


Microsoft Silverlight 4 Business 
Application Development
Beginner's Guide

Build Enterprise-Ready Business Applications 
with Silverlight

Frank LaVigne 

Cameron Albert

BIRMINGHAM - MUMBAI



Microsoft Silverlight 4 Business Application Development
Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the 
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2010

Production Reference: 1300310

Published by Packt Publishing Ltd. 
32 Lincoln Road 
Olton 
Birmingham, B27 6PA, UK.

ISBN 978-1-847199-76-8

www.packtpub.com

Cover Image by Tina Negus (tina_manthorpe@sky.com)



Credits

Authors

Frank LaVigne

Cameron Albert

Reviewers

Joel Cochran

Laurent Duveau

Acquisition Editor

Kerry George

Technical Editor

Aditya Belpathak

Indexer

Monica Ajmera Mehta

Editorial Team Leader

Aanchal Kumar

Project Team Leader

Lata Basantani

Project Coordinator

Poorvi Nair

Proofreader

Lesley Harrison

Graphics

Geetanjali Sawant

Production Coordinator 

Aparna Bhagat

Cover Work

Aparna Bhagat



About the Author

Frank LaVigne has been hooked on software development since he was 12, when he 
got his own Commodore 64 computer. Since then, he's worked as developer for financial 
firms on Wall Street and also in Europe. He has worked on various Tablet PC solutions and 
on building advanced user experiences in Silverlight and WPF. He lives in the suburbs of 
Washington, DC. He founded the CapArea.NET User Group Silverlight Special Interest 
Group and has been recognized by Microsoft as a Tablet PC MVP. He blogs regularly at 
www.FranksWorld.com.

I would like to thank my wife Roberta for always being there for me. To 
my son Jacob, my world changed when I first got to hold you in my arms. 
Lastly, I would like to dedicate this book to my dad, who taught me the 
value of hard work and perseverance.

Cameron Albert is an independent software development consultant, with over ten years 
of experience, specializing in Microsoft technologies such as Silverlight, WPF, WCF, SQL 
Server, and ASP.NET. Having worked in the medical, insurance, and media/entertainment 
industries, he has been involved in a variety of development solutions featuring a broad 
range of technical issues.

Cameron also dabbles in game development, utilizing Silverlight and XNA. He maintains a blog 
that details his exploits in the development world at http://www.cameronalbert.com.
Cameron lives with his wife in Connecticut.

I would like to thank my wife Lisa for being the light of my life and Frank for 
thinking highly enough of me to include me in the writing of this book.



About the Reviewers

Joel Cochran, an AS/400 RPG programmer earlier, Joel is a former Contributing Editor 
for ITJungle.com (originally MidrangeServer.com) and has taught various programming
languages and Internet technologies at Blue Ridge Community college. He has been 
developing in C# full time, since 2003 and now focuses exclusively on developing WPF and 
Silverlight applications with Expression Blend. A self-described "Blend Evangelist", Joel is 
a frequent speaker at User Groups, Code Camps, and other Community events. He enjoys 
teaching and writing about these and other .NET technologies, which he happily shares 
on his blog at http://www.developingfor.net. Joel has served as the Director of
Operations for Stonewall Technologies, Inc., in Staunton, VA, since 2000.

I'd like to thank Frank LaVigne and Packt Publishing for bringing me in on 
this project; it has been a tremendous learning experience and I had a
great time to boot! I'd also like to thank all of my great friends in the Mid 
Atlantic .NET developer community for their constant support and interest 
in these fantastic new technologies. Finally, I'd like to thank my wife Kim 
and children Heather and Justin, without them none of this would be 
worthwhile.

Laurent Duveau is a Silverlight expert, the technology that fascinates him. He has 
followed its development since the very beginning in 2007. He has had the opportunity to 
give a multitude of Silverlight presentations at conferences such as TechDays, DevTeach, 
CodeCamp, User Group, MSDN Tour, and W3C. Laurent is a Microsoft Certified Trainer (MCT) 
since 2004, as well as a Silverlight MVP, Silverlight Partner, and Silverlight Insider. He is the 
Vice President of RunAtServer Consulting, a company based in Montreal, QC, whose focus  
is on Silverlight projects, coaching, and training.





Table of Contents
Preface 1

Chapter 1: Getting Started 7
Skills needed 7

A special note for ASP.NET developers 8
A special note for Windows Forms developers 8
A special note for WPF developers 8
A special note for Flash/FLEX developers 9

New concepts of Silverlight 9
Separation of presentation and Logic 9
XAML: Relax it's just XML 10
Dependency properties 11
Bumps along the road to Silverlight bliss 11

GIF files need not apply 11
Visibility != Boolean 11
It's Button.Content, not Button.Text 12

Tools needed 13
Visual Studio 2008 or Visual Studio 2010 14
Silverlight runtime 14
Silverlight toolkit 15
Expression Blend 15

Other useful tools 16
Deep Zoom Composer 16
Silverlight Spy 17
Expression Design 18
Expression Encoder 19
InkScape 20

Time for action – creating a Silverlight project 20
Summary 26



Table of Contents

[ ii ]

Chapter 2: Enhancing a Website with Silverlight 27
Retrofitting a website 27

Adding pizzazz with Silverlight 28
A few words on search engine optimization 28

Building a navigation control from the ground up 29
Picking the right kind of container 29
Stack it up: Using the StackPanel 30

Time for action – building navigation buttons in Silverlight 30
Adding a little style with Styles 32

Styles 32

Time for action – adding the style 35
Creating applications in Expression Blend 37

A crash course in Expression Blend 37
An artsy Visual Studio? 38

Time for action – styles revisited in Blend 41
Skinning a control 45
Time for action – Skinning a control 47

States of mind 52
Time for action – learning the Visual State Manager 52
Adding event handlers 56
Time for action – back to coding 57

Where are we really? 59
Animation in Silverlight 60
Time for action – animation time 60
Getting on the same page 71
Time for action – getting Silverlight onto a web page 72
Summary 76

Chapter 3: Adding Rich Media 79
Adding media to a Silverlight project 80
Time for action – adding background music 80

Embedding files versus referencing files 83
Adding video to a Silverlight project 87
Time for action – adding video 88
Using video as a brush 91
Time for action – creating and using a VideoBrush 91
Enriching an application with audio cues 95
Time for action – adding interactive sounds 95
Coding videos with Expression Media Encoder 99

A tour of the workspace 100
Encoding video 101
A quick word on video formats 101



Table of Contents

[ iii ]

Time for action – let's encode a video! 102
Summary 106

Chapter 4: Taking the RIA Experience Further with Silverlight 107
Deep Zoom 107

Deep Zoom in action 109
Time for action – creating a Deep Zoom photo montage 111
Using the Bing Maps Silverlight Control 122

Using the Map Control 125
Time for action – getting started with mapping 125

Getting credentials 128
Time for action – adding our credentials 131

Taking control of the Map control 132
Time for action – taking control of the Map control 133

Adding store locations to the map 138
Time for action – adding store locations 138
Drawing out ideas 145

The InkPresenter control 146
Capturing strokes 146

Time for action – building a basic sketching application 147
Changing drawing attributes 151

Time for action – controlling the appearance of Ink 152
Erasing Strokes 156

Time for action – adding an erase feature 157
Storing Strokes in Isolated Storage 161

Isolated Storage 161

Time for action– adding persistence 163
Uploading sketches 168

Asynchronous calls 169

Time for action – submitting sketches 169
Summary 172

Chapter 5: Handling Data 173
Data applications 173
Time for action – creating a business object 174
Windows Communication Foundation (WCF) 176
Time for action – creating a Silverlight-enabled WCF service 177
Collecting data 186
Time for action – creating a form to collect data 186
Validating data 198

Data object 198



Table of Contents

[ iv ]

Time for action – creating a data object 198
Data binding 203

Time for action – binding our data object to our controls 203
Validation 207

Time for action – validating data input 208
Data submission 212
Time for action – submitting data to the server 212
Summary 217

Chapter 6: Back Office Applications 219
WCF Rich Internet Application (RIA) Services 219
Time for action – creating a RIA Services application 220
SharePoint 238
Time for action – hosting a Silverlight application in SharePoint 238
Summary 248

Chapter 7: Customer Service Application 249
Customer data 249
Time for action – creating the data model 250
ADO.NET Entity Framework and WCF RIA Services 257
Time for action – creating the Entity Framework 258
User experience 264
Time for action – saving customer information 264
Customer service 281
Time for action – creating a customer lookup form 281
Summary 297

Chapter 8: Executive Dashboard Application 299
Data visualization 299
Time for action – creating the Executive Dashboard 300
Spreadsheet data 312
Time for action – extending the Executive Dashboard 312
Summary 322

Chapter 9: Delivery Application 323
Creating a signature capture control 324

Creating our own lookless control 325
Time for action – creating a custom control 325

Improving the default template 330
Time for action – putting the control together 330

Dependency properties 337
The OnApplyTemplate method 338



Table of Contents

[ v ]

TemplateBinding 339
Implementing the custom control 340

Time for action – putting our lookless control to the test 340
Time for action – finishing the control 342
Mapping application 344

Geocoding 344
Time for action – Geocoding addresses to work 345

Route planning 353
Time for action – adding routing to our application 354
Summary 372

Chapter 10: Where to Go From Here 373
More Silverlight features 373

Checking network connectivity 374
Time for action – detecting network connectivity 375

Executing outside the browser 378
Enabling out of browser support 379

Time for action – creating an out-of-browser solution 379
Time for action – checking the InstallState property 384

Installing a Silverlight application locally 386
Deployment concerns 386
Uninstalling a Silverlight application 387

Beyond Silverlight 388
Windows Presentation Foundation (WPF) 388

When to use WPF 388

Time for action – creating a WPF application 389
Future of Silverlight 390
Summary 390

Index 391





Preface
Welcome to the world of Rich Internet Applications (RIA) and Silverlight. A world in which 
the user experience is paramount, and easy to use yet powerful applications are what we 
strive to create. Silverlight brings .NET developers into the RIA space in a big way, providing 
the controls we know with web and Windows development and allowing us to define a 
custom experience to best benefit the users of our applications.

