.

315

SIMULATING 3D IN 2D

Figure 7-22. An illustration of rotation around the x axis

As with y axis rotations, scale and transparency will once again be our clues as to the location of the
object within the context of 3D space. The technique for doing an x axis rotation is the same as it is
for a y axis rotation, but is applied slightly differently.

1. Open the XAxis3D project to code along with this example. The project contains the main
page canvas, as well as the object we have been using.

2. All of the code for this example will once again go into the file, so open
that file for editing.

3. Add an instance of the user control and the variables necessary to code up this example.
You should be pretty familiar with each of the variables by now.

316

CHAPTER 7

4. Inside the constructor, initialize the variables, and position the instance of
the object before adding it to the main canvas:

5. Set the x and y values:

6. Finish up the constructor by adding a event listener to the storyboard and
starting the storyboard:

7. Inside the event handler, place the code to move the ball. This code
is very nearly identical to that used to simulate y axis rotations in the previous section of the
chapter. The only difference is that when calculating the , is used rather
than .

Compile and run the application, and the ball will travel in an elliptical path around the x axis. The
code shown in this example is included in the XAxis3DCompleted project. The project, shown in
Figure 7-23, has been augmented with sliders and a check box that allow you to modify the program’s
values in real time.

317

SIMULATING 3D IN 2D

Figure 7-23. The XAxis3DCompleted project includes some sliders to change values in real time.

A vertical carousel
Let’s go ahead and apply this to a real-world situation. Since we created a horizontal carousel for the y
axis rotation, we’ll create a vertical, Rolodex-style carousel for our x axis example. Because the major-
ity of the code for the vertical carousel is similar to that of the horizontal carousel, we’ll start out a
little farther along in the project.

1. Open the VerticalCarousel project. This project contains the main canvas, along with the
, rectangle object, and messaging TextBlock. The

object is also already present in the project and has had the publicly accessible variable
added.

2. All of the code we will be adding will go into the file, so open that file for
editing.

318

CHAPTER 7

3. Begin by declaring a to contain all of the objects that will be used in the
application. Once again, declare a variable to control the number of elements in the carousel,
as well as , , , , and variables.

4. Inside the constructor, add the following code to initialize the of
objects:

5. Assign values for the and variables:

6. Code up the resizing and positioning for the rectangle element. The code here
differs slightly from that used in the horizontal carousel. It is height-adjusted rather than width-
adjusted, and the positioning calculation is a little different—recall that you may need to
customize this a little depending on the style of your carousel. Figure 7-24 shows where the

 element is located for the vertical carousel.

7. Continue coding the constructor by positioning the :

8. Finish up the constructor by calling the function (which we have yet to
code), adding an event listener to the event for the storyboard, and starting
the storyboard:

319

SIMULATING 3D IN 2D

Figure 7-24. The MouseControl rectangle for the vertical carousel

9. We’re working top-down through the code this time. We have three functions to build:
, , and . We’ll also be adding

three more event listeners for the mouse events on the carousel items. We’ll start with the
 function. This code is nearly identical to that used in the horizontal carousel,

with one exception—the calculation is based on the variable rather than
.

320

CHAPTER 7

10. Next, we’ll tackle the three event handlers that were attached in step 9. The event handler
code is identical to the code used in the horizontal carousel:

11. Let’s code up the event handler. The differences between this and
the horizontal carousel are related to using y values rather than x. The calculation is
modified slightly to account for the vertical orientation of the carousel.

321

SIMULATING 3D IN 2D

12. We’ll finish off by adding the function shown following. The difference in
code between the vertical and horizontal carousels comes in the test that is done against the

 value, not the value.

When you compile and run, the application will look like the one shown in Figure 7-25. Moving
the mouse up or down just to the right of the carousel will alter the speed/direction of rotation.
Placing the pointer over an element stops the carousel, and moving the pointer off of an element will
restart the carousel. Clicking an item will display the selected item number in the TextBlock at the top
left of the screen.

As with the horizontal carousel, you can configure the application to meet your needs by adjusting the
x or y radius values, perspective, or spin speed. All of the code covered in this example is available in
the VerticalCarouselCompleted project.

As with the horizontal carousel, I included an extra project called VerticalCarouselHelper, which is
shown in Figure 7-26. The program allows you to adjust many of the carousel parameters in real time
in order to help you with some of the planning on your carousel application projects.

322

CHAPTER 7

Figure 7-25. The vertical carousel application

Figure 7-26. The vertical carousel helper application

323

SIMULATING 3D IN 2D

Summary
In this chapter, we started out by taking a deeper look at the 3D plane projection transforms avail-
able in Silverlight. Any object can be transformed or offset along a 3D plane, and the properties of
a projection transform can also be animated. This gives us an easy way to create interesting flip and
rotation effects on a single object or group of objects. If a projection is applied to a container, all of
the items in the container will also be transformed.

We also talked about how we can apply some of the techniques from Chapter 6 to make objects
appear as though they are moving in a 3D environment on our 2D canvas. We can trick our brains into
seeing objects as 3D by using scale and transparency (distant objects are smaller and visually obscured,
while close objects are large and well defined) in conjunction with Z-index.

Rotations around the z axis are really nothing more than circular or elliptical movements. You saw how
several z axis rotations could be combined to create a simulation of the inner solar system.

In order to simulate a y axis rotation, an object must have its and properties tied to its
location on the path it is traveling. This will cause the object to scale down and become more trans-
parent as it appears to move away. As the object appears to move forward, the object will become
larger and more opaque. We explored y axis rotations by creating a horizontal carousel.

Our example of x axis rotation worked much like that for y axis rotation, except that the y radius we
were using was larger than the x radius. As with y axis rotations, the and properties
for x axis rotation are tied to an object’s location along the path it is traveling. To simulate a 3D x axis
rotation, we built a vertically oriented carousel.

In Chapter 8, we’re going to take a look at different methods we can use for collision detection in
Silverlight. We’ll create projects that demonstrate a few different scenarios, and hopefully, I’ll give you
a few ideas that you can apply in your own projects.

325

So far, you’ve learned how to make objects move in a variety of interesting ways.
They are missing one crucial component, however: interaction. In this chapter, we’re
going to talk about how to tell when objects have collided, and what to do with them
when a collision has occurred.

We will look at how to determine if a collision has occurred along a single axis, along
multiple axes, and against an angled surface. We’ll also take a look at how to imple-
ment a pixel-level collision test using the built-in
method. The linear, angular, and angled-surface projects are based on projects cre-
ated by Keith Peters.

The basics of detecting collisions
There are different techniques available for detecting collisions, but we’re going to
stick to simple methods that use bounding circles or rectangles. Why circles? Most
of the objects you will deal with can fit into a circle fairly well, circles are not expen-
sive from a processing perspective, and they are easy to detect collisions on. Take
the spaceship we used earlier as an example. Figure 8-1 shows the ship inside of a
bounding circle.

COLLISIONS

Chapter 8

326

CHAPTER 8

If we want to determine whether the ship in Figure 8-1 has collided with the sun in Figure 8-2, it’s as
simple as determining the distance between the two objects, and if the distance is less than the sum
of the two radii, a collision has occurred. Figure 8-3 illustrates this concept.

Figure 8-1. A spaceship
inside of a bounding
circle

Figure 8-2. The sun
model inside of a
bounding circle

Figure 8-3. If the distance between two objects is less than the sum of their bounding circle radii, a colli-
sion has occurred.

It sounds simple in theory, right? Let’s see what it looks like in code.

327

COLLISIONS

Linear collisions
A linear collision is one that occurs along a single axis. In this case, we’ll be coding up a collision along
the x axis between two ball objects.

1. Open the LinearCollisions project to code along with this example. One thing I’ve done in this
(and other collision projects) that is a little unusual is give the ball a center point of sorts. Take
a good look at the file so you can see what I mean.

The default size for the user control is 50 50. The LayoutRoot element was made to be
1 1, and the BallShape is 50 50, but offset –25,–25. If you select the LayoutRoot element in
Blend, you will see that it serves as the center point for the ball. This means when it is ref-
erenced in code as or , we are returned the LayoutRoot left
or top point, which is the center of the ball. When resized from code, the actual BallShape is
resized rather than scaled, and when a size is needed for something like a collision or bounds
check, the BallShape is referenced directly. While it takes a few extra lines of code to account
for this, the math seems to behave a little better than it does when scaling is used on an object.
You may find an alternative method that works better for you.

2. Each ball has public variables for mass and velocity. Start by declaring a that will contain
all of the instances of the object, two instances of the object, and a random number
object. This code goes just before the constructor:

3. Inside the constructor, following the call, initialize the
:

4. Next, we’ll add the two ball instances. Start by generating a random x velocity for the ball.
Since this is a linear collision, there is no need for a y velocity.

5. Now, we’ll define the ball. In step 1, I talked about how the object in this project is differ-
ent than ones we’ve used before. This code covers our needs for an object defined this way. It
starts by changing the BallShape height and width, and assigning a mass to the ball based on its
width. The last two lines adjust the position of the BallShape relative to the LayoutRoot (center
point). This is done to simply keep the center point at the center.

328

CHAPTER 8

6. Next, the ball object is positioned on the main canvas. This ball is positioned at the left side of
the canvas. We can’t place the ball at 0 because while the user control is 50 pixels wide, the ball
shape is 75, and offset. To accommodate this change, the location is adjusted by finding the
difference between the widths and dividing it in two. The ball top position is then set before
adding the ball to the main canvas and the :

7. Add a second ball with the following code. This one is smaller—25 pixels in diameter—and
positioned at the right side of the canvas:

8. OK, the two balls are on the main canvas. Create an event handler for the event on
the storyboard, and start the storyboard:

9. Add the event handler function that will be called when the event is raised:

10. Inside of the event handler function, place a loop that steps through each ball in the
:

11. Inside the loop, add the following two lines of code. The first line creates a object from
the current ball in the , and the second line moves the ball according to the random x
velocity that was generated when the ball was initialized.

329

COLLISIONS

12. After the closing curly brace of the loop, restart the timer:

13. You can run the program at this point if you’d like. The two balls will move, but they will even-
tually both travel off the screen since there is no boundary checking in place. Let’s add some
boundary checks. Inside the loop in the function, add the following
code. This code tests the left and right application boundaries. Notice that there are references
to the width of the specific BallShape being checked.

14. The code you just added will keep the balls on the main canvas when the program runs. Now
that the balls move and collide with the walls, we need to get them to collide with each other.
The first thing you need to do is create a new function called that accepts
two passed arguments of type .

15. At the beginning of the function, add the following three lines of code. The first two lines cal-
culate the distance between the centers of the two objects, and the third line determines the
distance at which a collision occurs.

16. Following those three lines, test to see if there’s been a collision. If the distance between the
two objects is less than the collision distance, a collision has occurred. Inside this statement
is where the code goes to handle the collision reaction.

330

CHAPTER 8

17. Inside the statement, begin the collision code by determining the total velocity. While it
looks like the two velocity values are being subtracted, one of the two balls will be moving
with a negative x velocity, and subtracting a negative number will result in a positive result.
For example, if had an x velocity of 3, and had an x velocity of –2, you
would get 3 – –2, which is 5.

18. Next is the following exciting formula that calculates the velocity of . Without going
into the type of detail that only someone with a PhD in physics can provide, here’s what you
need to know: this is the formula for the conservation of momentum along a single axis. When
two objects collide as they do in this program, this formula will give you the velocity of the first
object.

19. Following that code, we have the far less intimidating-looking calculation for the velocity of the
second object. Remember that one of the two objects will be moving with a negative velocity,
so this line will provide the remaining velocity.

20. Finally, update the position of each of the objects that was passed to the function:

21. With the collision code in place, all we need to do is call the function and hand it a couple
of objects. Inside the statement in the function, add the following
loop after the boundary-checking code. Like the main loop, this loop counts through the
ball objects in the , but notice that it is indexing one ball ahead of the main
loop (). The current ball object and the next ball in the list are then passed to the

 function that was just created.

If you now compile and run the program, you will see two balls moving toward each other, as shown
in Figure 8-4. When the balls collide, their mass and velocity are taken into account as they rebound
in opposite directions.

331

COLLISIONS

Figure 8-4. Two balls of varying size and mass colliding along a single axis

22. One thing you may see when a fast collision occurs near a boundary is that one of the ball
objects may get stuck along the boundary. This occurs when the object’s velocity carries it
beyond the boundary check. Fortunately, it’s easily corrected with a few lines of code that
limit the boundary checking so that it only occurs if a ball is moving toward a wall. Inside the

 function, after the line of code that gets a reference to the current ball
(), add the following code. This code sets up a Boolean flag
to determine whether or not the current ball has negative velocity.

332

CHAPTER 8

23. Next, update the first boundary check to also check for negative velocity. The new code is
shown in bold in the following listing. This will only check the collision for the left boundary if
the ball object is moving to the left.

24. Make a similar change to the code that checks for the right boundary. This time, you want to
check the boundary only if the ball is moving to the right.

Since we used a to contain the ball objects, adding another ball into the mix is fairly easy. See
if you can figure that out on your own for practice. Add a object that has a width and height
of 40, and starts at the center of the main canvas when the application runs. If you get stuck, use the
LinearCollisionsCompleted project for help.

Now that you have some experience with linear collisions, it’s time to step up to angular collisions.

Angular collisions
An angular collision is one that occurs along two axes. Since the collision occurs along two axes, the
code that handles the reaction for an angular collision is quite a bit more complex than the code for
a linear collision. The basic process we will be coding up is shown in the following six images, starting
with the angular collision shown in Figure 8-5. The arrows represent the direction of travel; the lighter
line between the center points is the angle of collision.

Figure 8-5. A collision
occurring along two
axes

The process for calculating the collision begins by finding the angle of collision between the two balls
and rotating the entire collision counterclockwise by that same angle. The result of this rotation would
look like Figure 8-6.

333

COLLISIONS

Figure 8-6. The same
collision rotated
counterclockwise. The
rotation is the opposite
of the angle between
the two objects.

Figure 8-7 shows the same collision, with each ball’s travel vector split into its respective x and y
velocities. The original travel vectors are represented by the ghosted out arrows.

Figure 8-7. The x and y
velocity of each vector
is drawn with a black
arrow. The original
velocity is represented
by a ghosted arrow.

By removing the original travel vectors and y velocities, you are left with a linear collision along the x
axis, as shown in Figure 8-8.

Figure 8-8. The x velocities
create a linear collision.

After the collision occurs, the x velocities would be altered, while the y velocities would remain the
same. The post-collision velocities and travel vectors are shown in Figure 8-9.

Figure 8-9. After the
collision, the y veloci-
ties remain unchanged,
while the x velocities
are new.

The final step in the process is to rotate the collision in the clockwise direction to its original position.
As you can see in Figure 8-10, the balls now have a different direction of travel.

334

CHAPTER 8

Figure 8-10. The collision, rotated back to the original angle

As you probably figured, it takes a fair amount of code to perform this operation. It’s not overly complex,
but the code is not something you would be likely to just look at and understand. With that in mind, let’s
write it up. In this example, you will be coding angular collisions between multiple ball objects.

1. Open the AngularCollisions project to code along with this example. The project contains
essentially the same code as the LinearCollisions project, except that each ball is given both
an x and y velocity, and there is some additional bounds checking for the top and bottom
of the application. For this example, the bounds checking was moved to its own function:

. Compile and run the program to test it out—two balls are placed on the
screen and given random velocities. They will bounce off of the application boundaries, but
not each other. Take a few moments to examine the differences between this project and the
LinearCollisions project.

2. Inside the function is an empty statement that tests whether or not a
collision has occurred. Begin coding inside that statement by determining the angle of the
collision, as well as the sine and cosine of the angle.

3. Next, rotate the coordinates of the positions. , will be the coordinates of and
, are the coordinates of . The rotation of the collision is occurring around

, which is why and are both 0.

4. To rotate the velocity of , add the code shown here:

335

COLLISIONS

5. Follow that with the code that rotates the velocity of :

6. Resolve the collision. This code is very similar to the collision code used in the LinearCollision
project, except that it is using the rotated values calculated in steps 4 and 5.