The days of plain HTML web applications are coming to end, making way for more robust and 
powerful applications. Already the widespread use of AJAX has helped us deliver more user 
friendly applications and have opened doors that were shut to plain HTML. Silverlight takes 
this a step further by giving .NET developers what is essentially a thin client that runs within 
the user's environment and can communicate with our backend servers and services. The 
ability to make use of the user's memory to run our application rather than sending everything 
to the web server for processing improves overall user experience and removes some of the 
traditional application wait times and general unsatisfactory behavior of web applications.

This book will bring ASP.NET and Windows developers into the Silverlight realm by showing 
them how to leverage their existing .NET skills with Silverlight. The transition into Silverlight 
should be smooth by following the contents of the chapters in order. The intent is to introduce 
you to the concepts of Silverlight while getting you into the code right away. We will build on 
each chapter while creating an application for a fictitious company that creates specialty cakes. 
By using the concept of the cake company we can identify some real client needs and work to 
provide solutions using the Silverlight platform to deliver the results.

What this book covers
Chapter 1: Getting Started introduces Silverlight development including the concept of
XAML, dependency properties, and some basic controls while leveraging existing .NET skills.

Chapter 2: Enhancing a Website with Silverlight covers the use of Expression Blend, container
controls, the Visual State Manager, animation, and the designer/developer workflow, while 
adding Silverlight to an existing web site.



Preface

[ � ]

Chapter 3: Adding Rich Media explains how to include media such as video and audio 
into a Silverlight application and how to make use of Expression Encoder to prepare video 
for Silverlight. 

Chapter 4: Taking the RIA Experience Further with Silverlight 4 introduces Deep Zoom, the
Bing Map control, and the use of the Ink Presenter control to capture ink input from a tablet
or touch screen, store information in isolated storage, and communicate with a web server 
via HTTP.

Chapter 5: Handling Data covers collecting and handling data input from a customer, saving 
input on the server using Windows Communication Foundation (WCF), and making use of 
the powerful data binding feature of Silverlight to bind customer data to Silverlight controls.

Chapter 6: Back Office Applications covers the implementation WCF RIA Services to provide a 
common middle tier between our server and Silverlight application and introduction to using 
Silverlight in SharePoint.

Chapter 7: Customer Service Application introduces how to build a simple customer 
service application to allow the business to process input from customers using the Entity 
Framework, WCF RIA Services and the DataForm control.

Chapter 8: Executive Dashboard Application covers the topic of making use of the charting 
controls in Silverlight with data binding to present reports to business decision makers.

Chapter 9: Delivery Application introduces the creation of an application for delivery 
personnel, including a signature capture control and next level usage of the Bind Maps
control and API.

Chapter 10: Where to Go From Here includes a sample of the out-of-browser mode for 
Silverlight, a basic introduction to Windows Presentation Foundation (WPF), and a look 
to toward the future of Silverlight.

What you need for this book
You will need the following tools to view the samples and run the code provided. While the 
Expression tools are discussed and used within the book they are not a requirement to build 
Silverlight applications, they simply make it easier. Visual Studio 2010 provides a design view 
of XAML pages so that you can visually design the interface, which saves a lot of hand coding 
of XAML.

Visual Studio 2010

Silverlight 4 Tools for Visual Studio

WCF RIA Services

Expression Blend

•

•

•

•



Preface

[ � ]

Expression Encoder

SQL Express

A SharePoint VPC or development installation (for the SharePoint samples)

Who this book is for
If you are a .NET developer who wants to build business applications with Silverlight,  
then this is the book for you. No experience of programming Silverlight is required.  
A basic understanding of Visual Studio, C#, .NET development, XML, and Web development 
concepts (HTTP, Services) is required.

Conventions
In this book, you will find a number of styles of text that distinguish between different 
kinds of information. Here are some examples of these styles, and an explanation of 
their meaning.

Code words in text are shown as follows: "Inside the Default.html file, you'll see the 
object tag that actually hosts the Silverlight control."

A block of code is set as follows: 

<UserControl.Resources>
<Style x:Name="biggerTextStyle" TargetType="Button">

<Setter Property="FontSize" Value="18"/>
</Style>

</UserControl.Resources>

When we wish to draw your attention to a particular part of a code block, the relevant lines 
or items are set in bold:

<UserControl.Resources>
<Style x:Name="biggerTextStyle" TargetType="Button">

<Setter Property="FontSize" Value="18"/>
</Style>

</UserControl.Resources>

New terms and important words are shown in bold. Words that you see on the screen, in 
menus or dialog boxes for example, appear in the text like this: "Start Visual Studio and open 
the CakeORamaApp solution we created in the previous chapter".

•

•

•



Preface

[ � ]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this 
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of. 

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the 
SUGGEST A TITLE form on www.packtpub.com or email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you 
to get the most from your purchase.

Downloading the example code for the book

Visit http://www.packtpub.com/files/code/9768_Code.zip 
to directly download the example code.

The downloadable files contain instructions on how to use them.



Preface

[ � ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the 
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration, and help us to improve subsequent versions of this book. If you 
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the let us know link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata added to 
any list of existing errata. Any existing errata can be viewed by selecting your title from 
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy. 

Please contact us at copyright@packtpub.com with a link to the suspected 
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any 
aspect of the book, and we will do our best to address it.





1
Getting Started

Welcome to the wonderful world of Silverlight, Microsoft's platform for building 
Rich Internet Applications (RIA). The earliest versions of Silverlight focused 
on rich media, interactivity, and animation. Now Silverlight has gotten down 
to business with new features geared towards making business application 
development faster and easier. Of course, you still have access to all the 
graphics and animation tools. With the usability bar raised considerably by 
Web 2.0, end users are demanding more from their applications. Silverlight 4 
will help you deliver steak and the sizzle to business application development.

In this chapter, we shall:

Leverage your existing .NET skill set to Silverlight 

Discuss the new concepts of Silverlight 

Discuss what software is needed to develop Silverlight applications

Develop a Silverlight application

Skills needed
To get the most out of Silverlight business application development, you must be 
comfortable with Visual Studio, and have some knowledge of .NET development, be it ASP.
NET development or Windows Forms development. As many of the core concepts of .NET 
development are the same across the different target platforms, the more accustomed 
you are to them, the easier your transition into Silverlight will be. In addition to basic .NET 
development skills, you should feel comfortable with XML. You need not have read the 
specification, but you must know your attributes from your elements, and your namespaces 
from your angle brackets.  You should know what the CLR is and know how to tell the 
difference between your DLLs and your HTMLs.











Getting Started

[ � ]

As developers, we are all on a journey of learning and discovery. I was fortunate enough 
to have delved into the worlds of ASP.NET, Windows Forms, and WPF before encountering 
Silverlight. Now, let's discuss who you are and see how best to approach Silverlight.

A special note for ASP.NET developers
With web applications, the mantra for development, testing, and deployment might as 
well be "Write once. Run anywhere", but test everywhere in every possible configuration. 
The more complex your interaction code, the more you have to worry about testing your 
code on a myriad of browsers, platforms, and mobile devices. You know there's got to be 
a better way, and there is; Silverlight. It encapsulates all of the interactive features that 
AJAX, jQuery, and so on provide and much more. Best of all, Silverlight applications run the 
same way, regardless of platform or browser. Your testing burden is significantly lighter. 
Your applications, whether external facing or behind-the-firewall intranet applications, will 
benefit greatly from having Silverlight incorporated. Your users will appreciate the added 
interactivity and inclusion of rich media, and you, as a developer, will appreciate not having 
to worry about browser and platform compatibility.

A special note for Windows Forms developers
As a 'SmartClient' developer you've endured the slings and arrows of web developers who 
taunt you with deployment concerns and platform portability concerns. Deep down, you 
knew they had valid arguments about cross platform deployment, but you were frustrated at 
the lack of awareness of ClickOnce. ClickOnce has largely erased the deployment headaches
normally associated with 'thick clients', a term you find both antiquated and offensive when 
it is applied to Windows Forms. In a very real way, you already understand the need for a 
declarative language for defining user interfaces on client applications, especially if you have 
already written code to parse out an XML file or some other data source to render Windows 
Forms controls to create 'forms on demand'. Microsoft has not deprecated the technology, 
but it is also not releasing new versions. The time for this technology is coming to an end.