7. Now that the collision has been resolved, rotate the positions back:

8. Update the positions of and on the main canvas:

9. Rotate the and object’s velocities back:

Since that was a fair amount of code, here’s the whole statement shown in one listing:

336

CHAPTER 8

Press F5 to compile and run the project, and wait for a collision to occur. If it doesn’t look like the two
balls will hit, press F5 in the browser to reload the application with new starting velocities. Eventually,
the two objects will collide and bounce off of each other according to their mass and velocity.

Go ahead and add another ball or two to the project. Vary their size a little bit, and then run the proj-
ect and see how it behaves. Generally speaking, you will get accurate, good-quality collisions, but one
thing you may notice is that as an object travels faster, the collision will become less accurate.

The reason for this is in the way the positions are updated and the collisions are checked. The balls
are moved, the collisions are checked, the balls are moved again, the collisions are checked again,
and so on. If a ball has an x velocity of –7 and is 3 pixels from the object with which it is going to col-
lide, the next time the ball is moved, it will overlap the object by 4 pixels. This becomes a bigger issue
when there are many more objects on screen—one object may end up “trapping” another. This occurs
when one object makes it inside the bounds of another when the two objects are moved. The collision
checking will then determine that a collision has occurred between those two objects, but the objects
will often be unable to separate and will remain stuck together.

337

COLLISIONS

10. To account for this issue, add the following bit of code to the collision reaction code, just after
the line that calculates the updated x velocity of the object (

). This code sums the absolute values of both objects’ x velocities, figures out the amount
that the two objects are overlapping, and then adjusts each object based on a portion of the
total overlap determined by their contribution to the total velocity. This will result in very clean
collisions even at a higher velocity.

The finished code from this example is available in the AngularCollisionsCompleted project.

Angular collisions with forces
Collisions become even more interesting when you start applying other forces such as gravity to them.
I’ve included an extra project for you to look at called BallDropCompleted that uses the same colli-
sion engine described in the previous example.

When the application starts, two balls are generated, and then an additional ball of a random size and
color is created every second until the user-specified number is reached. As the balls move around the
main canvas, they are pulled downward by the force of gravity, bouncing and colliding as they fall until
they eventually come to rest, as shown in Figure 8-11.

Figure 8-11. The BallDropCompleted project applies gravity and multiaxis collisions to
a user-specified number of balls.

338

CHAPTER 8

Collisions with angled surfaces
Earlier in the book, you saw how the law of reflection is used to create collisions with horizontal or
vertical surfaces. The angle of incidence is equal to the angle of reflection, which means an object will
bounce off of a flat surface at the same angle in which it hit the surface.

But what about angled surfaces? Bouncing objects off of angled surfaces is very similar to perform-
ing angular collisions, except that the angle of the collision is determined by the angle of the surface
being hit. When a collision with an angled surface occurs, the coordinate system is rotated, the colli-
sion is resolved, and then the system is rotated back. Let’s take a look at an example.

1. Open the AngledSurfaceCollision project to code along with this example. This project con-
tains a ball object and a line object, both of which have been adjusted as described earlier in
this chapter to have the Canvas act as a center point. The line object user control
is 1 1, as is the within the control. The actual visual reference line inside the

 control is called ReferenceLine, and is 400 pixels wide, offset –200 along the x to
position the center point.

2. Press F5 to compile and run the project. I’ve already placed the gravity and boundary checking
in place, as well as the basic motion loop, so you should see the ball drop and bounce.

3. I’ve already declared an instance of the line object for you, but you’ll need to add it to the main
canvas. Inside the constructor, add the following code. This will center the line
object on the main canvas, rotate the line 25 degrees, and add the line to the main canvas.

4. The line is now drawn on the main canvas, but it won’t do anything—the ball will still fall
straight through and hit the floor. We’ll need to add the collision code to the
function. Since we’ll be rotating the coordinate system again, we’ll need variables for ,

, and . In the previous example, was the angle between the two colliding
objects—here, the value is taken directly from the line object’s Rotate transform value.

5. Next, figure out the distance between the ball and the line:

6. Add the following code to rotate the coordinates:

339

COLLISIONS

7. Follow that by rotating the velocities:

8. Now that the velocities have been rotated, we can perform the bounce:

9. Rotate back the coordinates:

10. Rotate back the velocities:

11. Finish by updating the position of the ball on the main canvas:

Press F5 to compile and run the program. The ball drops, hits the line, and bounces. When it reaches
the edge of the line, it keeps rolling as if the line were still there. What happened? Technically speak-
ing, the line is still there. The code defines a line mathematically, and that line continues all the way
across the application. The line that’s drawn in the interface is nothing more than a visual reference
and really doesn’t have any effect on the behavior of the ball as it bounces, even though it looks like
it does.

The solution to this problem is to introduce some boundary checking for the line into the application.

We can’t use the position of the reference line within the line object, because the position of that
object is relative to its container and will never change as the application runs.

We also cannot use the center point of the object plus or minus the radius to locate the endpoints,
because that will only be accurate when the line is completely horizontal. The more the line rotates,
the closer in the left and right bounds become, and the less accurate the location plus or minus the
radius method will become.

However, we do know the position of the line, the rotation of the line, and the radius formed by the
line, so we can determine the left and right bounds fairly easily.

340

CHAPTER 8

12. Open the file for editing. Before the constructor, declare
three variables that will be used to store the center point of the line, the radius, and the angle
of rotation:

13. We’ll also need publicly accessible variables to hold the boundary values that we calculate:

14. Create a publicly accessible function called . We’ll be placing code that calculates
the boundaries of the line inside this function. When the line object is instanced, this function
will be called.

15. Inside the function, place code to initialize the variables that were declared:

16. Follow that up with the code to calculate the left and right boundaries of the line:

17. In the file, the code inside the constructor that initializes the
line needs to be updated to call the new function. The newly added line is shown in bold in the
following code. Notice that the line comes after the angle for the line is set.

18. Now that we have boundaries for the line, we can apply them by wrapping our collision reac-
tion code in an statement that checks to see if the ball is within the bounds of the line.
The updated collision reaction code from the function follows—add only the lines
shown in bold:

341

COLLISIONS

Press F5 to compile and run the program again. This time, the ball drops, hits the line, bounces, and
drops off the line as you would expect it to. However, after hitting the edge of the application and
rolling back toward the line, the ball moves inside the right boundary, and then appears to jump as the
code calculates the collision again. This issue is easily corrected.

19. Locate the if statement that performs the collision reaction calculation—it will look like this:
. Change it so that it includes an (and) function like

the code shown following.

The tests the rotated position of the ball to see if it is less than the velocity of the
ball. When above the line, the ball’s rotated y position is negative, so it will be less than the
ball’s y velocity, which is positive as the ball drops. Once below the line and inside the line’s
boundaries, the ball’s rotated y position becomes positive, and is greater than the ball’s y
velocity, so no collision takes place.

Now when you compile and run the program, the ball will roll under the line as expected. Play around
with the angle of the line a little bit and see what kind of effect it has on the ball bouncing. Take a few
minutes and add a slider to the application that allows you to change the angle of the line while the
application is running. If you get stuck, I’ve included the code in the AngledSurfaceCollisionCompleted
project, shown in Figure 8-12.

342

CHAPTER 8

Figure 8-12. The slider in the project allows you to control the angle of the surface with which the ball collides.

From where you’re currently at in the project, it takes just a few steps to add multiple lines for the ball
to collide with to the application.

20. Before the constructor, add a new called . This will be used to
hold each line added to the application.

21. Remove the declaration for the object:

22. Add the following four declarations:

343

COLLISIONS

23. Inside the constructor, remove the initialization code for the that was
removed:

24. Add the initialization code and the four you declared to the con-
structor for the

25. Change the function so it accepts a argument, and replace the refer-
ences inside the function to with . The altered lines are shown in bold in the
following code:

344

CHAPTER 8

26. Inside the event handler function, replace with the fol-
lowing code. This code will step through each in the of lines and do collision
checking.

Press F5 to compile and run the program. The ball will now roll and bounce along multiple lines, as
shown in Figure 8-13.

345

COLLISIONS

Figure 8-13. The ball rolls and bounces along multiple lines.

If you want to change the length of a line at the time of instantiation, all you need to do is change
the property of the ReferenceLine element and adjust the position of the ReferenceLine ele-
ment so that remains the center point for the object. The following code shows a typical
instantiation block for a line element, with the two lines of code that resize the individual line element
in bold:

I’ve included code showing how to play around with some of the line properties in the
MultipleAngledSurfaces project, which is shown in Figure 8-14. This project also turns the line that
the ball is in contact with orange.

346

CHAPTER 8

Figure 8-14. A ball colliding with multiple lines of different sizes and angles

We’ve talked about how to do collision detection using circles to detect the collision. Silverlight also
provides a pixel-by-pixel comparison method, called , which we’ll
look at in the following section and example.

FindElementsInHostCoordinates
You have already seen how Silverlight describes objects with a bounding box, no matter what their
shape. The box is defined by the top-left point, and width and height properties, as illustrated in
Figure 8-15. While the method for collision detection described earlier in this chapter works pretty
well, take a look at Figure 8-16. If the space capsule were traveling in the direction indicated by the
arrow, this would produce a hit using circles as collision objects, because the distance between the
two objects is less than the sum of their radii.

If you think this is a possibility and you need a method of collision testing that is more precise than the
methods described previously, you will want to consider the built-in
method in Silverlight. is expensive from a processing perspective,
so you will want to optimize the collision checking code to avoid doing the test unless necessary.

347

COLLISIONS

Figure 8-15. The bounding boxes for the Figure 8-16. Are the two objects colliding, or not?
sun and space capsule objects

Andy Beaulieu came up with a pretty good solution, and we will build a streamlined version of his
example in the following example. The concept is to do a precheck by comparing the two objects’
bounding boxes—if they don’t overlap, there’s no reason to spend the cycles checking each pixel for a
collision. If the bounding boxes do overlap, there might be a collision, so we’ll check pixel by pixel to
see if, in fact, a collision has occurred.

The one important thing you need to know is that a good collision test is dependent upon an outline
of the object. In some cases, like the sun and space capsule, there are many paths that make up the
object. What you want is just a single path that outlines the shape, as shown in Figures 8-17 and 8-18.
For the space capsule, I just traced around the edges with the Path tool, filled the path with a trans-
parent color, and saved it as . For the sun object, I was able to combine several of the
existing paths into the element.

Figure 8-17. The outline path for the Figure 8-18. The outline path for the sun object
space capsule object

348

CHAPTER 8

1. Open the FindElementsInHostCoordinates project to code along with this example. The proj-
ect contains an instance of the space capsule and an instance of the sun, each of which has
drag-and-drop code already in place. Both objects have been initialized and placed on the
main canvas—you will see them if you run the application.

2. Open the file for editing. Start by creating a new function called
 that accepts a and returns a :

3. Inside the function, begin by creating a object that gets the left and top properties of
the passed object:

4. Follow that up with a object that gets the bottom-right corner of the object that was
passed:

5. Finish the function by returning the rectangle object to the calling code:

6. Next, create a function called that accepts four objects
and returns a Boolean. Inside this function, we’ll test to see if a collision occurred. If it did, the
function will return ; otherwise, it will return .

7. Inside the function, begin by declaring two rectangles, and , which are defined by the
results of passing two of the elements passed into this function on to the
function created earlier:

349

COLLISIONS

8. Test to see if the and objects intersect:

9. If the results of the intersection test were , declare a new that will be used for the
pixel testing:

10. The following block of code steps through each point in the object, which contains the
overlapping area between the two rectangles, and checks to see if it contains any of the pixels
in the first object. If so, the same point is tested against the second object. If pixels from the
second object are found, a collision has occurred, and a value of is returned.

11. If no collision has been found, the function can return , so add the following code after
the closing curly brace of the statement:

350

CHAPTER 8

The completed function is shown in the following listing for clarity:

351

COLLISIONS

12. Now, all we need to do is make use of that code! At the bottom of the constructor,
create a new event handler for :

13. Create the event handler function:

14. Inside the function, set up pointers to the outline paths of the two objects being compared:

15. I added Boolean flags to each object so they could be tested. As the mouse is
moving, we will test to see if a collision has occurred, but only if one of the objects is being
dragged.

16. All that’s left is to pass the function the two collision paths and the two
objects, and update the output message based on the result of the check.

Press F5 to compile and run the program. Drag the two objects around and see how the application
responds. As you can see from Figure 8-19, using rectangles alone for collision detection would create
a positive hit when in fact the objects have not collided, whereas the function shown in this example
is very accurate, as illustrated in Figure 8-20.

Figure 8-19. Rectangle-
based collision detec-
tion would indicate a
collision occurred.

352

CHAPTER 8

As long as you keep in mind that this method can be expensive and write your code in a way that avoids
doing the pixel-level check unless absolutely necessary, you should be able to apply this technique in
your applications rather easily. The code for this example is in the FindElementsInHostCompleted
project.

Figure 8-20. A very precise pixel-by-pixel collision test

353

COLLISIONS

Summary
In this chapter, we looked at some ways to detect collisions and make objects react when a collision
has occurred. One of the most common methods for collision detection involves using bounding
circles for objects. By checking the distance between objects and testing to see if the distance is less
than the sum of the two radii, we can quickly tell if the two objects are hitting.

Linear collisions occur along a single axis and are the easiest to resolve. Angular collisions occur along
two axes, and are resolved by rotating the coordinates and velocities of the objects involved, resolving
the collision as though it were a linear collision, and then rotating the coordinates and velocities back.

Collisions with angled surfaces work in a similar manner. The coordinates and velocity are rotated
an amount equal to the opposite angle of the surface being hit. This rotation results in a horizontal
surface, upon which a collision can be resolved by applying the law of reflection, which states that the
angle of incidence is equal to the angle of reflection.

The method in Silverlight can be used to get very accurate pixel-
level collision checking. Make certain when using this method that the collision-checking code is only
called upon when needed, as it can be expensive to process.

In Chapter 9, we’ll take a look at how we can implement forward and inverse kinematics in Silverlight.

355

In this chapter, we’re going to discuss how we can go about implementing basic
forward and inverse kinematic chains/systems in Silverlight. Both techniques have
been used pretty extensively in 3D animation to create objects with articulated, con-
strained joints that walk, interact, and so on. The concept is based on a group (or
chain) of objects. Given that chain of objects, kinematics is a method of determining
an object’s rotation and position based on the object next to it.

In the case of forward kinematics, the location and rotation of the first object in the
chain determines the position of other objects in the chain. For inverse kinemat-
ics, the position and rotation of the last object in the chain propagates backward
through the chain.

To illustrate the concepts, stand on one leg and hold your other leg out in front of
you. Viewing the leg you’re holding out from a forward kinematics perspective, the
position of your thigh, calf, and foot all depend on the position of your hip. If your
hip moves, so do all the parts of the chain.

If we view the leg you’re holding out from an inverse kinematic perspective, we
consider that the position of your foot will determine where your calf and thigh will
end up. Consider what would happen if someone were to come along and give the
foot you’re holding out a good yank—your leg would straighten out or rotate in the
direction it was being pulled.

KINEMATICS

Chapter 9

356

CHAPTER 9

The basis for both the forward and inverse kinematic projects with which we’ll be working was devel-
oped by Keith Peters and adapted into Silverlight with his permission. The techniques were custom
developed, and while they may not be the “official” methods for creating kinematic chains, they are
easy to set up and they work really well, which is why they’re here. If you’d like to learn more about
inverse kinematics, a good place to start is the Wikipedia entry at

.

Forward kinematics
Let’s start out easy with a simple kinematic chain. Open the ForwardKinematics project to code
along with this example. The project contains two sliders that we will be using to control the angle
of our segments and a segment object called , which is shown in Figure 9-1. The

 object has a Rotate transform called that we will be using to manip-
ulate the angle of rotation for the segment.

Notice in the segment object that the point around which
the object will rotate is positioned over the hole on the
left side of the object. While the overall width of the
segment object is 155 pixels, the length of the segment
for our project is 120. This keeps the joints aligned, as
opposed to laying them from end to end.

In this project, we’ll be setting up a basic forward kine-
matic chain consisting of two segments. You’ll get the
opportunity to see how the motion of each segment
relates to the other.

1. With the project open, open the file for editing.

2. Before the constructor, declare an instance of the object called
:

3. Inside the constructor, add the following code to set limits on the first slider
control, attach an event handler to the event for the slider, and update the on-
screen text:

4. Since we added an event handler for the slider, we need to add an event handler function.
The following code shows the function. For the time being, it simply
updates the text label for the slider on the screen.

Figure 9-1. The kinematic segment with which
we will be working

357

KINEMATICS

5. Back inside the constructor, add code to position the object and add it to the
main canvas:

6. Next, create a function called . Inside this function, we will place the code to
move the segment as the slider is manipulated. You can see that it simply adjusts the segment’s
angle of rotation to match the value of the slider.

7. To call the function, place the following code inside the
 event handler function:

At this point, the program will compile and run, but it doesn’t do much—you can manipulate the
slider for and watch the value change as the segment rotates. As you can see, the range of the
slider determines the constraints of motion for the segment. Let’s add another segment to the project
and see what the kinematics will do for us.

8. Back above the constructor, add a second instance of the
object, as well as a that will be used to store the length of the segment:

9. Add code inside the constructor to add the new segment to the main canvas:

10. Also inside the constructor, add the code to define the behavior for the second
slider. Here, we’re setting a slider range of –90 to 90, presetting the value to 0, creating a

 event handler, and updating the on-screen messaging.

358

CHAPTER 9

11. Create the function. Like the event handler for the first slider, this
function simply updates the on-screen text and then calls the function.

12. Next, add the following code to the function beneath the existing line of
code. The code starts out by setting the angle of based on its own angle of rotation and
the angle of . It then uses the angle and location of to position on the canvas.
Those last few lines of code should look somewhat familiar to you—they find a point on a
circle based on a radius. In this case, is the center point, and the radius is the length of
the segment.

13. With that code in place, we can add one more line at the bottom of the construc-
tor. Since we are positioning via the code, it would draw at the top left of the main canvas
until a slider is manipulated. Adding a call to will adjust the position of
based on the position of . That way, when the application loads, we’ll have a nice-looking
presentation.

Press F5 to compile and run the program. You will see an application like the one shown in Figure
9-2. You can control the rotation of and change the rotation of to affect the rotation of

. The effect is a kind of organic, arm-like motion. Adjusting the range of will further
constrain the motion for the forearm segment. Test out a range of –120 to 0 and see if that more
closely emulates the range of motion for your arm. The code for this project can be found in the
ForwardKinematicsCompleted project.

359

KINEMATICS

Figure 9-2. A two-object forward kinematic chain

Automating forward kinematics
Let’s take a look at how we can go about automating this motion. Open up the ForwardKinematics2
project to code along with this example. The project contains most of the code from the first project
but does not include the sliders or their associated code. It also does not include the code that moves
the segments. It does contain a storyboard timer that will be used for the motion.

1. Open the file for editing. We will be using oscillating movements to control
, which means working with sine and cosine. To do this, we’ll need to cycle through the

angles of a circle and determine a new angle of rotation for the segment. Add the following
two variable declarations prior to the constructor to get started:

360

CHAPTER 9

2. At the bottom of the constructor, add an event handler for the event
on the storyboard, and begin the storyboard:

3. Add the event handler function shown in the following listing. The code will
determine a new angle based on the sine value of the variable. Since the slider that
constrained the motion has been removed, the in there simply defines the range. Since
we’re using sine, you should recognize that as creating motion between –90 and 90. Once that
calculation is done, the variable is incremented, the function is called,
and the timer is restarted to keep the motion going.

4. Add the following two lines of code to the top of the function. This code per-
forms the movement on the segments by setting their angles based on the value calculated in
step 3.

Compile and run the program. The rotational angles of the segments will run from –90 to 90, creating
an interesting, if somewhat mechanical, motion for the arm. The ForwardKinematics2Completed
project contains the code covered here.

Walking and running
Let’s see what else we can do with forward kinematics. Open the ForwardKinematics3 project to
code along with the next example. This project contains two instances of the
object, with the first instance positioned at the center of the canvas. The second instance will be
controlled from code.

1. Open the file for editing. Before the constructor, add the fol-
lowing three variables. We’ll be automating the movement again, so we have a variable that
defines the segment length as well as a variable to handle the changing angle on which the
motion is based. The final variable, , will be used to offset the lower segment’s angle
from the upper segment’s angle.

361

KINEMATICS

2. Take a look at the function. Notice the function declaration was changed in
order to accept three arguments—two segments and a cycle value:

3. We’ll move our angle calculations and constraints inside the function. Start
the function with the following code. Here, both angles have a range of 0 to 45. The 90 added
to the end of the first line rotates 90 degrees from the original position, so will
be pointing down, not to the right. The 45 degrees added to the end of rotates that
45-degree range of motion 45 degrees past the range of motion for .

4. Next, add some code to apply the calculated rotations to the segment objects that were passed
to the function:

5. Finally, move the second segment in relation to the first to line them up:

6. Inside the function, add the following code before the storyboard is
started. This code passes the function you just wrote two segments, and the
current value used to determine the rotation of the first segment.

Press F5 to compile and run the program. The constraints work with the motion of the segments to
form what looks like a single leg walking, as shown in Figure 9-3.

7. Let’s continue by adding two more segments that will form the second leg. Before the
 constructor, declare two more instances of the object:

362

CHAPTER 9

Figure 9-3. Combined with the constraints, the movement of the two segments looks like a leg walking.

8. Inside the constructor, position the object at the center of the main canvas,
as was done for . Add to the main canvas—don’t worry about positioning, since the
code will take care of that for you.

9. Inside the function, add a line of code to move the newly added seg-
ments:

10. If you run the program, it will look as though there is just a single pair of segments on the
screen. All four are there, but they are moving at the same rate, in the same position. To offset
the angle of the second leg, modify the line of code you just added. By adding pi to the
passed to the function, the second pair of segments will be offset from the
first by 180 degrees.

363

KINEMATICS

Now when you run the program, you should get a pair of legs that looks as though it’s walking, like
the one shown in Figure 9-4.

Figure 9-4. A set of walking legs

The ForwardKinematics3Completed project contains all of the code covered in the tutorial. I also
added several sliders that allow you to change the speed and constraints as the application runs.

Multiple forward kinematic chains
As you can probably imagine, there’s some pretty neat stuff you can do with longer chains of objects.
The next example of forward kinematics is going to be a little more complex. We’re going to write
a user control that will create a series of tentacles based on a forward kinematic chain. Once we’re
done, a few lines of code will allow you to create some pretty interesting effects.

1. Open the Tentacles project to code along with this example. The project contains the
 user control, from which our tentacles will be constructed. I’ve also added

a user control to the project. The main canvas also contains the storyboard, but
other than that, the project is pretty much empty.

364

CHAPTER 9

2. Open the file for editing. Because the object will be
building the kinematic chain from the user control, we need to push some
of the functionality to the individual segments. We’re going to make the segments responsible
for tracking their own angles rather than doing it globally as we did with the walk cycle. To
do this, add the following variable declarations before the constructor.
These variables should all be familiar to you from earlier examples.

3. After the constructor, add the following function. This function will be
called from the user control to update the angles of the segments in the kinematic
chain.

4. Save the file, and open for editing. This file is
where most of the heavy lifting will be done. We’ll be modifying the control to accept argu-
ments and build a kinematic chain, and create a function to move the chain.

5. Start by declaring the following variables before the constructor. These variables
determine the speed and range constraint of the base segment in the tentacle. The
variable is used to help vary the variable, and determines the initial
orientation of the tentacle when it’s added to the main canvas. The is used to store all of
the segments in the tentacle. Since all of the variables are used only in the user control, they
are scoped as .

6. The constructor needs to be modified to accept five arguments. When a tentacle
is instantiated on the main canvas, we will pass in the number of segments desired for the ten-
tacle, the speed, the range, the multiplier, and the angle of rotation. Inside the constructor, the
passed values are assigned to the local variables, and the is initialized. We then
call two functions (which we will create momentarily): and .
When completed, your constructor should look like the following listing:

365

KINEMATICS

7. After the constructor, create the function. The function should
accept a single integer argument that represents the number of segments in the kinematic
chain. You can see in step 6 that when is called, it is passed the number of
elements:

8. Inside the function, add the following loop:

9. Inside the loop, add the following code. This code creates a new instance of the
 object and scales it based on its position in the chain.

The variable for that instance of the segment is then updated to reflect the
appropriate size based on scale. The for the segment is based on the passed variable
minus the multiplied by the segment’s position in the chain. This has the effect of
diminishing the angle of rotation of each successive piece of the chain. However, if the mul-
tiplier is set large enough across a number of segments, the angle of rotation will eventually
cross a threshold and become negative. For instance, a of 45 with a of 10
across 10 segments results in range values of 45, 35, 25, 15, 5, –5, –15, –25, –35, and –45. This
will result in a snaking chain. You’ll probably need to spend a little time experimenting with the

 and to get a good feel for it.

The newly created segment’s is then set to 0.

366

CHAPTER 9

10. Following that code, add the following statement. Here, the code simply positions the first
segment in the Canvas. Since all of the other segments are positioned pro-
grammatically, they can just be added to the root, which is handled by the clause.

11. After the clause in step 10, add the following line of code. This places the new segment in
the .

12. Next up is the function. The code to create the function looks like this:

13. Now, start typing inside those curly braces. The first line of this function sets the rotational
angle and segment instance variable to the rotation value that was passed into the

 constructor. Remember that in a forward kinematic chain, the first segment drives
the rotation and location of every other segment. This simply sets up that angle of rotation on
the first segment.

14. Follow that up with a counter to keep track of the current segment:

15. Next, we’ll need a loop to step through all of the segments in the chain:

16. Inside the loop, place the following statement—here, we’re just testing to make
sure that we’re making changes to every segment in the chain except for the first one, which
has already been handled with the code shown in step 13.

367

KINEMATICS

17. Inside the statement, begin by declaring an instance of the object that is
the previous segment in the chain:

18. Next, set the rotation of the current segment to the sum of the previous segment’s rotation
angle and the current segment’s variable:

19. Next, add the intimidating-looking lines of code shown following. This code is not new, how-
ever—it’s the same code you used in the walking example, modified to work inside of the
statement. The angle of rotation (in radians) of the previous segment is calculated, and then
the current segment is positioned based on that angle.

20. That’s it for the statement. After the closing curly brace, add the following code. Now that
the segment has been positioned, we will need to call the method to update
the segment’s variable, and then increment the segment’s variable. This is the
code that keeps each segment rotating. Finish up by incrementing the
variable.

That was a pretty good chunk of coding—here’s what the completed class looks like:

368

CHAPTER 9

369

KINEMATICS

21. Now, it’s time to test out the code. Open the file for editing. Before the
 constructor, declare a new instance of the object:

22. Inside the constructor, type . An IntelliSense window
like the one shown in Figure 9-5 will pop up, showing you all of the variables you need to pass
to the class. For a first pass, type to create a tentacle with ten
segments, a speed of .02, and a root segment range of 45 degrees. Each successive segment will
then have a range of 25 degrees less (remember what I mentioned earlier about creating a snak-
ing shape?). The rotation of the base segment is 0, meaning this tentacle will point to the right.

Figure 9-5. IntelliSense leads the way when calling the Tentacle control.

23. Next, set the position of the tentacle and add it to the main canvas:

24. To make the tentacle move, we still need to use the timer on the main page. Add a
event handler, and start the timer.

370

CHAPTER 9

25. Add the event handler function after the constructor. The func-
tion is fairly simple—it calls the method on the tentacle and restarts the
timer.

Press F5 to compile and run the program. You will be greeted with a moving, curling tentacle like the
one shown in Figure 9-6.

Figure 9-6. A moving, curling tentacle

26. Now that we know the code works, we can change it so that we can create a group of ten-
tacles on demand. Go ahead and remove or comment out all the code you just added to the

 file. We’ll change the code so that the tentacles are generated more ran-
domly. Before the constructor, declare the following two variables. The first is a

 of objects, and the second is for generating random numbers.

371

KINEMATICS

27. After the constructor, add a function called that accepts an
integer argument named . The passed integer will be used to determine how many
tentacles should be drawn on the screen.

28. Inside the loop, generate some random numbers. We’ll randomize almost the whole pro-
cess. Start with a random number for the number of segments. That’s followed by declaring
a speed variable, setting it to 0, and then generating a random number between –.04 and .04.
The loop is there to avoid tentacles that don’t move. Next come variables for the base
segment’s range, a random multiplier, and random initial rotation that should generally keep
the tentacles pointing downward.

29. Next, add the following code to instance the object based on the random numbers
that were just generated. The new instance of the is then scaled randomly between
.5 and .8 before being positioned and added to the main canvas. The last line adds the new

 object to the of .

30. To call the newly created function, we’ll add code to the constructor. Start by ini-
tializing the . Next, call the new function and pass it the number of tentacles
you’d like created:

31. The tentacles still need to be made to move, so add the event handler to the
storyboard, and start the storyboard:

372

CHAPTER 9

32. The event handler function looks like the following listing. A loop steps through each
tentacle in the and calls the method for that tentacle. The function
closes out by restarting the timer.

Press F5 to compile and run the program. You will get something similar to Figure 9-7. Each time
you reload the browser, a new and unique set of waving tentacles is created. Spend some time play-
ing around with the constraint ranges and see what kind of results you can come up with. There are
certainly enough variables to experiment with! Due to the random scaling, you may also want to add
some code to adjust the location of each tentacle on the screen so they line up a little better.

Figure 9-7. A group of waving tentacles

373

KINEMATICS

Inverse kinematics
We’ve gotten a pretty good look at how we can apply forward kinematics to a chain of objects and the
type of motion it will create. Now, we’re going to take a look at inverse kinematics, where the free end
of a kinematic chain determines what the rest of the objects in the chain do.

A good example of this would be to imagine a section of chain laying on a
surface. If you grab one end of the chain and pull, the links will follow. If
you pull just a bit, only the links close to the link you’re pulling will move,
and the rest will remain stationary. Pulling the first link farther will result
in more links being affected until the entire chain is eventually in motion.
This type of behavior is inverse kinematic dragging behavior. Another type
of behavior, reaching, would be demonstrated if the other end of the
chain—the base—were nailed to a board and the free end were reaching.

We’ll take a look at both behavior types, but first take a look at the seg-
ment shown in Figure 9-8. The chain link shown in the image will be the
segment shape and length we will use for the inverse kinematic examples.

Reaching
Next, we will create a simple example that demonstrates a single segment that reaches for the mouse.
You will be able to see the effect that having one end of an object pinned as it reaches for the mouse
has on the motion for that object.

1. Open the InverseKinematics project. The project contains the chain link
user control, which is instanced a single time and placed on the main canvas. Open the

 file for editing.

2. For this example, we’ll have the segment reach for the mouse. At the bottom of the
constructor, add a event handler:

3. Add the event handler code shown following. The function includes some code that should look
familiar to you. It begins by getting the current position of the mouse. It then finds the x and y
distances between the link and the mouse point and uses to determine the angle. This
is similar to the way the picture rotation worked in Chapter 6. Finally, the segment’s angle of
rotation is updated by converting the calculated variable from radians to degrees.

Figure 9-8. The kinematic seg-
ment we’ll be using to demon-
strate inverse kinematics

374

CHAPTER 9

Press F5 to compile and run the project. As you move the mouse, the segment will turn to reach for
the mouse location. The code for this example is in the InverseKinematicsCompleted project.

Dragging
The other way I mentioned using inverse kinematics is by dragging. In this example, you will see how
dragging a kinematic chain is much like dragging a length of real chain—each link in the chain will
follow the link before it.

1. Open the InverseKinematics2 project. This base project is identical to the one used in the first
example, except that it includes an integer variable to store the length of the segment (65) for
use in calculations. Once again, open the file for editing.

2. Like the first example, this method also uses the event to move the segment. Inside
the constructor, add the event handler:

3. Create the event handler function:

4. Start the event handler just as you did with the previous example. Get the mouse location,
determine the angle between the points, and rotate the segment:

5. Add two more lines to position the segment based on the position of the mouse and the
length of the segment:

Press F5 to compile and run the project. As you move the mouse around the screen, the segment
rotates and follows, and you didn’t even need to add any dragging code to the segment object!

375

KINEMATICS

6. Let’s keep working in this project to add another segment. Before the constructor,
declare a second instance of the object:

7. Inside the constructor, add the second segment to the main canvas. Don’t worry
about the position—the code will handle that.