The direct successor to Windows Forms is WPF(Windows Presentation Foundation), which 
shares many traits in common with Silverlight. Despite the initial learning curve, the journey 
to Silverlight will be well worth it, as you will have learned quite a bit about WPF as well. Two 
technologies for the 'price' of one!

A special note for WPF developers
If you are already comfortable with WPF, then you are well prepared to enter the world of 
Silverlight. You are already familiar with many of the key concepts such as XAML, Storyboards, 
and dependency properties. However, your journey is not without its challenges. WPF and 
Silverlight do share a common language and philosophy, but there are numerous differences 



Chapter 1

[ � ]

between the two platforms. Silverlight has been built from the ground up, to be cross-platform 
and web centric, whereas WPF has been designed to develop applications only on Windows.

Silverlight's original 'codename' was WPF/E, or WPF Everywhere.

WPF has access to the whole .NET Framework and all the resources on a user's machine. 
However, due to security concerns, Silverlight runs in a 'sandbox' mode. This means that the 
Silverlight runtime has certain security restrictions, even with full trust mode enabled. For 
example, Silverlight applications do not have direct access to the full file system.

A special note for Flash/FLEX developers
Flash developers have been at the forefront of RIA development for nearly as long as there 
has been a World Wide Web to host Rich Applications on. However, times are changing, 
competition is coming to this space and Silverlight will add more tools to the tool belts 
of web designers and developers everywhere. Silverlight and Flash come from different 
perspectives on RIA, and if you know both, you can pick the platform that is best for the 
needs of your projects.

New concepts of Silverlight
If you haven't developed WPF applications before, there will be quite a few things in 
Silverlight that may be new to you at first. However, even if you have experience with 
developing WPF applications, there are still a few surprises in store for you.

Separation of presentation and Logic
A good developer works hard to separate logical elements and presentation code. In web 
development terms, this means specifying your logical elements in HTML and styling those 
logical elements with CSS. HTML and CSS use different syntaxes and switching between the 
two can test one's patience. Fortunately for us, separation of logic and presentation is a key 
design principle in Silverlight, not an afterthought like CSS was to HTML. XAML(eXtensible 
Application Markup Language) is the vehicle for providing this separation by splitting the 
concerns of logic and presentation, while providing a basis for a smoother workflow between 
developers and designers. Fortunately, Karsten Januszewski and Jaime Rodriguez have 
written an excellent white paper on that very subject and much more. It is available online 
at: http://windowsclient.net/wpf/white-papers/thenewiteration.aspx.



Getting Started

[ 10 ]

XAML: Relax it's just XML
XAML is just XML, that's it! There's no magic or hocus pocus behind it. It's simply a common 
way to serialize object graphs into XML. In other words, the elements and attributes that you 
see in XAML will ultimately manifest themselves as objects in memory. It's not a language 
per se, but it does have a common set of rules, patterns, and behaviors much like a language. 
In many ways XAML resembles HTML as both define an interface declaratively.

Consider the following example: a button on a web page. The code to implement this in ASP.
NET is fairly straightforward:

<form id="form1" runat="server">
<div>
<asp:Button ID="Button1" runat="server" Text="Button" />

</div>
</form>

The above code yields the following result:

The code to create a similar button in XAML is also quite straightforward:

<Grid x:Name="LayoutRoot" Background="White">
<Button Width="100" Height="50" Content="Button"></Button>

</Grid>

And you get a very similar result, as you can see in the following screenshot:

You are also free to define elements in code, as well as in XAML. To create the same button 
in code, here is the equivalent of writing it out in C#:

Button b = new Button();
b.Width = 100;
b.Height = 50;
b.Content = "Button";

LayoutRoot.Children.Add(b); 
LayoutRoot.Background = new SolidColorBrush(Colors.White);



Chapter 1

[ 11 ]

You'll see that, in both code and XAML, you are defining a button, setting attributes, adding 
it to a grid, and setting the grid's background to white. If all that seems a little confusing right 
now, don't worry, pretty soon XAML will be second nature to you.

Astute readers will notice that I included Width and Height attributes in my 
Button declaration. In the Have a go hero section, you'll have the opportunity 
to remove the parameters and see what happens.

Dependency properties
Dependency properties are a 'new wrinkle on the old reliable property' system of the CLR.
On the surface, you may not even notice anything different about them. However, upon 
closer inspection you will see that dependency properties provide a means to compute a 
property's value, based on other inputs as well as adding a notification system for when a 
dependency property's value has changed. For now, think of a dependency property as a 
regular property that Silverlight has a little more control over managing. We'll learn much 
more about dependency properties as the book progresses.

Bumps along the road to Silverlight bliss
 Nearly every developer who starts off in Silverlight has hit the following snags. To save you 

the trouble, I have pointed them out below, to avoid frustration.  

GIF files need not apply
Silverlight can do a lot of things, but one thing it will not do is load a GIF file. Many 
developers are surprised to learn this, but the GIF file format is somewhat antiquated. 
It supports only 8 bits of color and one bit of transparency. In the 21st century our video
cards have evolved, with 24-bit color and 8-bits of transparency supported by the PNG file 
format. If you have image assets that are only available to you in GIF format, you can easily
convert them to PNG or JPG using your favorite image editing software. If you're starting 
to get anxious about other popular web image formats such as, JPG, then don't. JPGs are
supported in Silverlight.

Visibility != Boolean
Another point of confusion for many .NET developers is the Visibility property. It has
always been a Boolean. After all, a visual element is either visible or it's not. What could 
be simpler?



Getting Started

[ 12 ]

In Silverlight, you will find that the Visibility property is no longer a Boolean but is now 
an enumeration of two values: Collapsed and Visible. Why complicate such a simple 
concept? Why use an enumeration when a Boolean has worked fine for all these years? 
The answer lies in WPF.

In WPF, an element's visibility consists of three states: Visible, Collapsed, and Hidden.
Collapsed tells the layout engine to rearrange elements on the screen, whereas Hidden
does not. In order to facilitate compatibility between WPF and Silverlight, the Silverlight 
team decided to stick with this model. However, Silverlight does not support the  
Hidden state.

Remember: Silverlight has only two visibility states: Visible and Collapsed.

It's Button.Content, not Button.Text
If you looked at my earlier XAML sample, you may have noticed that the Button object used
a property called Content. Many seasoned developers would have expected the property to 
be Button.Text. Why would Silverlight do this differently? The answer will change the way 
you think about Silverlight, control layout, and maybe even life in general.

Consider the following XAML:

<Grid x:Name="LayoutRoot" Background="White">
<Button Height="50" Width="100" >
<Button.Content>

<CheckBox Content="CheckBox"></CheckBox>
</Button.Content>

</Button>
</Grid>

The Content property has now been expanded into an XML element which contains 
a CheckBox control. The rendered XAML can be seen in the following screenshot:

But wait, there's more!
The CheckBox also has a Content property, which means that we could place yet 
another control inside it! We can do this by inputting the following code:

<Grid x:Name="LayoutRoot" Background="White">
<Button Height="50" Width="100">



Chapter 1

[ 13 ]

<Button.Content>
<CheckBox>

<CheckBox.Content>
<Button Content="Button"></Button>

</CheckBox.Content>
</CheckBox>

</Button.Content>
</Button>

</Grid>

If we did that, we'd have the following screenshot:

The Content property of both the Button here and the CheckBox controls shows previously 
is a ContentPresenter, a special kind of container that can contain just about anything,
including other ContentPresenters. The end result is a control that can contain other
controls, which in turn can contain other controls, and so on. Whether or not this particular 
example provides for improved usability, is another matter entirely. However, it is nice to 
know that you can easily build something so strange and complex.

Imagine doing this in HTML or Windows Forms!

Tools needed
Now that we've covered the skills that are required to effectively use Silverlight, and saw 
the concepts which are new to Silverlight, let's go over what tools you will need to start 
developing in Silverlight.

At a bare minimum, you will need the following software installed on your Windows 
powered computer:

Visual Studio 2010 or Visual Studio 2008 SP1 with Visual Studio Tools for Silverlight

The Silverlight runtime

Silverlight Toolkit

Expression Blend 3

The Get Started section on the official Silverlight site: 
http://silverlight.net/GetStarted/ will have 
the most up to date links and installation instructions.