8. Inside the event handler function, after the code that positions , add the
following code to calculate the position for the second segment and position it in relation to
the first. Since the variables are already declared, we just reuse them here for the second set
of calculations. The positioning of the second segment is based on the location of the first.

Press F5 again to test the project. When it first loads, the second segment will be up in the corner
of the application, but when you move the mouse over the canvas, it will position itself correctly as
part of the chain. Drag the mouse around a little bit and test the motion out. One of the interest-
ing things about this type of motion is that you can use the first segment to push the second one
backward or pull the first one and the second one will follow. The code for this project is in the
InverseKinematics2Completed project.

Dragging longer chains
Now, you’re probably thinking that this is pretty neat, and you’d like to do a really long chain to see
how it works. So let’s code it up.

1. Open the InverseKinematics3 project. This is essentially an empty project that contains the
same kinematic segment object with which we have been working.

2. Start by declaring variables above the constructor. We’ll be using a to hold
our segments, a to store the mouse location, and scale and length variables. For longer
chains, you will likely want to scale down the segment object so it will fit on the canvas.

376

CHAPTER 9

3. We’re going to use a function to create the kinematic chain for us, so create a new function
called that accepts an integer argument that represents the number of items in
the chain. Inside the function, we will use a loop to create the chain.

4. Inside the loop, add the following code, which will create the instances of the segment for
the chain. Notice that the segments are created, scaled according to the variable we declared
earlier, and then added to the main canvas and . They are not positioned on the
canvas. We’ll add a bit of code to handle that later.

5. Inside the constructor, add the following code to initialize the , adjust
the variable based on the scale, and call the function:

6. If you run the program at this point, all 100 segments will be created, but they will all be piled
on top of one another at the top left of the main canvas. We’ll need to add some code to move
the chain objects. We’ll separate this behavior into its own function rather than tying it to the

 event. Create a function called that accepts a ,
and two s as arguments.

7. Inside the function, add the following code. This will calculate the distance
between segment and offsets passed to the function and calculate the angle between them.

377

KINEMATICS

8. Next, add the following code, which should look familiar to you. This code sets the rotation
and position of the passed segment.

9. Now that the movement and positioning code has been generalized, create a new function
called . This function will be called as the mouse moves and will be used to call
out to the function that was just created in order to move the chain.

10. Inside the function, add the following code to position the first object in the
chain:

11. Follow that with the following loop, which will position the rest of the objects in the chain:

12. Inside the constructor, add the following code. This will preset the
location to a position on the screen and then call the function to position as
many of the links as possible.

13. If you run the project at this point, the chain will draw in a diagonal line from the top left of
the app down toward the right. Our chain is being created, added to the canvas, and posi-
tioned. All we need to do is add code to attach some mouse control to it. Add the following

 event handler following the code you added in step 9.

14. The event handler follows. Here, we’re just grabbing the mouse posi-
tion to update the variable and then calling to update the location of
all the chain segments.

378

CHAPTER 9

Press F5 to run the project. Drag the mouse around the screen, and notice how the chain follows (see
Figure 9-9). You might need to drag it around a bit to see the rest of the links unfold from the pile
near the top left, but you should be able to see how this behavior mimics the example I mentioned
earlier in the chapter—moving the mouse just a bit moves just the few end links on the end of the
chain. You need to move the mouse much further to move the links way down at the end of the chain.
The completed version of this project is called InverseKinematics3Completed.

Figure 9-9. An inverse kinematic chain containing 100 segments. As the mouse is dragged, the chain follows.

Organic animations
One of the things I find really appealing about inverse kinematics is the organic-like quality you can
apply to chains of objects—they start acting like little creatures inside a Silverlight application. In the
next example, I’m going to show you a way to set up a Chinese dragon that will cruise around the
application on its own, occasionally changing direction and speed. As you’ll see, I went pretty easy
on the code that changes the direction of the dragon, but I’m sure when you get the opportunity to
modify the code for your own critters, you’ll come up with some new and interesting ways to make
them move.

379

KINEMATICS

1. Open the IKDragon project to code along with this example. The project may seem a little
complex, but the concept is relatively straightforward. We’ll create a head that roams freely
about the canvas, and a series of body segments arranged in an inverse kinematic chain. As the
head moves, the body segments will update their angle of rotation and position on the screen.
Every 3 seconds, we’ll have the head change direction.

The project contains two timelines: , which will automate
the head and body movements, and , which
we will use to change the direction of the head. The project
also contains two user controls: the dragon’s head and a body
segment, both of which are shown in Figure 9-10. The head
control has a public variable in it to store a velocity value.

2. Open the file for editing. We’ll start with
the dragon’s head, so create an instance of the
user control. We’ll also need s for managing the scale of the objects and the length of
the segment and a random number generator to create some velocities for the head.

3. Add the following code inside the constructor. This code initializes the object
and then scales the instance according to the scaling value set up in step 2. After that, random
x and y velocities between 4 and 6 are generated. The loop runs to make sure the y
velocity does not match the x velocity. This will keep the head from moving in a straight line.
If the velocities do match, a toned-down y velocity is generated. Finally, the head is positioned
and added to the main canvas.

4. You can compile and run the program if you’d like, and you’ll see the dragon head drawn on
the main canvas. The next step is to make it move, so inside the constructor, create
an event handler for the timer’s event, and start the timer:

Figure 9-10. The dragon’s head (left)
and body (right)

380

CHAPTER 9

5. After the constructor, create the event handler function:

6. Inside the function, start by calculating the angle of rotation from the head. Use the x and y
velocity to calculate angle, and then apply the rotation to the head:

7. Next, update the position of the head on the canvas:

8. Check to see if the head has hit a boundary, and if so, change the direction of the velocity. Note
here that while we’re adjusting the boundaries for the scale, we’re not taking into account the
rotation of the head, so the head may duck off canvas or change direction prematurely when
it reaches a boundary.

9. Finally, restart the timer:

381

KINEMATICS

10. Press F5 to test out the application. The head should be moving around the screen, changing
direction when it reaches the edge of the main canvas. We want to change the direction more
often than boundary collisions will occur, which is why there is a second timer. At the bottom
of the constructor, add the following code to create a event handler for
the storyboard, and start the storyboard. is a storyboard
timer with a duration of 3 seconds.

11. Add the event handler function after the construc-
tor. This function will store the velocity and generate a new one. If the head is currently
moving up, the new velocity will point it down. If the head is moving down, the new velocity
will point it up. The code shown here is where you can spend some time to make the move-
ment more interesting. The last line of the code restarts the storyboard so that this function
will be called again in 3 seconds.

12. Now when you run the program, the head will zigzag about the canvas. While the changes may
look a little abrupt at the moment, having the body in there will smooth them out. Speaking of
the body, we’re all done with the head, so now we need to create our kinematic chain of body
segments. Before the constructor, add the following lines of code to your variable
declaration section. This code declares a of objects and sets up a variable to
store the number of body segments.

13. Inside the constructor, initialize the of , and adjust the
 for scaling. The last line calls a function we will create next.

382

CHAPTER 9

14. Create the function shown in the following code. The function contains a
loop that will be used to generate the body segment objects.

15. Type the following code inside the loop. This should be pretty easy for you to figure out by
now. A new instance of the body segment is created, scaled, positioned, and added to the
of segments and the main canvas.

16. If you run the program again, you’ll see that the body segments get generated in a pile at the
top left of the main canvas, and the disembodied head is still running around loose. We’ll add
another function to handle the movement of the segments. As with the example earlier in this
chapter, the movement is handled by a generalized method that accepts a seg-
ment as well as two arguments.

17. The function begins by calculating the distance between the offset and the segment and calcu-
lates an angle from that offset:

18. From there, the segment that was passed in can be rotated and positioned:

383

KINEMATICS

19. With the function that handles the positioning of the segments in place, create a function
called that will make the necessary calls to the method:

20. This function starts by calling the function to position the first body segment in
relation to the head:

21. After the first body segment is positioned, the following loop will step through the remaining
segments, calling the function for each one in order to position it based on the
previous segment in the chain:

22. At the bottom of the constructor, add a call to the function you just
wrote. This will preset the locations of as many of the body segments as possible before the
timer starts.

23. In the event handler function, add the same line of code just before the
closing line. The first time we called the function, it set the body segments into
their initial positions. This time, the function will be called each time the storyboard timer
expires—this is where the body movement takes place as the application runs.

Press F5 to compile and run the program. The dragon will work its way around the screen, changing
vertical directions every 3 seconds (see Figure 9-11). Play around with some of the velocities and tim-
ing for the direction changes. See if you can come up with something that’s interesting and organic-
looking with regard to the movement.

384

CHAPTER 9

Figure 9-11. The Chinese dragon cruises around the application on its own.

Reaching with longer chains
Since we looked at how to go about making longer chains that can be dragged around on the canvas,
we will also take a look at how to make a longer chain that reaches. Open the InverseKinematics4
project to code along with this example. This project is similar to the InverseKinematicsCompleted
project, except that the single segment in the application has been moved to the bottom center of the
main canvas, and the code to move the segment has been removed. We’ll modify the code to include
a second segment and move both.

1. Open the file for editing.

2. Before the constructor, add the following variable declarations. This will create a
second instance of the object and declare a variable that will be used to
position the second segment.

385

KINEMATICS

3. Inside the constructor, position the new instance of the segment object, and add it
to the main canvas:

4. To calculate the angle and rotation of any given segment, we’re going to be using a generalized
method once again. Create a method called that accepts a
and two arguments and returns a :

5. Inside the function, add the following code. This code determines the angle
between the passed segment and offsets, rotates the passed segment, and returns the angle of
rotation:

6. Now, take a look at the function. After the code that determines the
value of , add the following code. This code uses the position of the mouse and
length of the segment to determine where would hit the target coordinate based
on the angle of rotation of the first segment.

7. Next, a call is made to the function, which passes and the calcu-
lated target positions. This will rotate .

8. With all of the calculations done, is positioned based on the location of :

386

CHAPTER 9

Now, maybe you’re looking at the code and scratching your head a little bit wondering what just hap-
pened, because we didn’t move the left or top positions for in the move code, and it still
seems to be moving around. Keep in mind that we’re building an inverse chain here— is
now the segment that is in contact with the floor. I’ve illustrated this functionality for you in Figure
9-12. The chain builds from the reaching position backward. The completed code for this example is
in the InverseKinematics4Completed project.

Figure 9-12. A graphical representation of a simple reaching inverse kinematic chain

Variable-length reaching chains
As you can probably imagine, coding up more than a couple of chain segments would get pretty
tedious and require a fair amount of code. Much like we did with the dragging chain, we can add some
functions that will make the work of moving a chain easier. To follow along with this example, open
the InverseKinematics5 project. This project is stubbed out with a good deal of code with which
you should already be familiar. It contains a to contain the segments, variables for the segment
size and scaling, and a function to build the chain. When run, the project will create a
chain with 25 links, but they won’t yet move. We’ll add code to the existing
function to handle that for us.

387

KINEMATICS

1. Open the file for editing. Even though the code to move the chain will go in
the event handler, we’ll still need to create separate functions to handle the reach-
ing and positioning of the segments. Create a new function called . The function will
accept a and two s as arguments and return a .

2. Inside the function, place the code that handles the angle between the x and y values and the
segment passed in:

3. In the last example, the target location was based around the mouse location and the segment.
This time, we’re using passed values. Add the following code, which calculates the target loca-
tion based on the x and y values and the angle calculated in step 2:

4. Next, add a function that accepts two objects. This is where the code goes
that positions the segments, so call this function :

5. Inside this function, add the following code. This code calculates an angle based on the rota-
tion of the first passed segment and uses it in conjunction with the position of the first seg-
ment to position the second segment.

6. Next, we’ll be adding code to the function to make use of the func-
tions we just added. Start by creating two objects:

7. The next line calculates the points by calling the function and passing the first
segment in the chain, as well as the x and y position of the mouse:

388

CHAPTER 9

8. Add a loop that repeats step 7 for the rest of the segments in the chain. Each time through,
the coordinates are updated and passed into the function for the next segment.

9. Finish up the function with the following loop. This loop starts at the second loop in the
chain (second segment closest to the mouse) and steps backward through the of seg-
ments. For each iteration of the loop, the function is passed the current segment
and the next segment.

Press F5 to compile and run the project. Move the mouse around on the main canvas, and the chain
will follow the mouse, as shown in Figure 9-13. Play around with the scaling and number of segments
in the chain to get a feel for the application.

Figure 9-13. A longer reaching inverse kinematic chain

389

KINEMATICS

Reaching for objects
You can start getting some really interesting effects with reaching chains when they reach for some-
thing other than the mouse. We’ll close out the examples in this chapter by building an underwater
mine that appears to be tethered to the bottom of the application with a chain. This example will
demonstrate how to reach for an object other than the mouse point.

1. Open the UnderwaterMine project to code along with the example. This project has a few
parts to it. The file has the usual main canvas—this one has a blue gradient fill.
There is also a storyboard timer called . It’s not in use yet, but we’ll be using it soon.

I also added two user controls to the project. The first one is called but
contains two different paths that form the chain shapes shown in Figure 9-14. By default, only
the one on the left is visible in the control. The side view is hidden. There is also an underwater
mine user control called . This control contains the mine shape shown in Figure 9-15.

Figure 9-14. The two path shapes in the
segment object

Figure 9-15. The shape in-
side the Mine user control

2. Take a couple of minutes and go through the code in the project. This is the same code used
in the last example, with two minor differences. First, the chain has 23 links in it. I happen to
know that’s how many we will need to reach from the bottom of the application to the bottom
of the mine object. The other difference is that the segments in the chain look different. If you
compile and run the project, you’ll see a bunch of links forming a chain that reaches for the
mouse position just like the one shown in Figure 9-16.

390

CHAPTER 9

Figure 9-16. The chain of links reaches for the mouse position.

3. Open the file for editing. We’ll start out by updating the chain. This is done
by changing the function, which follows:

391

KINEMATICS

4. Update the function with the code shown following. This just sets up a simple alternating flag
that changes the visibility of the links on every other iteration. A Boolean would have worked
here just as easily. If you run the program again after making this change, you’ll see that the
chain looks more chain-like.

5. Next, we’ll add the object to the application. Before the constructor, add the
following declaration:

6. Inside the constructor, add the following code to initialize the object, posi-
tion the top of the mine, and add it to the main canvas. We won’t worry about positioning the
left side of the object—we’ll be handling that with some code.

392

CHAPTER 9

7. We will no longer be using the event, so remove the following line of code from the
 constructor:

8. Next, we’ll modify the event handler function, which follows:

9. Begin by changing the name of the function to . Be sure to remove the param-
eters as well.

10. Delete the line of code that gets the mouse position:

11. At the moment, the calculation uses the mouse coordinates as a location. Update that
code to look like the following. It will now use the first element in the —the
one closest to the target—to reach for the mine object. The and adjustments are
to position the reaching point at the bottom center of the mine—since the object is scaled, I
hard-coded these values, which is probably not a good habit to get into.

393

KINEMATICS

12. The target is all set up; now, we just need to make it move. Inside the constructor,
create an event handler for the event on the storyboard, and then start the
storyboard:

13. Create the event handler function. For the moment, all it needs to do is call
 to update the location of the chain and restart the storyboard.

14. If you run the project at this point, you’ll see that the chain does indeed stretch toward the
mine but doesn’t reach it, and nothing is moving. We’re going to move the mine slowly back
and forth along the x axis. With that in mind, add the following variables before the
constructor:

15. Inside the constructor, initialize the variable:

16. Add the following code to the event handler function. This code should
look familiar to you from the oscillation examples in Chapter 6.

17. Press F5 to compile and run the program. The mine will drift slowly back and forth as the chain
follows.

18. There’s one more addition we can make to the function to add a little more
realism to the project. In order to make the mine rotate slightly as it’s drifting, add the follow-
ing line of code. This will rotate the mine back and forth 25 degrees as it drifts. Now when you
run the program, the mine tilts as it drifts, as shown in Figure 9-17.

394

CHAPTER 9

Figure 9-17. The mine drifts and rotates, and the chain follows.