Getting Started

[ 14 ]

Visual Studio 200� or Visual Studio 2010
Visual Studio is the Integrated Development Environment (IDE) for developers working 
on Microsoft's .NET platform. You can use either Visual Studio 2008 or Visual Studio 2010. 
If you're already a .NET developer, then Visual Studio will feel very familiar to you. The 
following screenshot should look recognizable to you, even if you've never opened up a 
Silverlight project before. You can readily identify the Solution Explorer, Toolbox and all the
usual suspects. ASP.NET developers will instantly recognize the split window pane of the 
rendered view and the markup view:

Silverlight runtime
To develop applications in Silverlight, you will need to have the Silverlight plugin installed. If 
you come across a page that uses Silverlight and you do not have it installed, you will likely 
see an image like the one in the following screenshot:



Chapter 1

[ 15 ]

Silverlight toolkit
The Silverlight toolkit contains Silverlight controls, components, and utilities built  
by the Microsoft Silverlight product team. The toolkit adds extra functionality quickly for 
designers and developers outside of the regular Silverlight product development cycle. 
It includes full source code, unit tests, sample code, and documentation for the over 
two dozen controls in the toolkit. You can download the Silverlight Toolkit for free at: 
http://www.codeplex.com/Silverlight.

Expression Blend
Developers often find Expression Blend's stark interface somewhat confusing at first. 
Gone are the familiar layout of tools and properties from the last several versions of Visual 
Studio. Expression Blend is primarily aimed at designers, whereas Visual Studio is aimed at 
developers. Accordingly, Blend's interface more closely resembles essential design tools such 
as Adobe Illustrator or Adobe Photoshop, as you can see in the following screenshot:



Getting Started

[ 16 ]

I know what you're thinking: "I'm a developer so why would I care about a silly design 
tool?" In this instance, you should resist the temptation to dismiss Expression Blend 
as nonessential.

Blend will make your work in Silverlight easier and maybe even more fun. If you are still 
not sure about the place of Expression Blend within your development toolkit, think of it 
as a really large XAML generator. While Visual Studio 2010 made incredible advances in 
the Silverlight developer experience, Blend still adds considerable value. Blend has a much 
better tool for creating animations and you can import assets directly from Adobe Photoshop 
and Adobe Illustrator into your Silverlight projects. You can certainly develop Silverlight
applications without Blend, but once you see its power and elegance, Blend will become  
an essential part of your development toolkit.

Throughout the course of this book, we will be using Blend as well as Visual Studio. By the 
time you reach the end, you'll feel right at home with this great new tool.

Other useful tools
In many business application development situations, the bare minimum software tools 
will rarely get the development job done. While Visual Studio and Blend are fully-featured 
development and design tools, there are a few other essential tools that you should have 
in your Silverlight development toolkit.

Deep Zoom Composer
One of the coolest features of Silverlight is Deep Zoom, where your users can browse 
high resolution images, without having to wait for the files to download. A great 
example of Deep Zoom put to good use is Hard Rock's Memorabilia web site at: 
http://memorabilia.hardrock.com, where you can browse gigabytes of images 
instantly. If you want to create your own Deep Zoom experiences, you will need to 
download Deep Zoom Composer, which as of this writing is a free download from: 
http://www.microsoft.com/downloads/details.aspx?FamilyID=457B17B7-
52BF-4BDA-87A3-FA8A4673F8BF&displaylang=en.



Chapter 1

[ 17 ]

Silverlight Spy
Silverlight Spy is a utility that lets you peek into a running Silverlight application, enabling 
you to break down, analyze, and even alter the XAML or code of any Silverlight application. If 
you ever wondered "How they did it" or like to learn by reverse engineering, then this is the 
tool for you. Just remember to respect other's intellectual property.

Silverlight Spy is available as a free trial download and will automatically 
install locally on your machine. You can download the Silverlight Spy trial 
at: http://firstfloorsoftware.com/silverlightspy/
download-silverlight-spy.

When running, Silverlight Spy looks like this:



Getting Started

[ 1� ]

Expression Design
Expression Design is a vector graphics tool, and the ideal companion application to 
Expression Blend. If you're familiar with other vector drawing tools, Design, illustrated 
in the following screenshot, will look familiar to you:

Indeed, Expression Design bears many similarities to other vector graphic tools, but its tight
integration with XAML sets it apart. With Design, you can create graphics to use in your 
Silverlight applications, either by exporting the artwork to XAML, or by selecting elements 
and choosing Copy XAML from the Edit menu.



Chapter 1

[ 1� ]

Expression Studio 3, includes Blend and Design, as well as Encoder, and Web. This suite 
package is available for purchase by MSDN subscribers with Visual Studio Professional MSDN
Premium, and higher. For details, check out: https://msdn.microsoft.com/en-us/
subscriptions/securedownloads/default.aspx.

Expression Encoder
Expression Encoder is a multimedia conversion and rudimentary editing tool. Silverlight 
supports certain media formats natively, and encoders can convert a wide array of video 
file formats into file formats that Silverlight supports.

You can also enhance your media with overlays and advertising with Encoder. While this may 
sound daunting at first, Encoder's user interface is friendly and approachable. We'll focus on 
Expression Encoder and integrating rich media into your Silverlight solutions in Chapter 3.



Getting Started

[ 20 ]

InkScape
InkScape is an open source vector graphics editing application. If you do not have 
access to Adobe Illustrator or Expression Design, you can use InkScape for all your 
vector graphics needs.

Even if you have other vector tools at your disposal, InkScape still has its benefits.  
It supports importing and exporting XAML files, tracing bitmaps images to vector 
graphics, and a myriad of other features. You can download InkScape for free at: 
http://www.inkscape.org/.

Time for action – creating a Silverlight project 
Enough of the theory, let's create a Silverlight project and play around a bit. To do this you 
will need to do the following:

1.	 Launch Visual Studio and click on File | New Project.



Chapter 1

[ 21 ]

2.	 Choose to create a new Silverlight Application as shown below,	then click OK.

3.	 When the following dialog box comes up asking you to optionally create a new 
ASP.NET web project, accept the default settings and click OK:



Getting Started

[ 22 ]

4.	 The MainPage.XAML will open up automatically.

5.	 Between the Grid elements in the XAML file, add the following line of code:

<Button Width="100" Height="50" Content="Button"></Button>

6.	 Hit F5 or choose Start Debugging from the Debug menu.

7.	 Make sure that the radio button enabling debugging is checked and click OK on 
the dialog box below. This dialog will only appear the first time you run a new 
Silverlight application.

8.	 You will see a button in your default browser as follows:

9.	 Congratulations! You've just created your first Silverlight application.



Chapter 1

[ 23 ]

We could have just as easily done this exercise in Expression Blend. However, 
since you are already an ace .NET developer, I thought it best if we started 
out in familiar territory like Visual Studio. In Chapter 2, we'll learn about 
developing in Blend.

Have a go hero
Now that we have a Silverlight application up and running, try removing the Height and
Width attributes from the Button element and run the solution again. See how the button 
changes to take up the entire grid. That's not very useful in most circumstances:

The real power of the Grid layout panel is the ability to add rows and columns to define 
a layout similar to a HTML table.

In our test application, let's define two columns of equal size and place the button in the 
right-hand column. To do this, we'll change the XAML using the following code:

<Grid x:Name="LayoutRoot" Background="White">
<Grid.ColumnDefinitions>

<ColumnDefinition Width=".5*"></ColumnDefinition>
<ColumnDefinition Width=".5*"></ColumnDefinition>

</Grid.ColumnDefinitions>
<Button Grid.Column="1" Content="Button"></Button>

</Grid>



Getting Started

[ 24 ]

And our Silverlight application will look like this:

In the XAML, we defined two columns by adding two ColumnDefinitions inside the
Grid. ColumnDefinition element. To place the button in the right-hand column, we 
added an attribute to the Button tag. The Grid.Column="1" tells the Grid to place the
button in the second column in the ColumnDefinition list. The ColumnDefinition list
is a zero based array and 1 points to the second item. Had we not defined the Grid.Column
attribute, the Grid would have assumed that we meant zero and the button would appear 
in the left-hand column.

You can define as many rows and columns as you like, just remember the 
simpler the better.

Let's try a completely different layout panel: the Canvas. Change the outer Grid container
to Canvas and remove the Grid Column definitions until the XAML looks like this:

<Canvas x:Name="LayoutRoot" Background="White">
<Button Content="Button"></Button>

</Canvas>



Chapter 1

[ 25 ]

Look at the design surface or run the solution again and you'll see that the button's 
placement has changed yet again. It's now at the top left of the application:

What if you wanted the button to not be so close to the edge? Let's change the XAML for the 
Button to this:

<Button Canvas.Left="100" Canvas.Top="50" Content="Button"></Button>

Our application now looks similar to the following screenshot:

Feel free to explore the solution; you'll notice it has two projects: one Silverlight project and 
one ASP.NET project. 



Getting Started

[ 26 ]

What just happened
Not only did you just create your first Silverlight Application, you also modified the XAML, 
ran the application to see the changes that you made, and did some XAML debugging. 
Additionally, you experimented with two different types of layout panel; the Grid and the
Canvas. Depending on the specific needs of your user interface, you'll want to use different 
container objects to lay out your controls. If you want to lay out your controls in a manner 
similar to a HTML table, then you'd want to use a Grid. If you need absolute positioning, then 
use a Canvas. There are a few other layout panel options, such as StackPanel that 'stack' the 
controls next to or on top of one another. This would come in handy if you wanted to create 
a toolbar, for example. We'll talk about the different types of containers in the next chapter.

Summary
In this chapter, we discussed how prior experience with .NET development will help you 
in your move to Silverlight application development. We also looked at some of the new 
concepts to Silverlight, such as dependency properties, XAML, and the ContentPresenter, the 
tools needed to develop Silverlight applications, and how to create a Silverlight application.

Specifically, we learnt the following:

Previous .NET experience will help you in your grasp of Silverlight

XAML is a declarative language based on XML

Controls can contain other controls, which can contain other controls

Expression Blend is an amazing tool that is well worth the initial learning curve

How to create a Silverlight application, experimenting with different layout panels

Now that we've discussed the basics of Silverlight, we're ready to move on to spicing up our 
business application using Silverlight, which will be explored in the next chapter.













2
Enhancing a Website with Silverlight

Imagine that you have been contacted by a small company that makes custom 
cakes for various occasions. Like many businesses, they already have a public 
facing website. The client would like to upgrade to the Web 2.0 era and have 
chosen to use Silverlight in order to do so. They would also like to integrate their 
back end systems into the website. This is the scenario we will be working with 
throughout the course of this book.

In this chapter, we shall:

Create a navigation widget in Silverlight to add to the current website

Understand Expression Blend and how to use it in conjunction with Visual Studio.

Use control templates to enhance the look and feel of the navigation widget.

Add the navigation widget to an existing website

Create an interactive logo using Silverlight and incorporate it into the website

Retrofitting a website
The first thing the client would like to do to their website is spice it up with a new navigation 
control and a playful, interactive logo for the top of the page.













Enhancing a Website with Silverlight

[ 2� ]

First, we'll work on a navigation control to replace the text links on the left hand side of the 
page of the current website. As you will notice in the following image, the current website 
navigation mechanism isn't fancy, but it's simple. However, the client would like the website 
to be more modern, while preserving ease of use.

Adding pizzazz with Silverlight
Cake-O-Rama would like to add a fancy navigation widget to their site. They've 
commissioned a graphic artist to create the following look for the widget.

A few words on search engine optimization
We could easily create a Silverlight application that would encompass all the content and 
functionality of a whole website. However, doing so would severely limit the website's 
visibility to search engines. Search engines have programs called spiders, or robots, that
'crawl' the internet scanning for content. Generally, these programs can only see text 
exposed in the HTML. Search results are ranked based on this text-only content. Placing all 
our content inside a rich internet application platform like Silverlight would effectively hide 
all of our content. The net result would be reduced visibility on search engines.



Chapter 2

[ 2� ]

All Rich Internet Application (RIA) platforms have this issue with search 
engine visibility.

Until this problem is resolved, the best approach is to augment the page's HTML content on 
sites that you want to be found more easily by search engines.

Building a navigation control from the ground up
In the previous chapter, we looked at two different layout panels: the Grid and the
Canvas. In addition, Silverlight 4 also has StackPanel, Border, WrapPanel, ViewBox,
and ScrollViewer. Why are there so many? Well, each one serves a unique purpose.

Picking the right kind of container
You wouldn't fill a cardboard box with water or drink milk out of a gasoline can, would you? 
The same could be said of the various layout containers in Silverlight, each one serves a
unique purpose and some are better at certain tasks than others.

For instance, when you want to create a toolbar, you would probably use a StackPanel
or WrapPanel, and not a Canvas. Why? While you could manually code the layout logic to 
place all the child controls, there's no good reason to. After all, there are already controls 
to do the heavy lifting for you.

Below are the most common layout containers in Silverlight 4:

Container Layout Behavior

Canvas Manual positioning of items using X and Y coordinates

Grid Lays out items using a defined grid of rows and columns

InkPresenter Canvas that can handle digital ink

StackPanel Stacks items on top of or next to one another

WrapPanel Lines up items and wraps them around

Border Draws a border around an item

Viewbox Scales an item up to take up all the available space

ScrollViewer Places a scroll bar around the control

Silverlight also provides the means to write your own layout code. While there may be 
situations where this is warranted, first think about how you can achieve the desired 
result with a combination of the existing containers.



Enhancing a Website with Silverlight

[ 30 ]

Stack it up: Using the StackPanel
Based on the website's current navigation links, StackPanel seems like the best choice. As
the name implies, it lays out child controls in a stack, which seems like a good fit for our list 
of links.

Time for action – building navigation buttons in Silverlight
Now, let's make a StackPanel of button controls to navigate around the site. In order to do 
this, we will need to do the following:

1.	 Launch Visual Studio 2010 and click on File|New Project.

2.	 Choose to create a new Silverlight Application as shown in the next screen:



Chapter 2

[ 31 ]

3.	 Name the project CakeNavigationButtons and click OK to accept the 
default settings.

4.	 In the MainPage.xaml file,  write the following lines of XAML inside the Grid tag:

<StackPanel>

<Button Content="Home" />

<Button Content="Gallery"/>

<Button Content="Order"/>

<Button Content="Locations"/>

<Button Content="Contact Us"/>

<Button Content="Franchise Opportunities"/>

</StackPanel>

5.	 Return to Visual Studio 2010 and click on Debug -> Start Debugging or press F5 to
launch the application.

6.	 On the following screen, click OK to enable debugging.



Enhancing a Website with Silverlight

[ 32 ]

7.	 Your application should look something like this:

We have now created a StackPanel of button controls to navigate around the website 
using Silverlight, but the application is  not exactly visually appealing, not to mention, the 
buttons don't do anything. What we need them to do is reflect the design we've been 
provided with and navigate to a given page when the user clicks on them.

What just happened?
What we created here is the foundation for what will eventually become a dynamic 
navigation control. You have created a new Silverlight application, added a StackPanel, 
and then added button controls to it. Now, let's move on to make this little navigation 
bar sparkle.

Adding a little style with Styles
Many people refer to Silverlight controls as being "lookless", which may sound strange 
at first as they clearly have a "look." The term refers to the fact that the logic in a control 
defines its behavior rather than its appearance. That means that all the controls you've 
seen in Silverlight so far have no presentation logic in them. Their look comes from a default 
resource file. The good news is that we can create our own resources to customize the look 
of any control. You can re-style a control in Silverlight in much the same way as you can in 
Cascading Style Sheets (CSS).

Styles
For instance, what if we wanted the text in the buttons to be larger? We could add a 
FontSize attribute to every button control, so that our XAML code would look like this:

<StackPanel>
<Button Content="Home" FontSize="18" />
<Button Content="Gallery" FontSize="18"/>
<Button Content="Order" FontSize="18"/>



Chapter 2

[ 33 ]

<Button Content="Locations" FontSize="18"/>
<Button Content="Contact Us" FontSize="18"/>
<Button Content="Franchise Opportunities" FontSize="18"/>

</StackPanel>

While this would give us the desired effect, it also bloats the XAML and, should we change 
our minds about the font size later, forces us into a situation where we'll have to do a lot of 
typing. A Style would provide a more elegant solution to this problem. For example, I can 
define a style that bumps up the FontSize to 18 as shown below:

<Style x:Name="biggerTextStyle" TargetType="Button">
<Setter Property="FontSize" Value="18"/>

</Style>

The above snippet of XAML actually defines a style named biggerTextStyle and declares
that it is for button controls. Inside the style, there can be any number of Setter nodes. In
this style, there is only one and it sets the FontSize property to 18. To use this style, we're 
going to need to do two things: place it into our application and tell our buttons to reference 
the style.

In Silverlight, styles are considered a Resource, which are any kind of data stored inside 
an object. Accordingly, we'll place the Style inside the Resources collection of our 
UserControl, which is the root element of the MainPage.XAML file. This would be 
analogous to the HEAD section of an HTML document, where document-wide resources reside:

<UserControl.Resources>
<Style x:Name="biggerTextStyle" TargetType="Button">

<Setter Property="FontSize" Value="18"/>
</Style>

</UserControl.Resources>

We have several options for storing resources in Silverlight. Many controls have a Resources 
collection and we can store resources in App.xaml, where it is accessible to the entire 
application. Alternatively, we can even define a Resource Dictionary, which is a separate file 
that contains resources. A resource dictionary is analogous to an external CSS file in HTML. 
Resource dictionaries can be shared across applications.

Once the style is in place, we need to tell the Button to use it by adding a reference to it in
the Style attribute to the button, so the XAML for the buttons now looks like this:

<Button Content="Home" Style="{StaticResource biggerTextStyle}" />
<Button Content="Gallery" Style="{StaticResource biggerTextStyle}" />
<Button Content="Order" Style="{StaticResource biggerTextStyle}" />
<Button Content="Locations" Style="{StaticResource biggerTextStyle}" 
/>



Enhancing a Website with Silverlight

[ 34 ]

<Button Content="Contact Us" Style="{StaticResource biggerTextStyle}" 
/> 
<Button Content="Franchise Opportunities" Style="{StaticResource 
biggerTextStyle}" />

You may be wondering what those curly braces are doing inside of an XAML document. They 
are a special cue for the XAML processing engine to execute certain commands, called a 
Markup Extension. The markup extension above tells the Silverlight runtime to set the style 
property to the resource named biggerTextStyle.