The final version of the code for this example is in the UnderwaterMineCompleted project. I also
added a gradient mask to the final project to give the effect a little more depth.

Now, given that an underwater mine is actually tethered to a chain, it probably makes more sense to
do this one as a dragging chain rather than a reaching chain, so with that in mind, I’m going to leave
you with two assignments. First, write the mine example using a dragging chain, and second, use either
the reaching or dragging example, and turn the mine and chain into a user control so that you can
instance the entire mine with just a couple of lines of code.

395

KINEMATICS

Summary
In this chapter, we talked about how to implement basic forward and inverse kinematic chains/systems
in Silverlight. Forward kinematic chains are formed when the base of a chain drives the angle and posi-
tion of the objects in the chain. An example of a forward kinematic chain would be moving your upper
arm—your lower arm and hand would follow.

Inverse kinematic chains are formed when the free end of a chain dictates the angle and position of
the objects in the chain. An example of an inverse kinematic chain would be if someone were to grab
your hand and pull—your forearm, upper arm, and maybe even body would follow.

While the methods of implementation discussed here may not be the “official” methods for doing
forward or inverse kinematics, they look and work extremely well and don’t put too much pressure
on the processor.

In Chapter 10, we’ll take a look at how to implement a basic particle system. Once that’s in place, we’ll
look at some interesting ways to implement particle systems in Silverlight.

397

In this chapter, we’re going to take a look at how to build particle systems in Silverlight.
Particle systems are often used to model so-called fuzzy objects—objects that do not
have well-defined surfaces, such as smoke, fire, and water. Now, before you get too
excited, you should know that we won’t be doing those types of particle systems
here. Instead, we’re going to create a base system that you can augment based on
other concepts you’ve learned in this book in order to move in that direction.

The first thing we need to address is the definition of a particle. A particle is generally
defined as a small portion of something. For our purposes, we will define a particle as
a single occurrence of an object. That might mean a car, a tire, a drop of water, a ball,
or even a leaf or snowflake. That’s right—the projects we did way back in Chapter 6
to make snow fall and leaves waft were particle system implementations.

The basic model for particle systems is that for each unit of time that passes, the
application may create new particles based on some condition, assign a unique set
of attributes to any new particles that are created, remove any particles based on
some condition, and update the position of the particles on the screen. Typically, the
destruction of particles occurs based on a life span for the particle, but as you will
see, you can also use other conditions, such as if a particle goes off the canvas.

PARTICLE SYSTEMS

Chapter 10

398

CHAPTER 10

A basic particle system
Let’s take a look at how we would go about building a basic particle system in Silverlight.

1. Open the BasicParticleSystem project. This project contains the base file with
a storyboard and an object called .

2. Open the file, and take a look at the XAML, which is shown following. The
particle itself is a less-than-impressive gray ellipse with a black stroke, as shown in Figure 10-1.
Items of note in the code are that both the Scale transform and Ellipse shape are named to
make them easily accessible from the code-behind.

Figure 10-1. The particle
used in the BasicParticle-
System project

3. Open the file for editing. Just above the constructor, add the
following three lines of code. These will declare a of type named .
The will be used to track the number of particles in our particle system. The
variable will be used to generate the particles. The variable will allow us to use random
numbers to vary the look of the particles as they are generated.

399

PARTICLE SYSTEMS

4. Next, we’ll create a function that will generate our particles. This code goes after the closing
curly brace of the constructor. Notice that we will be passing the function an inte-
ger that will be used to generate particles. Inside the function is a simple loop that creates
a new instance of the object, assigns random locations to the and proper-
ties, adds the new particle to the , and draws the particle on the main canvas.

5. Inside the constructor, we need to add a bit of code before we can use our
and create some particles. After the line, add the following two lines
of code. The first line initializes our so that its length equals the number of particles we’ll
be placing on the canvas. The second line calls the function created in step
4 and passes the variable to the function.

6. Test out the project by pressing F5 to compile and run. You should see something similar to
what is shown in Figure 10-2. Just to test out the randomness of the particle placement, press
F5 a few times in the browser to reload the application. The particles should redraw at differ-
ent locations each time.

400

CHAPTER 10

Figure 10-2. The CreateParticles() function at work

7. Let’s add a little bit of randomness to the particles. Just before the
line, add the following code. This will create an array of bytes, generate random numbers for
each byte value in the array, and then use those values to change the colors of the particles.

8. After the code added in step 7, and before the code that adds the particle to the , add
the following lines of code to mix up the scaling and opacity of the particles. The

 line generates a value between 0 and 1 for the property. The
and properties are handled in the same way, except that we do a quick test to make
sure the particles are at least 25% in scale.

401

PARTICLE SYSTEMS

9. Compile and run the program. You will see something like what is shown in Figure 10-3.

Figure 10-3. The particles now have random color, scale, and opacity.

10. So the particle generator is in place and does a pretty good job of randomizing our particles,
but at this point, they’re static. We need to make them move. Let’s start by adding age and life
span to each particle. Open the file, and add the following lines of code
before the constructor. These are two simple, publicly accessible properties that
will be used to track a particle’s age and life span.

11. Back in , add the following two lines at the bottom of the con-
structor. These lines of code will set up an event listener for our storyboard and start the
storyboard running.

402

CHAPTER 10

12. Inside the function, add the following line, which will create a random life
span between 0 and 120 frames for each particle as it is created. At 30 frames per second, that
should be a maximum of 4 seconds that any given particle is on the screen.

13. The event handler is shown following. This code uses the loop to
step through each in the , increment the age, and test to see if the
particle has reached its life span. If so, the particle is removed from the main canvas.

14. Compile and run the project. The particles will be drawn, and after a second or so, will start
disappearing from the screen until they’re all gone.

15. Each time a particle dies, we’ll create a new one. To do this, we’ll first need to make a change
to the code, however. The loop locks up the enumeration of our

. When a particle dies, it’s not enough to remove it from the main canvas; we
should also pull it out of our . Since the enumeration is locked, attempting to change the

 length while the loop is running would cause an exception. Instead, we’ll change that to
a basic loop. After the change, the function should look like the follow-
ing:

403

PARTICLE SYSTEMS

16. Now, we can add code inside the logic to remove the dead particle from the and
generate a new one on the screen. The relevant new code is shown in bold in the following
listing:

17. If you run the program at this point, your particles will be drawn on the screen, and as a par-
ticle dies, a new one will be generated to replace it. All that’s left to do is to add a little code
to make them move. Inside the file, add the following variable declaration
before the constructor:

18. Inside the function in the file, add the following code to
create random values for the x and y velocity values of each particle. Just to make sure none
of the particles are standing still, test for 0 values and assign them a new value to keep them
moving:

19. Inside the function, add the following two lines of code just before the line
that increments the particle’s age:

Press F5 to compile and run the project. The particles will be drawn and move about the screen ran-
domly. Each time a particle dies, another will be generated to take the place of the recently deceased.
The final version of this code is available in the BasicParticleSystemsCompleted project.

404

CHAPTER 10

If you were so inclined, you might consider adding a “dying” storyboard animation to the
 file, perhaps one that quickly shrinks the particle to nothing. When the particle reaches the end

of its life span, the dying animation would be played, and upon completion, the particle would be
removed from the and main canvas.

Emitters
Emitters are just what their name implies: objects that emit particles. The example project we just built
didn’t make use of a specific emitter for the particle, but emitters are relatively easy to implement.
Let’s take a look at how we can make use of an emitter.

1. Open the ParticleEmitters project. This project contains the same and particle
as the last project did, but also includes an object called . The XAML for the
object is shown following—it’s nothing more than a 100 100 canvas with a gray background so
you can see it on the screen. The reason why we want to be able to see it in this case is because
the canvas is draggable. I’ve already added the dragging code to the file, and
the two lines of code necessary to instance the object on the main canvas. You can compile and
run the project and see that the gray canvas can be dragged around the application.

2. The majority of the code for this project is identical to that of the last project, so we’ll move
through it a little more quickly. Once again, the variable declarations that are placed above the

 constructor in are as follows:

3. Add the following four lines of code to the constructor to give the
a length, call the function, and set up the event listener on the
storyboard before starting the :

4. The function should be added below the constructor. Here,
the code has changed a bit, so I’ve highlighted the changed lines in bold. The particle posi-
tions are now based on the center of the Canvas. We’ve also toned down the
scaling a bit to keep the particles at a maximum of 25%. Most importantly, the last line of the
function adds the particle to the Canvas. (This is different than
the Canvas.)

405

PARTICLE SYSTEMS

5. Add the event handler function. The code here has also been updated.
The line that removes the dead particles needed to be updated to remove them from the

 object. Once again, the updated code is shown in bold.

406

CHAPTER 10

6. Press F5 to compile and run the program. You will see something similar to Figure 10-4. The
gray emitter Canvas will appear in the upper-left corner and begin emitting particles. You can
use the mouse to move the emitter around the main canvas.

Figure 10-4. The emitter can be dragged around the main canvas.

7. There are two things we will add to this program to improve the functionality. The first will
adjust the program so that when it starts, the number of particles will increase—the program
won’t begin with an initial burst of particles. Inside the constructor, update the

 call so that it creates only a single particle:

407

PARTICLE SYSTEMS

8. Now when the program runs, it will create only a single particle. As the program continues to
run, we want to build up the number of visible particles, so inside the func-
tion, add the following code as the very first line, before the loop. Each time the story-
board completes, another particle will be added if the number of particles on the screen is not
equal to the number of particles specified.

9. Press F5 to run the program. The emitter now produces one particle at a time, building up to
the specified 150. Close the browser when you’re done checking out the program.

10. Let’s make one more tweak to this program. We’re going to add some gravity to pull the par-
ticles downward. You’re going to be surprised how easy this is. At the top of the

 file, add the following variable declaration for gravity:

11. Inside the event handler code, just before the closing curly brace of the
statement, add the following line of code:

12. Run the program again. You will see something like what is shown in Figure 10-5. Play around
with the gravity setting a little bit and see what happens to the particles. If you want to play
around with the spread of the particles as they are emitted, tweak the values in the line of code
that sets the x velocity for each particle ().

Figure 10-5. The particles are pulled downward by gravity.

408

CHAPTER 10

The finished version of this code is available in ParticleEmittersCompleted. I added a particle count
to the top-left corner and changed the emitter Canvas to have no background color. The emitter can
still be dragged around on the screen, but the application looks a little cleaner.

One thing you will notice is that if you move the emitter Canvas, all of the particles move as well. If
you want to be able to make trails with the particles, you’ll like the next project.

Building a comet
For this project, we’re going to build a comet that moves in an elliptical path, emitting particles as
it travels. The particles in this project are emitted to the main canvas based on the location of the
emitter. This means that as the emitter moves, the point of origin for the particles will move, but the
particles will sprinkle around the main canvas, leaving a tail on the comet.

1. Open up the ParticleComet project to code along with this example. The project contains a
few parts. There is the file, which contains a black background and the

. We also have the object, which in this case is an ellipse with an orange center
and a translucent red edge, like the one shown in Figure 10-6. Finally, there is the
object, which looks just like the emitter but is smaller, as shown in Figure 10-7.

Figure 10-6. The particle emitter
shape used in the ParticleComet
project

Figure 10-7. The particle shape
used in the ParticleComet project

2. Take a look at the code-behind file. This file already has some variables
declared—you should recognize them as being the necessary components for making the
emitter move in an elliptical path.

3. Inside the file is our usual particle-related code:

4. Let’s start coding! Open the file. We’ll start by getting the emitter moving.
Declare an instance of the object before the constructor:

409

PARTICLE SYSTEMS

5. Inside the constructor, add the code shown in the following listing. The code
will set the and values the will use for its elliptical movement. The

 is then positioned according to the cosine/sine calculations you learned about back in
Chapter 6. To finish up, we set the Z-index property of the to 1 before adding it to the

 Canvas. This will cause the particle emitter to draw on top of the particles as they
are added to the Canvas.

6. Finish coding up the constructor with the following code. This sets an event lis-
tener on the event for the storyboard before starting the storyboard. Notice
that the event handler is still called —we’ll be augmenting the function we used
before, but we’re starting with the emitter.

7. Create the event handler as shown in the following listing. Remember that
this code will run each time the storyboard expires. When that happens, the code here
will update the position of the object on the main canvas, increment its , and
restart the .

410

CHAPTER 10

8. Press F5 to compile and run the project. The comet will be drawn on the screen and will travel
an elliptical path, as shown in Figure 10-8.

Figure 10-8. The comet travels an elliptical path.

9. Next, we’ll add in the particles. Still working in the file, add the following
declarations before the constructor. We’re going for a few more particles this time,
and slightly less gravity, to give the particles a little more float.

10. Before the event listener inside the constructor, add the follow-
ing two lines of code. This will initialize the of particles with a length of 200 and call the

 function to create a single particle:

11. Next, code up the function. Once again, we’re passing an integer value to
tell the function how many particles to generate. Notice that the positioning code positions the
particle based on the location and size of the object. The and
properties are randomly generated, as are the and . Once all that has been

411

PARTICLE SYSTEMS

done, the object is added to the and then added to the
Canvas. Did you catch that? The particle is positioned based on the location of the
object, but added to the main Canvas, not the emitter Canvas.

12. Next, you’ll need to augment the function with the following code. Add this
code to the top of the function. This code will check the particle count and
add a particle if necessary. The code then drops into the familiar loop that updates the
position of the particles on the screen, increments the particles’ ages, and then checks to see
if any particles have died and removes them if they have. Finally, each particle has its y velocity
modified by the variable.

412

CHAPTER 10

For reference, here is a listing of the completed event handler after adding the code
shown previously:

413

PARTICLE SYSTEMS

13. Press F5 to compile and run the project. The comet will travel the elliptical path, leaving a trail
of particles behind, as shown in Figure 10-9.

Figure 10-9. The comet now has a particle-based tail.

14. That looks pretty good, but we can push it a little farther. I put a storyboard called in
the file. It’s shown in the following listing. The storyboard fades the particle out
over .5 seconds, and then fades it back in over the next .5 seconds. The storyboard will then
reverse automatically and is set to repeat endlessly.

414

CHAPTER 10

15. Inside the function in the file, just before the
 line, add the following two lines of code. The first line will generate a random

 between 5 and 10 for the storyboard, and then begin the storyboard.

16. In the function, you need to add some code that stops the storyboard before
the particle is removed from the canvas and the . The following listing includes
the loop where the new line of code should be placed—the relevant line of code is shown
in bold.

Press F5 to run the project and check it out. Now as the comet moves, it leaves a trail of shim-
mering debris behind it, as shown in Figure 10-10. The final code for this project is available in
ParticleCometCompleted. See if you can figure out how to create a project that drops sparkling
particles from the mouse when it is moving.

Figure 10-10. The comet leaves a trail of shimmering debris.

415

PARTICLE SYSTEMS

Explosions
The next type of particle system we’ll take a look at is an explosion. We’ll start out with a circular
explosion—similar to the type you see in games or movies when a spaceship explodes. Debris will
move out from the center point in a circular pattern, the diameter of which will increase along with
the life span of the explosion. Open the RingExplosions project to code along with this example.

Since this particle system is built on the same base system as the earlier examples, I’ve already pro-
vided a lot of the code in the project for you. We’ll just concentrate on adding the parts that make the
explosion look the way we want.

1. Open the file for editing. The particles in this explosion will form a ring
that expands. As such, the particles will need to have their x and y velocities match. We could
easily use a random number to generate the speed, but in this case, we’ll set up a variable to
control the speed. Add the following line of code to the variable declarations that precede the

 constructor:

2. Inside the function, add code to set the velocity of the particles being
created:

3. If you’re thinking ahead, you’re figuring we’re going to be using sine and cosine to pull off the
magic with this particle system, and you’re correct. Still inside the function,
add the following line of code to assign a random angle to each of the particles in the system:

4. Inside the function, we’ll need to convert our particle’s angle to radians. Add
the following code at the top of the loop:

5. Next, the position of the particle is based on the value calculated in step 4. The following two
lines of code come after the code added in step 4 and will position the particle—you can see
the calculations use sine and cosine to determine the correct location for the particle.

Press F5 to compile and run the project. You will see an expanding ring explosion like the one
shown in Figure 10-11. The finalized version of the code described in this example is available in the
RingExplosionsCompleted project.