In each Button we reference the same biggerTextStyle Style resource for all of our
buttons. This is to make sure they all use the same Style resource. This bloats our code
somewhat. Wouldn't it be great if there were a way to create a default style that would apply 
to all the buttons in our application? Fortunately, for us this feature was added in Silverlight 
4. We now have the option to define a default style for a particular type of control.  Simply 
remove the x:Name="biggerTextStyle" attribute from the Style declaration, so that the 
XAML looks like  this:

<Style TargetType="Button">
<Setter Property="FontSize" Value="18"/>

</Style>

By removing the x:Name attribute, we create an anonymous style, or a default style, that
applies to all the Button controls in our application. Now, our XAML markup looks nice 
and tidy:

<Button Content="Home" /> 
<Button Content="Gallery" /> 
<Button Content="Order"/> 
<Button Content="Locations"/> 
<Button Content="Contact Us"/> 
<Button Content="Franchise Opportunities"/>

Overriding an anonymous style

If you want to override an anonymous style and revert to the control's 
default appearance, set the Style attribute to null using this code: 
Style="{x:Null}"

Enough of the theory, let's create a default style now!



Chapter 2

[ 35 ]

Time for action – adding the style
Now it's time to create a Style in XAML and tell all the buttons in our project to use that 
style. This will make all of the buttons have a common text size. You will need to do the 
following:

1.	 Go back to the CakeNavigationButtons project in Visual Studio.

2.	 Open the MainPage.XAML file.

3.	 Edit the XAML so that it looks like this: 

<UserControl x:Class="CakeNavigationButtons.MainPage"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"

mc:Ignorable="d"

d:DesignHeight="300" d:DesignWidth="400">

<UserControl.Resources>

<Style TargetType="Button">

<Setter Property="FontSize" Value="18"/>

</Style>

</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White">

<StackPanel>

<Button Content="Home" />

<Button Content="Gallery" />

<Button Content="Order"/>

<Button Content="Locations"/>

<Button Content="Contact Us"/>

<Button Content="Franchise Opportunities"/>

</StackPanel>

</Grid> </

UserControl>



Enhancing a Website with Silverlight

[ 36 ]

4.	 Run the solution and you'll notice that the text on every button is larger.

5.	 Stop the project and return to the MainPage.XAML file.

6.	 Change the FontSize to 9.

7.	 Add another Setter node to the style: 

<Setter Property="Background" Value="Red"/>

8.	 Run the project again and you'll see that the font is much smaller and the buttons 
have taken on a red tone:

What just happened?
We just created a Style and added it to our navigation application. Then we referenced the 
Style using a Markup Extension in the Style property of the button. We then modified the 
Style, which changed all the controls that referenced it. This should give you a little taste of 
the power of using Styles in Silverlight.

You may be thinking that editing styles "by hand" can get tedious if we try to do anything 
more complex, and you're right! Hand editing XAML can only get you so far. Now we'll take 
our design to the next level by using Expression Blend.



Chapter 2

[ 37 ]

Creating applications in Expression Blend
What we've done so far falls short of some of the things you may have already seen and 
done in Silverlight. Hand editing XAML, assisted by Intellisense, works just fine to a point, but 
to create anything complex requires another tool to assist with turning our vision into code.

Intellisense is a feature of Visual Studio and Blend that auto-completes text
when you start typing a keyword, method, or variable name.

Expression Blend may scare off developers at first with its radically different interface, but 
if you look more closely, you'll see that Blend has a lot in common with Visual Studio. For 
starters, both tools use the same Solution and Project file format. That means it's 100% 
compatible and enables tighter integration between developers and designers. You could 
even have the same project open in both Visual Studio and in Blend at the same time. Just 
be prepared to see the File Modified dialog box like the one below when switching between 
the two applications:

If you've worked with designers on a project before, they typically mock up an interface in 
a graphics program and ship it off to the development team. Many times, a simple graphic 
embellishment can cause us developers to develop heartburn. Anyone who's ever had to 
implement a rounded corner in HTML knows the special kind of frustration that it brings 
along. Here's the good news: those days are over with Silverlight.

A crash course in Expression Blend
In the following screenshot, our CakeNavigationButton project is loaded into Expression
Blend. Blend can be a bit daunting at first for developers that are used to Visual Studio as 
Blend's interface is dense with a lot of subtle cues. Solutions and projects are opened in 
Blend in the same manner as you would in Visual Studio.



Enhancing a Website with Silverlight

[ 3� ]

Just like in Visual Studio, you can customize Expression Blend's interface to suit your 
preference. You can move tabs around, dock, and undock them to create a workspace 
that works best for you as the following screenshot demonstrates:

An artsy Visual Studio?
If you look at the CakeNavigationButton project, on the left hand side of the application 
window, you have the toolbar, which is substantially different from the toolbox in 
Visual Studio.

The toolbar in Blend more closely resembles the toolbar in graphics editing software such 
as Adobe Photoshop or Adobe Illustrator. If you move the mouse over each button, you will 
see a tooltip that tells you what that button does, as well as the button's keyboard shortcut. 
In the upper-left corner, you'll notice a tab labeled Projects. This is functionally equivalent to 
the Solution Explorer in Visual Studio. The asterisk next to MainPage.XAML indicates that
the file has not been saved. Examine the next screenshot to see Blend's equivalent to Visual 
Studio's Solution Explorer:



Chapter 2

[ 3� ]

If we look at the following screenshot, we find the Document tab control and the design
surface, which Blend calls the art board. On the upper-right of the art board, there are 
three small buttons to control the switch between Design view, XAML view, or Split view.

On the lower edge of the art board, there are controls to modify the view of the design 
surface. You can zoom in to take a closer look, turn on snap grid visibility, and turn on 
or off the snapping to snap lines.



Enhancing a Website with Silverlight

[ 40 ]

If we then move to the upper-right corner of the next screen, we will see the Properties tab,
which is a much more evolved version of the Properties tab in Visual Studio. As you can see
in this screenshot, the color picker has a lot more to offer. There's also a search feature that 
narrows down the items in the tab based on the property name you type in.

At the lower left side of the next screen, there is the Objects and Timeline view, which 
shows the object hierarchy of the open document. Since we have the MainPage.XAML of
our CakeNavigationButtons project, the view has StackPanel with six Buttons all inside a grid
named LayoutRoot inside of a UserControl. Clicking on an item in this view selects the item 
on the art board and vice versa.



Chapter 2

[ 41 ]

Expression Blend is an intricate and rich application; we'll be learning more about Blend 
throughout the course of this book.

Time for action – styles revisited in Blend
Earlier in this chapter, we created and referenced a style directly in the XAML in Visual 
Studio. Let's modify the style we made in Blend to see how to do it graphically. To do this, 
we will need to:

1.	 Open up the CakeNavigationButtons solution in Expression Blend.

2.	 In the upper right corner, there are three tabs (Properties, Resources, and Data).

3.	 On the Resources tab, expand the tree node marked [UserControl] and click on the 
button highlighted below to edit the [Button default] resource.

4.	 Your art board should look something like this:



Enhancing a Website with Silverlight

[ 42 ]

5.	 Click on the Properties tab and scroll down to the Text section:

6.	 Change the Font size to 14 and click on the B and the I buttons to toggle on Bold 
and Italic.

7.	 Type cursor into the Search box. Notice how the Properties tab displays only the 
Cursor property.

8.	 Next, change the value in the drop down list to Hand:

9.	 Type margin into the search box and put 5 into each of the text boxes as shown in 
the following screenshot:



Chapter 2

[ 43 ]

10.	Look over to the left hand side of the screen; you'll see a tab named Objects and 
Timeline. Click on the button with the up arrow that I've highlighted in the following 
screenshot. This will get you out of Style editing mode and back into the main level
of our application:

11.	Choose Run Project from the Project menu or hit F5 to run the project.

12.	Notice what's changed. There is now a space around each button, the font's 
appearance has changed and the cursor changes to a hand when you mouse 
over each of the buttons. Your application will now look similar to the 
following screenshot:

13.	The buttons have a red tint to them, but there is still some way to go.

What just happened?
We have just edited a style in Expression Blend and the software did all the heavy lifting for 
us. If you take a peek at the XAML markup, you will see that the Style has been expanded
to include a few more Setter nodes. Each one corresponds to the changes that we made:

        <Style TargetType="Button">
            <Setter Property="FontSize" Value="14"/>
            <Setter Property="Background" Value="Red"/>
            <Setter Property="Cursor" Value="Hand"/>
            <Setter Property="FontStyle" Value="Italic"/>
            <Setter Property="FontWeight" Value="Bold"/>
            <Setter Property="Margin" Value="5,5,5,5"/>
        </Style>



Enhancing a Website with Silverlight

[ 44 ]

You most certainly could have created this XAML by hand, but as you've just seen, it's often 
faster to use Blend for this. In many real world scenarios, you will have to get your hands 
dirty in the XAML from time to time to tweak a value.