416

CHAPTER 10

Figure 10-11. A ring explosion particle system

Random explosions
Of course, not every explosion is ring-shaped, so let’s work through an example of a more randomized
explosion. This time, we’ll create an application that creates a random explosion at the location of a
mouse click on the main canvas. To code along, open the RandomExplosions project. Once again, the
main code for the particle system is in place, and we’ll walk through what you need to add in to make
the explosion happen.

1. Open the file for editing. Since we’ll be using the mouse pointer’s location
to place the explosion, we’ll need a variable that holds the mouse location. Add the following
line of code to the variable declarations just before the constructor:

2. Inside the function, just after the
declaration, add the following two lines of code to position the new particle at the mouse
location:

417

PARTICLE SYSTEMS

3. In prior examples, we used to generate a random number between 0 and 1 for
the particle scale. For this example, we want a scale value between 1 and 4. Add the following
line of code just after the random value is set:

4. After the code that tests the scale value, add the following two lines of code. This code deter-
mines the spread of the explosion.

5. In the function, add the following code just after the line that adjusts the
velocity for gravity. This code will slowly fade the opacity out over the lifetime of the particle
system.

6. The particle system itself is pretty much ready to go, but we need to make it show up when a
user clicks the main Canvas. Inside the constructor, add an event listener for the

 event:

7. Inside the event handler, we need to reset the explosion. This is done by clearing the root
canvas of existing children (particles), clearing the , getting the current mouse
position, and generating new particles.

8. Press F5 to compile and run the project. Click somewhere on the canvas, and an explosion will
appear. The explosions look pretty good, but we can enhance the look a bit with just a couple
more lines of code. Once again, I’ve added the storyboard to the object.
This storyboard fades the particle out over .5 seconds and fades it back in over .5 seconds.
However, unlike the comet, we don’t want the particles flickering right away for the explosion;
instead, the explosion should be allowed to happen, and then the particles will be made to
flicker after a short delay. To accomplish this, the property for the animation inside
the storyboard was set to 3 seconds.

9. Inside the function, add the following two lines of code to set a random
 for the storyboard, and then start it:

418

CHAPTER 10

10. Inside the function, we need to stop the storyboard before removing the
particle from the canvas. Add the following bold line of code to the particle age check:

Compile and run the project. When you click, you will see a nice-looking random explosion, and the
individual particles will start to flicker as they drop toward the bottom of the application, as shown in
Figure 10-12. The RandomExplosionsCompleted project contains the code covered in this example. I
added a color picker to the completed project that allows you to alter the outer color of the particles.

Figure 10-12. The individual particles in a random explosion start to flicker as they fade and drop.

419

PARTICLE SYSTEMS

Fountains
For our next particle system, we’ll take a look at how to create a fountain, like the one shown in
Figure 10-13. The particles are emitted from the top area of the tube, fly upward, and eventually fall
back as they are affected by the force of gravity.

Figure 10-13. A particle fountain

The particle system for the fountain is similar to the one for the explosion, so rather than walk through
all of the code, we’ll hit on the important parts, and you can spend some time exploring the project
for yourself. All of the code shown in this example is from the ParticleFountain project.

The variable declarations and constructor should look pretty familiar to you by now.
Inside the function are a couple of changes. The first is where the particles are
placed on the screen. The code uses the center point of the main canvas to determine the x position
and the top of the emitter tube to determine the y position.

420

CHAPTER 10

A bit further down in the code, you can see where the x and y velocities are assigned via a random
number generator. Notice that the y velocity for each particle will vary between –15 and –2. Remember
that to move a particle up, you use a –y velocity; to move a particle downward, you use a +y velocity.

The rest of the code is pretty much what you’ve been working with in the last few examples. Even
though it’s a fairly simple particle system, a lot of flexibility can be programmed into it. Take a look at
the ParticleFountainCompleted project, shown in Figure 10-14.

I’ve taken the base fountain and added particle count messaging and sliders to allow real-time control
over the number of particles, gravity, y velocity, and x spread as the particles are emitted.

Figure 10-14. A particle fountain with some sliders to control its look and feel

421

PARTICLE SYSTEMS

We’re going to close out this chapter with a look at some really interesting ways to work with particles.
The examples shown here are adapted from the originals done in Flash by Keith Peters, and used with
his kind permission. We’ll be seeing how each particle can be made to affect the particles around it.

Particles and gravity
For this example, we’ll add some gravitational pull between particles. Like planets, the influence each
particle has on any particles nearby is affected by distance. The farther away a particle is from another
particle, the less influence it will have. Gravitational force is affected by mass—the larger something
is, the greater the mass and the greater the gravitational pull. The equation for the force of gravity
looks like this:

force = G m1 m2 / distance2

This equation reads as follows: the gravitational force one object has on another equals the gravita-
tional constant times the mass of both objects, divided by the square of the distance between them.
That may seem relatively straightforward, except that the gravitational constant is not so easily figured
out:

G = (6.6742 0.0010) 10–11 m3 kg–1 s–2

The easiest way to work around the gravitational constant for our particle systems is to ignore it. Since
we’re working with particles and not sending a manned spacecraft to Mars, the following formula will
work:

force = m1 m2 / distance2

Let’s check it out and see how it works. Open the ParticleGravitation project. This project has a bit of
code in it that will place 30 instances of a particle object around the canvas, as shown in Figure 10-15.
There’s nothing fancy going on here—it’s the same basic particle system we’ve been using all along.
The particle object contains variables for velocity and mass.

422

CHAPTER 10

Figure 10-15. The ParticleGravitation project randomly places 30 particles on the main canvas.

1. Inside the file in the function is a loop that is
used to move each particle. The particles currently don’t go anywhere because they all have x
and y velocities of 0. Gravity will be doing the work for us in this project. Just after the closing
curly brace of the loop, add the following nested loop. The nested loop will
figure out the interactions between particles. The first loop gets a particle (), while the
nested loop gets the next particle (). Those two particles are then passed to a function
that will handle the gravity.

423

PARTICLE SYSTEMS

2. Add the function shown following after the function. This func-
tion begins by calculating the distance between the two particles being compared. The
calculation is used to get the distance squared, which goes into the total force calculation,
which you will see about midway through the code listing. Once that has been done, calculate
the total acceleration along the x and y axes. Finally, the total force and total acceleration are
divided up between the two particles based on their individual masses.

Press F5 to compile and run the project. The particles will start out motionless, but will slowly be
attracted to one another. Some may begin to orbit each other. Many of the particles will get very close
and then speed off in opposite directions. This is called the slingshot effect and is expected behavior.
This behavior models the way NASA sends spacecraft into deep space—as a spacecraft approaches
a planet, it feels an increasing amount of the planet’s gravitational pull, and starts traveling at an
increased velocity. By aiming very close to a planet without hitting it, a spacecraft will accelerate
beyond the planet’s ability to capture it with gravitational pull and gain the velocity necessary to travel
through space without burning fuel.

In the particle system we built, the behavior seems unusual—we expect to see particles bouncing off
of each other rather than flying off in opposite directions. For this, we’ll need to add some collision
detection and reaction code to our program.

3. Begin by creating a new function called , as shown:

4. Inside the new function, add variables to determine the distance between
two particles:

424

CHAPTER 10

5. Add an statement to check if two particles are colliding based on their distance:

6. Calculate the angle between the two particles, and split it into x and y components:

7. Here’s where this function gets fun. We’re going to rotate the coordinate system and particle
velocities to resolve the collision along a linear path, and then we’ll rotate the coordinate sys-
tem and velocities back before updating the particle’s positions on the main canvas. Begin by
rotating ’s position. The rotation of the coordinate system occurs around ,
so these values are 0.

8. Rotate the position of :

9. Rotate both particles’ velocities:

10. Calculate the reaction to the collision—here, the total velocity along the x axis is being calculated
(remember that we rotated the coordinate system) and then divided up between particles:

425

PARTICLE SYSTEMS

11. Update the position variables:

12. Now it’s time to rotate everything back into proper position. Begin by calculating the particles’
final positions prior to rotating them back:

13. Update the position of the particles on the screen. Since the coordinate system was rotated
about , ’s original position is added to the calculated new position.

14. Finish up by rotating the velocities back. These are applied directly to the velocities in the par-
ticle objects.

15. Now, all we need to do is call the newly added function from the function.
Add the following line of code inside the nested loop, just before the line of code that calls
the function:

Press F5 to compile and run the project. The particles will start out motionless and become attracted
to each other. This time, the collision code will kick in when the particles get close, and they will
bounce off one another. We’ve included a variable for mass on each particle but haven’t really done
anything with it, so let’s finish out this example by adding a couple of lines of code to vary the scale
and mass of the particles a bit.

16. Inside the method, add the following line of code to assign a random scale
between 1 and 5 to each particle as it is initialized:

17. Still inside the method, change the line so that
it uses a particle’s scale as mass—the larger an object, the higher the mass.

426

CHAPTER 10

Now when the program runs, the size and mass of the particles are randomized a bit, and it gives a
pretty interesting effect as they bounce around off of one another. The code shown in this example is
available in the ParticleGravitationCompleted project.

Particles and springs
In the next example, we’ll take a look at how we can use springs as force between particles. Springs
act similarly to gravity in that two particles influencing one another will be drawn toward each other.
In the gravity example, particles farther apart decrease in acceleration. With springs, it’s just the
opposite—particles that are farther apart increase in acceleration. Open the ParticleSprings project
to follow along with this example.

1. The base code for this project is very similar to the previous projects. If you compile and run
the project, you will see 30 particles meandering aimlessly about the canvas. This was done by
assigning random x and y velocities between –3 and 3. The other thing you may notice is that,
in the file, two additional variables are declared. The first determines the
distance between two particles that will cause them to affect one another. If no distance were
set, all of the particles would lump together. Instead, we will use this variable to make sure that
only particles within 100 pixels of one another will affect each other. The second variable is

, which is used to determine the springiness of the two particles’ interaction.

2. Add a new function beneath the function, called . This function
will determine the distance between the two particles passed to the function. If the distance
between the particles is less than the value contained in the variable, the accel-
eration along each axis is calculated based on the current distance and spring amount. That
acceleration is then added to ’s velocity and subtracted from ’s velocity.
This is what pulls two particles together.

427

PARTICLE SYSTEMS

3. Inside the nested loop in the function, add the following line of code to
pass the current two particles to the function that was just created:

Press F5 to compile and run the project. The particles will now affect each other, form into little
clumps, and break away to join other nearby clumps. If you increase the value used for ,
this behavior becomes even more pronounced. The final version of this code is available in the
ParticleSpringsCompleted project.

Visualizing particle interactions
The last project we’re going to build out in this chapter will illustrate a really cool way of visualizing par-
ticle interactions. This project is built on top of the spring-based particle system from the last example.
In fact, if you compile and run the NodeGarden project, you will see that other than a slightly different
look and feel, the behavior is the same. Particles of different sizes drift around the screen, affected by
their proximity to other particles with springing behavior, as shown in Figure 10-16.

Figure 10-16. The basis for the NodeGarden project is a spring-based particle system.

428

CHAPTER 10

1. Let’s start by adding lines between particles that are influencing one another. For this, we will
need a of lines, which we will call . Add the declaration in the usual area, just
before the constructor:

2. Inside the constructor, initialize the :

3. Next, we’ll add some code to the function. Each time the function runs, we’ll
clear the existing lines drawn between particles, so add the code shown in the following listing
at the very top of the function:

4. The code to draw the lines goes inside the function. Since we only care about the
relationships for particles that are less than 100 pixels apart, place the following code inside
the statement that tests the distance between particles, at the very top.

Press F5 to compile and run the program. You will see something like Figure 10-17. As two par-
ticles come within 100 pixels of each other, a 2-pixel-wide white line is drawn between them. When
the distance between particles that are connected by a line increases beyond 100 pixels, the line is
removed.

Even as is, this project creates a pretty nice effect that is somewhat mesmerizing. But with one more
line of code, you will feel like you can stare at it for hours on end.

429

PARTICLE SYSTEMS

Figure 10-17. Lines are drawn between particles within each other’s area of influence.

5. The line of code you add next will alter the opacity of the line as the distance between particles
changes. The closer the particles, the more opaque (brighter) the line will be. As they grow
more distant, their influence on each other fades, as does the line indicating their connection.
Add the following line of code to the code you added in step 4, after the line that sets the
stroke color ():

Now when you compile and run the program, you’ll see connections like those shown in Figure 10-18.
The closer two particles are, the brighter the line between them. The effect is almost like looking at
moving constellations. Imagine this effect between drifting images or other objects. The final version
of the code from this example is available in the NodeGardenCompleted project.

430

CHAPTER 10

Figure 10-18. The lines between particles fade as the distance between the particles increases.

Summary
In this chapter, we talked about what a particle is and how to create a basic particle system. The model
for a particle system is that as time passes, new particles may be created, old (dead) particles are
removed, and the remaining particles have their positions updated on the main canvas.

Once you built a basic particle system, you learned about emitters and how to use them to create
particles that emanate from a specific location in your application. You also learned about how gravity
can be used to affect particles.

With all of that in place, we looked at some example particle systems. The comet example used an
emitter that moved but placed particles on the main canvas. Then we looked at how to go about cre-
ating ring-shaped and random explosions, as well as particle fountains.

431

PARTICLE SYSTEMS

We then talked about how forces can be applied between particles. You saw examples of how par-
ticles can gravitate toward one another, colliding and bouncing, and also how springing behavior can
be used to create interesting, organic-looking bunches of particles. We then closed out the chapter
by looking at a way to visualize the relationship between particles with lines, creating a nice-looking
particle node garden based on springing behavior.

In the next chapter, you’re going to learn how to create Silverlight-based virtual reality objects. You’ll
learn how the SLVR engine works, and how you can implement virtual reality objects in your own
Silverlight applications.

433

In this chapter, we’ll talk about how to use Silverlight to display virtual reality (VR)
objects. Everybody’s seen this type of object—the image loads, and as you use the
mouse to drag inside the window, the object rotates with the mouse, allowing a
more interactive experience with the object being displayed. You’ll also see some-
thing you’re not likely to find in any other book. I’m going to show you how to use
Silverlight to travel through time. Yes, really.

There are two fundamental approaches to creating a VR-object–based application.
The first is to take a series of photos of the object from different angles, load the
photos into the application, and then “flip” through them like a deck of cards.

The second is to take a series of photos, assemble them in columns and rows in a
single image, and then use the application to translate the image inside of a clipped
canvas. We’ll be using the single-image method. Based on my experience building
both types, it seems a little snappier; it’s much easier to set up, update, and augment;
and it has fewer moving parts to keep track of.

With that in mind, let’s get started. The first thing we need to talk about is the
images.

SILVERLIGHT VR (SLVR) OBJECTS

Chapter 11

434

CHAPTER 11

VR object images
Getting content to use in your Silverlight VR (SLVR)–based applications is likely to be the most time-
consuming part of the process. When it comes to getting images, you basically have three options.

The first is to use a 3D program to render out an object. This may involve some expense and a learning
curve if you don’t know 3D, although you may be able to get a friend or neighbor to help out if you
know someone who uses a 3D program.

The second method for getting content is to photograph your own object. This is not terribly difficult
to do but may require a bit of extra equipment, like a turntable for the object, and some time to
practice.

The third option is to use a company that specializes in doing the photography, such as PhotoSpherix
(), who was kind enough to supply the example object photos you’ll be work-
ing with in this chapter.

Generally speaking, there are two types of VR objects: single-row (or single-plane) and multirow (mul-
tiplane). The general concept for creating either is the same. An object is set up on a rotating turnta-
ble, photographed, rotated some number of degrees, and photographed again. The process continues
until the desired number of photos has been taken. Taking photos of an object that is rotated 10
degrees between shots means there are 35 shots per row for a full 360-degree rotation. The smaller
the increment the object is rotated, the smoother the final action will be but the larger the file, so
there is a trade-off there. Figure 11-1 shows a few example frames from a single-plane object.

Figure 11-1. The first few frames of a single-plane VR object

For a multiplane object, the camera is typically placed directly overhead (0 degrees) and then tilted
down in 10-degree increments as each row is completed. As you can probably imagine, this would be
tricky to do for the average home user. Companies that specialize in this type of photography have spe-
cially made motorized camera rigs that make the process of taking the shots more exact. Figure 11-2
shows the first few frames of the first few rows of a multiplane VR object.

435

SILVERLIGHT VR (SLVR) OBJECTS

Figure 11-2. The first few frames of the first few rows of a
multiplane VR object

You may end up with quite a few images. As long as they are numbered sequentially from the top left
across the first row, and then to the second row if you have one, and so on, you’ll be fine. For exam-
ple, one of the models with which we will be working has 120 source images (5 rows of 20 images), the
files for which are named through .

What do I do with all these images?
For use as a SLVR object, we need to take a big pile of 21 images and make a single image. The best way
to do this is to find a program that will create customizable contact sheets. Photoshop has a contact
sheet script, found under File Automate Contact Sheet II, but I’ve found that it will occasionally
place unexpected whitespace between images. Instead, take a few moments to download the freeware
program IrfanView from . Let’s practice making an image using IrfanView.

1. Start the program. From the File menu, select Thumbnails, as shown in Figure 11-3.

436

CHAPTER 11

Figure 11-3. In IrfanView, select File Thumbnails.

2. The Thumbnails view window will open. Navigate to the folder in the projects
for Chapter 11. All 21 image thumbnails will be displayed in the right-hand pane. Click one to
select it, and press Ctrl+A to select all of the images.

3. Select File Create contact sheet from selected files, as shown in Figure 11-4.

Figure 11-4. Creating
a contact sheet in
IrfanView

437

SILVERLIGHT VR (SLVR) OBJECTS

4. You’ll get a somewhat intimidating-looking Create Contact Sheet dialog box. We only need to
deal with the left side of the box, though, so it’s not too bad. The first things we need to fill in
are the width and height. There are 21 images in a single row. Each image is 600 600 pixels.
For Width, enter 12600 (21 images 600 pixels), and for Height, enter 600 (each image is 600
pixels tall).

5. In the Columns box, enter 21. For Rows, enter 1, since this is a single-plane VR object.

6. Leave the Stretch small images to maximal size box unchecked, and verify that Thumbnail spacing
is 0 for both Horizontal and Vertical. The Horizontal and Vertical fields for Margins should also be
0. When you’re finished, the panel should look like Figure 11-5.

Figure 11-5. The Create Contact Sheet dialog box in IrfanView

7. Click the Create button. A clipboard window will open showing the contact sheet. Select File
Save As to save the file. JPG is your best bet for an image of this size, so select JPG from the
Save as type drop-down, and go for about 60% compression on the JPEG/GIF save options dia-
log. Click Save, and you’re done.

Depending on your specific compression settings, the single file will end up somewhere between 250
and 300KB, which isn’t bad for an image that is 12,600 600 pixels.

You create multiplane images the same way, except that for the contact sheet, you also specify the
number of rows in your source photos. Unfortunately, IrfanView runs out of steam a little bit here
with the high-resolution images and doesn’t support contact sheets that are taller than 1,800 pixels at
this resolution.

As a workaround, you can make multiple contact sheets of three rows each and put them together
in your favorite graphics program. It will still be quick and relatively painless, and you can’t beat the
price. You can try creating multirow contact sheets with the images in the folder if you’d like.
There are 6 rows of 20 images, each of which is 600 600. Just in case you don’t have a program like
Photoshop readily accessible, I included the Mini contact sheet in the folder. The 12,000 3600-
pixel image is called .

438

CHAPTER 11

What do I do with this giant image?
So you got the photos of your object, or had a company like PhotoSpherix help you out; you con-
verted the images into a big contact sheet image; and you’re ready to plug them into Silverlight and
watch some magic happen. This is where the SLVR user control comes in. The control is already built,
but we’re going to go through all of the code so you understand how it does what it does; that way
you can add custom features if you like.

The first thing to take a look at is the user control. The architecture for the control is shown in
Figure 11-6. Inside the user control is the main Canvas, which contains a rectangle called

, and an Image object called . The default size for each of these objects is
320 240, but the control will resize them based on how it is set up. A very important aspect of this
control is a clipping path applied to the Canvas. This creates a window onto the image
in the object.

Figure 11-6. The basic architecture of the SLVR user control

When the SLVR user control is instanced, it is handed an image, which is placed in the
object, behind the window of the Canvas. This makes it so only a single frame of the
image is visible. The image is then translated behind the window, as illustrated in Figure 11-7, based on
input from the mouse on the layer.

439

SILVERLIGHT VR (SLVR) OBJECTS

Figure 11-7. The clipped ImageControl Canvas creates a window to the background image.

Let’s go through the code in the file. You’ll get to add this control to a project after the
walkthrough, so don’t worry about coding up anything right now. If you would like to follow along,
you can open the file in the folder.

The first variable, , is used to determine how far the mouse will move before the
visible image is changed. This allows you some control over the smoothness of the action in the appli-
cation. The variable is used to keep track of how far the mouse has moved and is the
trigger for changing the image.

The variable tells the application how large the images are. It is a data type because
not all images are square, so it is used to store both the width and height of a single image frame.

The next four variables let the application know how many columns and rows there are in the source
image, and whether or not the columns and rows should be wrapped when the beginning or end is
reached.

440

CHAPTER 11

The variable is used to change the functionality of the application so that the view can
move opposite the mouse. The standard behavior is to let the users feel as though they are moving
the object. When is active, the motion is more akin to moving the camera around the
object.

The last four variables are used for drag-and-drop control:

Next is the constructor. Here, the control accepts a bunch of variables upon initialization.
Many of the private variables declared are initialized with the values passed here and are named simi-
larly. In fact, a lot of the code in the constructor is used to apply these values to the control.

After the method, the code for the control begins. These two lines adjust the
width and height of the Image object in the control to the size of the full image.

Next, the size of the steps used to translate the image, control width, and rectangle
width are adjusted to the passed value:

Now the columns, rows, and wrapping behavior are assigned to the private variables in the control:

441

SILVERLIGHT VR (SLVR) OBJECTS

Next, the image specified by the user is loaded into the object in the control. This partic-
ular method for loading images requires the addition of the two resources at the top of the control:

The loading code looks like this:

Now, the clipping region on the Canvas is adjusted. The clip will always begin at 0,0 and
will have a width of and height of , so this is fairly easy to apply through code:

The next two lines of code try to find an image near the center of the single source image so that you’re not
always starting at 0,0. You’ll see how to override this feature if necessary when the control is instanced.

Since it’s possible to have an image that contains only a single column or row, the control checks to
see if this is the case, and if so, starts at the image in the beginning of the series:

The next bit of code grabs the value of the passed Boolean :

Next, the mouse sensitivity is adjusted based on the value passed when the control was instanced:

Finally, the event listeners used for dragging are set up:

442

CHAPTER 11

The and functions are the standard drag functions
we’ve used in other projects, so we won’t be rehashing them here. The function is worth
taking a look at, though—this is where the magic happens.

If a drag is occurring, the current position of the mouse is acquired and compared against the last
position of the mouse. This is then used to increment the counters used to move the image.

Next comes the statement that does the work. The flag is checked. The only difference
the flag makes is which way the image is moved, so the and clauses are exactly opposite when
it comes to moving the object. This code is commented, so you can see what each test
checks for—the control needs to know in which direction the mouse is moving and if it is time to
switch the image. If so, the correct translation step is applied.

443

SILVERLIGHT VR (SLVR) OBJECTS

The next block of code checks to see if the image needs to wrap left or right, top or bottom, and then
takes the appropriate action to adjust the translation of the image.

444

CHAPTER 11

To finish out the function, the current mouse position is stored in the variable for usage the
next time through.

Using the control: single-plane
Let’s take a look at how to get the control into a project and make use of it.

1. Open the SLVRBed project. This project contains an empty 800 800 main canvas that we are
going to add a SLVR control to.

2. In Solution Explorer, right-click the SLVRBed item, and select Add Existing Item from the
menu, as shown in Figure 11-8.

Figure 11-8. The Add
Existing Item option in

Visual Studio

3. Navigate to the folder for Chapter 11, and select the file. The control
is now part of your project but needs to have the class name updated to match the project.

4. Open the file, and edit the first line. Remove the text.

and replace it with the name of your project, , like so:

445

SILVERLIGHT VR (SLVR) OBJECTS

5. Open the file. Update the namespace near the top of the file the same way.
Change the following code:

to this

6. The control is now ready for use. The next thing we need to do is add the image we will be
using. Create a folder in Solution Explorer by right-clicking the SLVRBed item and selecting
Add New Folder. Name the folder .

7. Right-click the folder, and select Add Existing Item. Navigate to the bed contact
sheet you created earlier. If you don’t have it available, I placed a file called in the

 folder for Chapter 11.

8. This step is very important—if you skip it, the control will throw an error when it tries to load
the image. Select the image in the folder, and look at the Properties panel. Under Build
Action, select Content. In Copy to Output Directory, select Copy always. This will compile the
image into the package that Silverlight creates when this application is compiled. By compiling
the image into the package, your Silverlight application will become larger. The trade-off is that
once it’s downloaded to the client, the application is ready to go—no extra clicks or waiting.

9. All that’s left to do is create an instance of the control and assign some parameters. Open the
 file for editing, and add an object declaration before the con-

structor:

10. Inside the constructor, beneath the line, type Bed = new
SLVR(. Visual Studio’s IntelliSense will open a list of the properties that are needed to instance
the SLVR object, as shown in Figure 11-9.

Figure 11-9. Visual Studio’s IntelliSense helps with the SLVR object declaration.

11. All you need to do is type each value, separated by commas. For and ,
we know the bed images were 600 600, so type 600, 600,.

12. For and , we know there were 21 source images in a single row, so type
21, 1,.

13. Since it’s a single row, will be on, but will be off, so type true, false,.

14. For the image name, we can see the image in the folder, so type the full path. You may
have a different file name if you created your own earlier, but I’ll use
(including the quotes).

15. For , 3 should work well on this image, so type 3,.

16. Finally, for , type true, and then finish with);. The final code looks like the
following:

446

CHAPTER 11

17. All that’s left is to position the SLVR object and add it to the main canvas:

Press F5 to compile and run the project. The browser will open, and you’ll see the bed, as shown in
Figure 11-10. Drag the mouse over the object to spin it. Keep in mind that the frames for the bed are
pretty good-sized, and the application is 600 600. If your browser doesn’t fit the entire application
on the screen, you may see a scrollbar for the browser. Plan accordingly when creating your own VR
objects to provide the best possible experience for your end users.

Figure 11-10. The SLVR object in the browser

Earlier, I mentioned that it’s possible to override the starting position for an object. In our case, maybe
we’ve decided that we don’t want the application to load with the front of the bed showing and would
prefer the side. The fifth image in our series is a nice side view of the bed, so before the code to posi-
tion the bed on the canvas, we can add a line of code to prime, or preset, the position:

Remember to use a negative number in order to slide the image to the left.

The code for this example is in the SLVRBedCompleted project.

447

SILVERLIGHT VR (SLVR) OBJECTS

Using the control: multiplane
The bed was a nice example of a single-plane SLVR object. Let’s take a look at how to set up a multi-
plane object.

1. Open the SLVRFigure project. This project contains the SLVR object but no image. (I figured
you might like a little practice adding images to a project.)

2. Right-click the SLVRFigure item in Solution Explorer, and select Add New Folder. Name the
folder .

3. Right-click the folder you just added, and select Add Existing Item. Navigate to the
 folder for Chapter 11, and locate the file inside. This is a

12,000 3,000-pixel image that contains 20 columns and 5 rows of a wooden figure.

4. With selected, change the Build Action to Content and Copy to Output
Directory to Copy always on the File Properties panel.

5. Open the file for editing. Before the constructor, declare a new
instance of the SLVR object:

6. Instantiate the SLVR object. Each frame is 600 600. There are 20 columns and 5 rows. The
columns should wrap, but the rows won’t. The path to the image is .
Mouse sensitivity is 3, and this time, the mouse control should not be flipped.

7. Set the position for the object, and add it to the main canvas:

8. Press F5 to compile and run the application. It looks pretty good and works as expected, but the
initial state of the object has the figure with its back kind of turned, as shown in Figure 11-11.

9. If you open the file and take a look, the front-facing figure is in the six-
teenth column and fourth row (count from 0 in both cases). To change the default position,
add the following two lines of code just before the code added in step 7. The values used come
from the following calculations: 16 600 (image width) = 9600. 4 600 = 2400. We want to
move the image left and up, so the numbers are negative.

448

CHAPTER 11

Figure 11-11.
The figure loads

but is looking
in the wrong

direction!

If you compile and run the program again, you will see the figure sitting cross-legged, facing forward,
as shown in Figure 11-12.

Figure 11-12.
After priming

the starting po-
sition, the figure
faces forward as

expected.

449

SILVERLIGHT VR (SLVR) OBJECTS

You can do it!
OK, now it’s your turn to make a SLVR object from scratch. Open the SLVRMini project. This is a skel-
eton project I created for you.

You will need to add the user control, change the namespace for the XAML and code-behind in the
control so it matches this project, add the image, set the image properties, and instance the SLVR
object. Use the file in the folder for Chapter 11. This image is 20 columns and 6
rows, and each frame is 600 600, resulting in a 12,000 3,600-pixel image.

For a little extra challenge, set the starting image to the front view of the car.

If you get stuck, I’ve provided the SLVRMiniCompleted project to look at for help with the code if
necessary.

About that time travel thing . . .
This is the moment you’ve been waiting for, right? You worked through the rest of the examples and
got to this point to see how Silverlight can help you travel through time.

Here’s the answer you’re looking for.

Don’t lock yourself into thinking of the SLVR user control as a VR “object.” You can use it to show the
passage of time very easily. Just about everyone has a digital camera. Set yours up on a tripod and use
an inexpensive kitchen timer or your watch to snap a photo of something every 30 or 60 seconds. If
your camera has an interval timer, it’s even easier. Photograph the sun setting, flowers blooming, seeds
sprouting, or clouds racing across the sky. Load your images into a SLVR control, and enjoy the results.
You’ll be able to pass hours or days on command. Also consider experimenting with stop-motion
animation—children’s toys, product packaging, product assembly, and so on.

I’ve included two example projects that illustrate this concept. The first, shown in Figure 11-13, is
called SLVRCrownPoint. This is a time-lapse photo series taken at Crown Point, Oregon, at 1-minute
intervals. It shows the passage of about 45 minutes around sunset.

The second example, shown in Figure 11-14, is a time-lapse photo series taken near the base of Mount
Adams in Washington state. The photo interval is 30 seconds, as it was quite windy and the clouds
were moving past the mountain at a pretty good clip. The project is called SLVRMtAdams.

450

CHAPTER 11

Figure 11-13. A still from the SLVRCrownPoint project

Figure 11-14. A still from the SLVRMtAdams project

451

SILVERLIGHT VR (SLVR) OBJECTS

Summary
In this chapter, you learned about what a VR object is and how to go about getting images suitable for
use in the SLVR user control. To get images, you can photograph your own objects, render them from
a 3D animation package, or use a service provider like PhotoSpherix.

Once you have the images of your object, you need to make a contact sheet to assemble the separate
frames into a single large image for use in the user control using a program like IrfanView.

When your contact sheet image is ready to go, adding the SLVR object to your application is pretty
quick. It involves adding the control to your project, importing your image into the project, and set-
ting up the code that instantiates the SLVR object.

Remember to “think outside the object” when creating VR presentations. While objects are certainly
a valid and important use for the technology, find ways to make your applications unique—pass time
or try some stop-motion animation.