Have a go hero
So, we have a style that defines the way we would like our buttons to look. What if we 
wanted to override certain properties? For example, if you wanted the font size on the 
Home button to be different than the others, you could specify a smaller or larger value. 
Once again, you can do this in Blend via the Properties tab or in the XAML using the 
following code:

<Button Content="Home" FontSize="9" />

By using this code, you will be presented with this screenshot:

Alternatively, you could define another style; one that specifies a smaller font size. We've 
seen that done in XAML, but not in Blend yet.

Let's do that now. Make sure that the UserControl element is selected, then click on the
Object menu, and then Edit Style|Create Empty... You will then see the following dialog box:



Chapter 2

[ 45 ]

Next, change the Name to smallerTextStyle then click OK. Use the Properties tab to change
the font size to 9. Feel free to change some other properties  too.

When you are finished, click the up button on the Objects and Timeline tab to exit style
editing mode. Once you are back in the main view, select the Home button. Type style into
the search box on the Properties tab. You will find the Properties tab on the right-hand side
of Blend's window. Under Miscellaneous, you will see a Style property with a little square 
next to it as in the screenshot below. In Blend, this means that there are more properties 
for you to edit. Click the square to bring up the Advanced Property Options context menu.

Once you click on the square, the following context menu appears. Choose 
Local Resource|smallerTextStyle from the sub-menu just as you see it in the 
following screenshot:

Run the solution again or look at the art board to see how the button has changed. You can 
experiment with assigning this style to some of the other buttons, editing the existing styles, 
or creating new styles. On buttons where the smallerTextStyle is applied, the button 
text will be smaller. On buttons where the default style is applied, the button text will  
be larger.

Skinning a control
So far, you've seen that while styles can change the look of a control, they can only go so 
far. No matter how many changes we make, the buttons still look like old-fashioned buttons. 
Surely, there must be a way to customize a control further to match our creative vision. 
There is a way, its called skinning.



Enhancing a Website with Silverlight

[ 46 ]

Controls in Silverlight are extremely flexible and customizable. This flexibility stems from the 
fact that controls have both a VisualTree and a LogicalTree. The Visual Tree deals with all 
the visual elements in a control, while the Logical tree deals with all the logical elements. All 
controls in Silverlight come with a default template, which defines what a control should look 
like. You can easily override this default template by redefining a control's visual tree with a 
custom one.

Designers can either work directly with XAML in Blend or use a design tool that 
supports exporting to XAML. Expression Design is one such tool. You can also 
import artwork from Adobe Illustrator and Adobe Photoshop from within Blend.

In our scenario, let us pretend that there is a team of graphic designers. From time to time 
graphic designers will provide us with visual elements and, if we're lucky, snippets of XAML. 
In this case, the designers have sent us the XAML for a rectangle and gradient for us to base 
our control on:

<Rectangle Stroke="#7F646464" Height="43" Width="150"
StrokeThickness="2" RadiusX="15" RadiusY="15" VerticalAlignment="Top"
>
  <Rectangle.Fill>
    <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
      <GradientStop Color="#FFEE9D9D" Offset="0.197"/>
      <GradientStop Color="#FFFF7D7D" Offset="0.847"/>
      <GradientStop Color="#FFF2DADA" Offset="0.066"/>
      <GradientStop Color="#FF7E4F4F" Offset="1"/>
    </LinearGradientBrush>
  </Rectangle.Fill>
</Rectangle>

After inputting the above XAML, you will be presented with this image:

We need to make this rectangle the template for our buttons.



Chapter 2

[ 47 ]

Time for action – Skinning a control
We're going to take the XAML snippet above and skin our buttons with it. In order to achieve 
this we will need to do the following:

1.	 Open up the CakeNavigationButtons project in Blend.

2.	 In the MainPage.XAML file, switch to XAML View, either by clicking the XAML 
button on the upper-right corner of the art board or choosing View|Active 
Document View|XAML from the menu bar.

3.	 Type in the following XAML after the closing tag for the StackPanel:
(</StackPanel>) 
<Rectangle Stroke="#7F646464" Height="43" Width="150" 
StrokeThickness="2" RadiusX="15" RadiusY="15"
VerticalAlignment="Top" >
  <Rectangle.Fill>
    <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
      <GradientStop Color="#FFEE9D9D" Offset="0.197"/>
      <GradientStop Color="#FFFF7D7D" Offset="0.847"/>
      <GradientStop Color="#FFF2DADA" Offset="0.066"/>
      <GradientStop Color="#FF7E4F4F" Offset="1"/>
    </LinearGradientBrush>
  </Rectangle.Fill>
</Rectangle>

4.	 Switch back to Design View, either by clicking on the appropriate button on 
the upper right corner of the art board or choosing View|Active Document 
View|Design View from the menu bar.

5.	 Right-click on the rectangle and click on Make Into Control.



Enhancing a Website with Silverlight

[ 4� ]

6.	 In the dialog box, choose Button, change the Name (Key) field to navButtonStyle
and click OK.

7.	 You are now in template editing mode. There are two on-screen indicators that you 
are in this mode: one is the Objects and Timeline tab:



Chapter 2

[ 4� ]

8.	 And one is the MainControl.xaml at the top of the art board:

9.	 Click on the up button to exit template editing mode.

10.	Delete the button that our Rectangle was converted into.

11.	Select all the buttons in the StackPanel by clicking on the first one and then 
Shift+clicking on the last one.

12.	With all the buttons selected, go to the Properties tab, type Style into the 
search box.

13.	Using the techniques you've learned in this chapter, change the style to 
navButtonStyle, so that your screen now looks like this:

The result is still not quite what we're looking for, but it's close. We need to increase 
the font size again; fortunately, we know how easy that is in Blend.

14.	Click on one of the buttons and choose Object|Edit Style|Edit Current from the
menu bar to get into style editing mode.

15.	Make note of all the visual indicators. In the Properties tab, change the Font Size to
18, the Cursor to Hand, the Height to 45, and the Width to 200. You should see the
changes immediately. The cursor change will only be noticeable at run time.

16.	Exit the template editing mode.

17.	There is a slight problem with the last button; the font is a little too large. Click on 
the button and use the Properties tab to change the Font Size to 12.



Enhancing a Website with Silverlight

[ 50 ]

18.	Run the project and your application will look something like this:

19.	Run your mouse over the buttons. The button no longer reacts when you mouse 
over it, we'll fix that next.

What just happened?
We just took a plain old button and turned it into something a little more in line with the 
graphic designers' vision but how did we do it?

When in doubt, look at the XAML

The nice thing about Silverlight is that you can always take a look at the XAML 
to get a better understanding of what's going on. There are many places where 
things can "hide" in a tool like Blend or even Visual Studio. The raw naked XAML, 
however, bares all.

For starters, we took a chunk of XAML and, using Blend, told Silverlight that we wanted to 
"take control" over how this button looks. This data was encapsulated into a Style and we 
told all our buttons to use our new style. When the new style was created, we lost some of 
our formatting data. We then inserted it back in and added a few more properties.

If you're really curious to see what's going on, let's take a closer look at the XAML that Blend 
just generated for us:

<Style TargetType="Button">
    <Setter Property="FontSize" Value="18.667"/>
    <Setter Property="Background" Value="Red"/>
    <Setter Property="FontStyle" Value="Italic"/>
    <Setter Property="FontWeight" Value="Bold"/>
    <Setter Property="Cursor" Value="Hand"/>
    <Setter Property="Margin" Value="5"/>
</Style>



Chapter 2

[ 51 ]

<Style x:Key="smallerTextStyle" TargetType="Button">
    <Setter Property="FontSize" Value="9"/>
    </Style> 
<Style x:Key="navButtonStyle" TargetType="Button">
  <Setter Property="Template">
    <Setter.Value>
      <ControlTemplate TargetType="Button">
        <Grid>
          <Rectangle RadiusY="15" RadiusX="15" Stroke="#7F646464"
StrokeThickness="2">
            <Rectangle.Fill>
              <LinearGradientBrush EndPoint="0.5,1"
StartPoint="0.5,0">
                <GradientStop Color="#FFEE9D9D" Offset="0.197"/>
                <GradientStop Color="#FFFF7D7D" Offset="0.847"/>
                <GradientStop Color="#FFF2DADA" Offset="0.066"/>
                <GradientStop Color="#FF7E4F4F" Offset="1"/>
              </LinearGradientBrush>
            </Rectangle.Fill>
          </Rectangle>
          <ContentPresenter HorizontalAlignment="{TemplateBinding
HorizontalContentAlignment}" VerticalAlignment="{TemplateBinding
VerticalContentAlignment}"/>
        </Grid>
      </ControlTemplate>
    </Setter.Value>
  </Setter>
  <Setter Property="FontSize" Value="24"/>
  <Setter Property="Cursor" Value="Hand"/>
  <Setter Property="Height" Value="45"/>
  <Setter Property="Width" Value="200"/>
</Style>

You'll immediately notice how verbose XAML can be. We've not done a great deal of work, 
yet we've generated a lot of XAML. This is where a tool like Blend really saves us all those 
keystrokes. The next thing you'll see is that we're actually setting the Template property
inside of a Setter node of a Style definition. It's not until toward the end of the Style
definition that we see the Rectangle which we started with. There's also a lot of code here 
devoted to something called the Visual State Manager.