453

INDEX

Numerics
3D perspective transforms, 61
3D simulation

horizontal carousel example, 303–314
inner solar system model, 293–299
overview, 281
vertical carousel example, 317–321
x axis rotation, 314–316
y axis rotation, 299–303
z axis rotation, 289–292

A
acceleration, separating from direction, 202–212
ActiveImage object (user control), 438
acute triangles, 219
Add Silverlight Application dialog box (Visual Studio

2008), 28
addVectors() function, 196
Adobe Flex, 9
Adobe Illustrator, converting to Silverlight, 18
Adobe Photoshop files, importing, 18
amplitude (waveforms), defined, 240
Angle variable, 366
angled surfaces, collisions with, 338–346
angles

converting vectors to, 198–201
fundamentals of, 197–198
trigonometry, 216–219

angular collisions, 332–337
animated cursors, creating custom, 122–125
Animation Workspace, layout of, 11
App class, 24
arccosine function, 223
arcsine function, 223
arctangent function, 224–225
Argb color values, 102
Atan2() math method, 198
automating forward kinematics, 359–360
AutoReverse storyboard property, 65, 68

B
BallDropCompleted project, 337
Barricade user control, 258
BasicParticleSystem project, 398–404
Beaulieu, Andy, 347
BeginTime storyboard property, 67
bin folder, 25
blinking and flashing, 258–259
blur, 116–120
Boolean data type, 69
Brushes pane (Canvas element), 14
buttons, sample code, 21
byte data type, 69

C
C# language, 21
CalcDistance() function, 277
Canvas element (XAML), 13–14
Cartesian coordinate system, 155
Center Point transform, 51
Chinese dragon project, 379–383
circular movement, 265–267
CircularMovement project, 265–267
clawGame project, 193
ClientBin folder (Blend), 28
clipping paths, 125–129
code

creating DoubleAnimation with, 92–96
defining storyboards with, 91–92

code-based Visual State Manager, 148–150
code-behind files, 9
code-controlled vectors, 171–179
collisions

with angled surfaces, 338–346
angular, 332–337
detecting, 325–326
FindElementsInHostCoordinates() method,

346–352
linear collisions, 327–332

INDEX

454

color animations, 69–71, 75, 102–103
ColorAnimationUsingKeyFrames, 71
comets, building (particle systems), 408–414
components, vector, 157, 162
contact sheets, customizable, 435–437
control points, animating, 56–61
controlpointAnimation project, 56
controls elements (XAML), 20–21
coordinates in Silverlight, 155–156
cosine function (trigonometry), 222
cursors, creating custom animated, 122–125

D
data portion of Path element, 17
Default.html file, 26
DegreeRadianRotation project, 225–230
degrees and radians, converting between, 216–219,

225–230
dependency properties, 93
Design Workspace, layout of, 11
designers, events for (animation), 84–85
detecting collisions, 325–326
developers, events for (animation), 85–88
Development Center, Silverlight, 21
development software tools, 5–8
Direct Selection tool (Path element), 17, 57
direction

separating acceleration from, 202–212
of vectors, changing, 161–164

discrete keyframes, 81
DiscreteDoubleKeyFrames, 140
distance between objects (trigonometry), 273–275
double data type, 69
DoubleAnimation type

creating with code, 92–96
easing keyframes, 78–79
overview, 69–75

DoubleAnimationUsingKeyFrames, 70, 99–101
drag-and-drop, implementing (animation), 132–135
dragging

kinematic chains, 374–375
long kinematic chains, 375–378

drop shadows, 120–122
Duration property (animation), 69, 91

E
easing keyframes, 78–79
Ellipse element (XAML), 18
emitters, particle, 404–408
equiangular triangles, 219

equilateral triangles, 219
event handlers, 90, 119
event listeners, 90, 119
events (animation)

for designers, 84–85
for developers, 85–88
overview, 83
storyboards and, 88–91

Events pane (Blend), 89
exhaustFan project, 40
explosions (particle systems), 415–418
Expression Blend, Microsoft. See Microsoft Expression

Blend
Expression Design, Microsoft, 5
Extensible Application Markup Language. See XAML

F
FallingLeaves project, 260–264
FillBehavior storyboard property, 65
FindElementsInHostCoordinates() method, 325, 346–352
flashing and blinking (trigonometry), 258–259
Flashing project, 258–259
Flex, 9
Flip transform, 52
for loops, 328
forces, angular collisions with, 332–337
forward kinematic chains, multiple, 363–372
forward kinematics

automating, 359–360
overview, 356–358

fountains, creating (particle systems), 419–421
four-quadrant Cartesian coordinate system, 156
frame-based animations

overview, 38
sequences, 138–143
vectors and, 183–190

frame-based object, reversing direction of, 187
free-form rotation (trigonometry), 232–238
frequency (waveforms), defined, 241
From property (animation), 70
from/to animation types, 77
From/to animations, 69
functions, to create animations, 96–99

G
ghosting effects, 113–115
gravity, particles and, 421–426
gravityBall project, 171–179
GuitarStrings project, 248

INDEX

455

H
HitTestBuild project, 348–351
HoldEnd property, 101
horizontal carousel example (3D simulation), 303–314
horizontal oscillation (trigonometry), 252–253
HorizontalCarousel project, 303–313
HotAndCold project (trigonometry), 275–277
hypotenuse (trigonometry), 220

I
IKDragon project, 379–383
Illustrator, converting to Silverlight, 18
image effects

behaviors, 135–138
blur, 116–120
clipping paths, 125–129
cursors, animated, 122–125
drag-and-drop, 132–135
drop shadows, 120–122
frame-based animation sequences, 138–143
ghosting effects, 113–115
user controls, creating, 129–132
Visual State Manager

code-based, 148–150
overview, 143–148

Image element (XAML), 14–16
ImageRotate project (trigonometry), 232–238
importing Photoshop or Illustrator files, 18
inner solar system model (3D simulation), 293–299
InnerSolarSystem project, 293–299
integer data type, 69
IntelliSense (Visual Studio), 445
interactions, visualizing particle, 427–429
interpolation, keyframes, 82
inverse kinematics, 373
InverseKinematics projects, 373–378, 384–388
IrfanView, 435–437
isosceles triangles, 219

K
keyframe animations, 71
keyframes

discrete, 81
easing, 78–79
interpolation in Blend, 82
linear, 77–78
spline, 80–81

KeySpline property, 80

kinematic chains
dragging

long chains, 375–378
overview, 374–375

forward kinematics
automating, 359–360
overview, 356–358

inverse kinematics, 373
multiple forward, 363–372
organic animations, 378–383
overview, 355–356
reaching behavior

overview, 373–374
reaching for objects, 389–394
reaching with long chains, 384–386
variable-length reaching chains, 386–388

running, 360–363
walking, 360–363

L
law of reflection, 162
LayoutRoot element (XAML), 13
LayoutRoot_Loaded function, 86
Line element (XAML), 20
linear collisions, 327–332
linear keyframes, 77–78
Loaded event, 85

M
MainControl class, 25
MainControl.xaml file, 28
MainControl.xaml.cs files, 28
math, vector, 195–197
Math.Atan() function, 224–225
McCauley, Trevor, 239
Microsoft Expression Blend

creating XAML with, 10–13
defined, 5

Microsoft Expression Design, 5
Microsoft Visual Studio. See Visual Studio 2008
Microsoft Visual Web Developer Express Edition, 6
monkeyWalk project, 183–190
MoonOrbit project, 268–270
MouseControl (user control), 438
multi-plane SLVR objects, 434, 447–448
multiple forward kinematic chains, 363–372
Multiplier variable, 364–365

INDEX

456

N
New Project dialog box (Visual Studio 2008), 28
NodeGarden project (particle systems), 427–429

O
obj folder (Blend), 25
object properties, animating, 52–56
object tags, Silverlight, 26–27
objects

converting to paths, 111–113
distance between, 273–275
reaching for, 389–394

obtuse triangles, 219
one-dimensional vector movement, 157–158
Opacity property, 400, 410
orbiting (trigonometry), 268–270
organic animations (kinematics), 378–383
origin of coordinates, 155
oscillation (trigonometry)

combining oscillations and rotations, 260–264
overview, 246–253

P
PaddleGame project, 164–171
Page() constructor, 90
panels project, 44
particle systems

BasicParticleSystem project, 398–404
comet, building, 408–414
emitters, 404–408
explosions

overview, 415
random, 416–418

fountains, creating, 419–421
gravity, 421–426
NodeGarden project, 427–429
overview, 397
springs, 426–427
visualizing interactions, 427–429

PasswordBlock element (XAML), 18
Path element (XAML), 16
paths

clipping, 125–129
converting objects to, 111–113

Pen tool (Path element), 16
Peters, Keith, 325, 421
Photoshop files, importing, 18
PhotoSpherix, 434
point animations, 72–77
Point objects, 195

PointAnimations,
definitions, 73–74
with code, 103–108

PointAnimationUsingKeyFrames animation type, 72, 76
private variables, 133
programming basics, 21–22
projection plane, 281–289
projects, defined, 22
properties, storyboard, 64–68
Properties folder (Blend), 23–25
propertyAnimations project, 53
publicly accessible variables, 340
Pythagorean theorem, 271–273, 275–277
PythagoreanTheorem project, 273–275

R
radians

converting to degrees, 216–219, 225–230
defined, 197

random explosions (particles), 416–418
reaching behavior

with long kinematic chains, 384–386
for objects, 389–394
overview, 373–374
variable-length reaching chains, 386–388

Rectangle element (XAML), 16
ReferenceLine element, 345
References folder (Blend), 23–25
render transform origin, 41
RepeatBehavior property, 65–66, 68, 141
Resources.Add() method, 91
ReverseCounter integer, 262
RightTriangle project (trigonometry), 239
RingExplosions project (particles), 415
Rotate transforms, 40–41, 197
RotateSegment (ForwardKinematics), 356
rotation

combining with oscillations, 260–264
x axis, 314–316
y axis, 299–303
z axis, 289–292

running behavior, 360–363

S
Scale transform, 43–48
scalene triangles, 219
scaleVector() function, 196
ScaleX/ScaleY properties, 400, 410
segmentLength variable, 365
Selection tool, 19
separating acceleration from direction, 202–212

INDEX

457

Silverlight
applying trigonometry to, 230–232
development software tools, 5–8
overview, 3–4

Silverlight Development Center, 21
Silverlight MSDN library, 17
Silverlight projects, anatomy of, 22–30
Silverlight tools for Visual Studio 2008, 8
Silverlight VR (SLVR) objects. See SLVR objects
Silverlight.js library, 25
SimpleOscillation project, 246–247, 252
sine curves (trigonometry), 240–246
sine function (trigonometry), 221
SineWaveGenerator project, 242–246
single player PaddleGame, 164–171
single-plane SLVR objects, 434, 444–446
Skew transform, 49–50
skewTransform project, 49
sliders, sample code, 21
slingshot effect, 423
SLVR objects

IrfanView, making images with, 435–437
multi-plane, 447–448
object images, 434–435
single-plane, 444–446
SLVRBed project, 444–446
SLVRCrownPoint project, 449
SLVRFigure project, 447–448
SLVRMini project, 449
SLVRMtAdams project, 449
stop-motion animation, 449
user control and large images, 438–444

Snowflakes project (trigonometry), 253–258
solar system, inner (3D simulation), 293–299
solid color brush, 17
Solution Explorer (Visual Studio), 28, 304
SpeedRatio property, 141, 148
SpeedRatio storyboard property, 67–68
spline keyframes, 80–81
SplineColorKeyFrames, 72
SplineDoubleKeyFrames, 140
springs, particles and, 426–427
stop-motion animation, 449
Storyboard Resource window, 37
storyboards

animation example, 39
color animations, creating with code, 102–103
combining properties, 68
defining with code, 91–92
DoubleAnimation, creating with code, 92–96
DoubleAnimationUsingKeyFrames, 99–101
events and, 88–91
functions, 96–99

PointAnimation, creating with code, 103–108
properties, 64–67

surfaces, angled, 325
System.Windows.Controls class, 20

T
tangent function (trigonometry), 223
Tentacles project, 363–372
TextBlock element (XAML), 18–19
TextBox element (XAML), 18
3D perspective transforms, 61
3D simulation

horizontal carousel example, 303–314
inner solar system model, 293–299
overview, 281
vertical carousel example, 317–321
x axis rotation, 314–316
y axis rotation, 299–303
z axis rotation, 289–292

time-based animations, 38
time-lapse photos, 449
TimeSpan objects, 91
transforms

3D perspective, 61
Center Point, 51
defined, 35
Flip, 52
Rotate, 40–41
Scale, 43–48
Skew, 49–50
Translate, 36–40

Translate transform, 36–40
triangles

arccosine function, 223
arcsine function, 223
arctangent function, 224–225
cosine function, 222
degrees and radians, converting between, 225–230
overview, 219–220
sine function, 221
tangent function, 223

trigonometry (animation). See also triangles
angles, 216–219
applying to Silverlight, 230–232
circular movement, 265–267
defined, 215
flashing and blinking, 258–259
free-form rotation, 232–238
horizontal oscillation, 252–253
HotAndCold project, 275–277
illustrating calculations with RightTriangle project, 239
objects, distance between, 273–275

INDEX

458

orbiting, 268–270
oscillation, 246–252
oscillations and rotations, combining, 260–264
Pythagorean theorem, 271–273, 275–277
sine curves, 240–246
Snowflakes project, 253–258

truckCompleted project, 47–48
two-dimensional vector movement, 159

U
UnderwaterMine project, 389–394
unit circles, 225–230
unitCircleSin application, 240
user controls

creating, 129–132
large images and, 438–444
multi-plane SLVR object and, 447–448
single-plane SLVR object and, 444–446
time-lapse photos and, 449

UsingKeyFrames animations, 77

V
variable-length reaching chains, 386–388
vectors

changing direction of, 161–164
clawGame project, 193
code-controlled, 171–179
converting to angles, 198–201
frame-based animations, 183–190
fundamentals of, 156–157
gravityBall project, 171–179
math, 195–197
monkeyWalk project, 183–190
one-dimensional movement, 157–158
PaddleGame project, 164–171
storyboard animations, 193
two-dimensional movement, 159
vectorAngleConversion project, 198–201
VectorBounce project, 163–164
vectorShip project, 202–207
vectorShipMissile project, 208–212

vertical carousel example (3D simulation), 317–321
VerticalCarousel project, 317–321
Visibility property (objects), 114
Visual C# language, 22
Visual State Manager

basics of, 143–148
code-based, 148–150

Visual Studio 2008
free trial of, 6
Silverlight tools for, 8

visualizing particle interactions, 427–429
VR (virtual reality) objects. See SLVR objects

W
walking behavior, 360–363
waveforms (amplitude), defined, 240
websites

for downloading
Friends of ED, 21
IrfanView, 435
Microsoft Expression Blend trial, 5
Microsoft Expression Design, 5
Microsoft Visual Web Developer Express Edition, 6
Silverlight tools for Visual Studio 2008, 8
Visual Studio 2008 free trial, 6

for further information
exporting Illustrator as XAML, 18
PhotoSpherix, 434
right triangle calculations for moving objects, 239
Silverlight Development Center, 21
Silverlight MSDN library, 17

Width property (ReferenceLine element), 345
Windows Presentation Foundation (WPF), 22
writeVectors() function, 196

X
x axis rotation (3D simulation), 314–316
XAML (Extensible Application Markup Language)

basics of, 8–10
Canvas element, 13–14
controls elements, 20–21
Ellipse element, 18
Image element, 14–16
LayoutRoot element, 13
Line element, 20
PasswordBlock element, 18
Path element, 16
Rectangle element, 16
TextBlock element, 18–19
TextBox element, 18
using Expression Blend to create, 10–13

XAxis3D project, 315–316
xmlns:x namespace, 12
x:Name property, 14

Y
y axis rotation (3D simulation), 299–303
YAxis3D project, 301–302

Z
z axis rotation (3D simulation), 289–292
ZAxis3D project, 290–292

	Cover
	ISBN-13 (pbk): 978-1-4302-2407-5
	CONTENTS AT A GLANCE
	CONTENTS
	ABOUT THE AUTHOR
	ABOUT THE TECHNICAL REVIEWER
	ABOUT THE COVER IMAGE DESIGNER
	ACKNOWLEDGMENTS
	INTRODUCTION
	Part 1: GETTING STARTED
	1: WHAT YOU NEED TO KNOW

	Part 2: SILVERLIGHT ANIMATION: THE BASICS
	2: BASIC TRANSFORMS
	3: STORYBOARDS AND ANIMATIONS
	4: ANIMATION TECHNIQUES

	Part 3: ADVANCED ANIMATION
	5: COORDINATES IN SILVERLIGHT
	6: USING TRIGONOMETRY FOR ANIMATION
	7: SIMULATING 3D IN 2D
	8: COLLISIONS
	9: KINEMATICS
	10: PARTICLE SYSTEMS
	11: SILVERLIGHT VR (SLVR) OBJECTS

	INDEX