Prior to us changing the control's template, you'll remember that when you moved your 
mouse over any of the buttons, they reacted by changing color. This was nice, subtle 
feedback for the user. Now that it's gone, we really miss it and so will our users. If you 
carefully study the XAML, it should come as no surprise to you that the button doesn't do 
anything other than just sit there: we've not defined anything for any of the states listed 
here. The nodes are blank. Let's do that now.



Enhancing a Website with Silverlight

[ 52 ]

States of mind
The Visual State Manager, as its name implies, helps you manage the visual states of
controls. It is a simple and powerful means to provide state transitions to controls, while 
hiding a lot of the animation mechanisms behind them.

Time for action – learning the Visual State Manager
In this exercise, we are going to use the Visual State Manager to add visual cues to our 
control template. While we could type out all this XAML, let's have Blend generate all the 
XAML for us. In order to do this, we will need to complete the following steps:

1.	 In the MainPage.XAML file of the CakeNavigationButtons project, right-click on any
of the buttons that use the navButtonStyle.

2.	 Click Edit Template|Edit Current from the context menu as in this screenshot:



Chapter 2

[ 53 ]

3.	 Click on the States tab in the upper-left part of the Blend window as shown below:

4.	 Click on Normal. Note how the art board gets a red border and tells you that 
Normal state recording is on.

5.	 Click on MouseOver and then click on Rectangle in the Objects and Timeline tab.

6.	 Use the Properties tab to change the background of the rectangle by changing the
colors of the gradient. You can do this by clicking each one of the "stops" along the 
gradient line as seen in the following screenshot:



Enhancing a Website with Silverlight

[ 54 ]

7.	 First click on stop, then use the color picker to choose a new color. You can pick your 
own colors. Repeat for each of the four gradient stops.

8.	 Click the up button on the Objects and Timeline tab to exit the template 
editing mode.

9.	 Run the solution and each button changes color when you mouse over it :

10.	Then, close the browser and go back to Blend. While that worked, it doesn't quite 
have that same natural feel that the default button template had.

11.	We can quickly remedy that by going back into the template editing mode and 
changing the Default Transition property in the States tab to 0.2s  as shown in 
the following screenshot:

12.	Run the solution again and notice how "natural" that feels. Experiment with 
different timings to see how it changes the feel of your application. You can use 
any time in the range of 0 to 1 second.



Chapter 2

[ 55 ]

What just happened?
We restored the natural "feel" of our navigation button by modifying how it transitions from 
one state to another. Because we used the Button control as a basis, several states were 
already defined and we got a lot of functionality "for free."

If you take a closer look at the XAML, it is starting to get really bloated at this point. Yet, 
our button code is still simple and humble. It's largely remains unchanged from when we 
started this chapter:

<Button Content="Home" Style="{StaticResource navButtonStyle}" />
<Button Content="Gallery" Style="{StaticResource navButtonStyle}" />
<Button Content="Order" Style="{StaticResource navButtonStyle}" />
<Button Content="Locations" Style="{StaticResource navButtonStyle}" />
<Button Content="Contact Us" Style="{StaticResource navButtonStyle}" 
/> 
<Button Content="Franchise Opportunities" Style="{StaticResource 
navButtonStyle}" FontSize="14" />

Obviously, all of the work is being done inside the Style and the Control Template. The
XAML code for that is quite long winded. I will just show a snippet for brevity. Here is the 
definition for the MouseOver state:

<vsm:VisualState x:Name="MouseOver">
  <Storyboard>
    <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
Duration="00:00:00.0010000" Storyboard.TargetName="rectangle"
Storyboard.TargetProperty="(Shape.Fill).(GradientBrush.GradientStops)[
3].(GradientStop.Color)">
      <EasingColorKeyFrame KeyTime="00:00:00" Value="#FFFFFFFF"/>
    </ColorAnimationUsingKeyFrames>
    <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
Duration="00:00:00.0010000" Storyboard.TargetName="rectangle"
Storyboard.TargetProperty="(Shape.Fill).(GradientBrush.GradientStops)[
1].(GradientStop.Color)">
      <EasingColorKeyFrame KeyTime="00:00:00" Value="#FFB1DCF4"/>
    </ColorAnimationUsingKeyFrames>
    <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
Duration="00:00:00.0010000" Storyboard.TargetName="rectangle"
Storyboard.TargetProperty="(Shape.Fill).(GradientBrush.GradientStops)[
0].(GradientStop.Color)">
      <EasingColorKeyFrame KeyTime="00:00:00" Value="#FFE2E2E2"/>
    </ColorAnimationUsingKeyFrames>
    <ColorAnimationUsingKeyFrames BeginTime="00:00:00"
Duration="00:00:00.0010000" Storyboard.TargetName="rectangle"
Storyboard.TargetProperty="(Shape.Fill).(GradientBrush.GradientStops)[
2].(GradientStop.Color)">



Enhancing a Website with Silverlight

[ 56 ]

      <EasingColorKeyFrame KeyTime="00:00:00" Value="#FFFDFDFD"/>
    </ColorAnimationUsingKeyFrames>
  </Storyboard>
</vsm:VisualState>

You have to admire the way the Visual State Manager hid a lot of the animation XAML 
mark-up from us. Don't worry if it doesn't quite make sense yet. There's a lot going on 
here that relates to animation, but first let's get back to slinging code.

Adding event handlers
That's right, code, good old fashioned code. We are more than halfway through this chapter
and we have not written one single line of procedural code. Sure, we've created plenty of 
XAML, but not one single line of C# or Visual Basic.NET code. How is this possible?

Sharp-eyed readers may have already noticed that our MainPage.xaml file has a code 
behind it named MainPage.xaml.cs (MainPage.xaml.vb, if you're using Visual Basic.
NET). Curious readers may have already taken a peek at the code behind the file.

Here is the complete listing of code that powers our buttons:

using System.Windows.Controls; 
using System.Windows.Documents; 
using System.Windows.Input; 
using System.Windows.Media; 
using System.Windows.Media.Animation;
using System.Windows.Shapes;
namespace CakeNavigationButtons 
{
    public partial class MainPage : UserControl
    {
        public MainPage()
        {
            InitializeComponent();
        }
    }
}

Could that be all there is? Let's fire up Visual Studio now and take a closer look at what's 
going on.



Chapter 2

[ 57 ]

Time for action – back to coding
Let's take a peek at all the code and files automatically generated for us to see what makes a 
typical Silverlight project tick. Let's also wire up a few event handlers to make the navigation 
control interactive. In order to this, we will need to do the following:

1.	 Open up the CakeNavigationButtons project in Visual Studio.

2.	 Open up the MainPage.xaml.cs file.

3.	 Right-click on the InitializeComponent method call and select Go to Definition
from the context menu.

4.	 Notice that we are now in a file called mainpage.g.cs, a file that is 
automatically generated.

5.	 Close this file and go back to the MainPage.xaml.cs file and comment out the 
call to InitializeComponent.

6.	 Run the solution and watch what happens, absolutely nothing.

7.	 Stop the solution either in Visual Studio or closing the host browser window.

8.	 Uncomment the call to InitializeComponent.

9.	 Open the MainPage.xaml file and inside the Home button XAML node, type 
Click= at which point Intellisense will offer to create a new event handler for you:

10.	Click <New Event Handler>.

11.	Your button node now has a binding to an event handler.

12.	Right mouse click on Click="Button_Click" and click on Navigate to Event 
Handler from the context menu.

13.	 Inside the event handler, add the following line of code and run the solution:

MessageBox.Show("Hello from Silverlight");



Enhancing a Website with Silverlight

[ 5� ]

14.	Click on the Home button and you will see this:

15.	Click OK and then close the host browser window.

16.	Remove the following line of code we just added that showed the Alert dialog box:

MessageBox.Show("Hello from Silverlight");

17.	Replace it with this line of code:

System.Windows.Browser.HtmlPage.Window.Navigate(new Uri("http://
www.packtpub.com/"));

18.	Run the project and click on the Home button once more to be taken to the 
Packt Publishing home page.



Chapter 2

[ 5� ]

What just happened?
This should look awfully familiar to ASP.NET developers: you have a mark-up file that wires 
up event handlers defined in an associated code behind file. We also wrote code that 
popped up an alert window in the browser. This is the same kind of popup as you would see 
if you had coded a call to Alert in Javascript. You may not have realized it yet, but you spoke
JavaScript to the host browser. The System.Windows namespace has all sorts of ways to 
talk to the browser and it handles all the differences between platforms and host browsers 
for you. Silverlight provides an HTML Bridge which allows you to interact with the host 
browser, and hosting HTML document.

We also could have defined the event handler and written the code in Blend, but we 
hadn't used Visual Studio in a while. I was beginning to worry that it may have been 
feeling neglected with all the work we've been doing in Blend.

Where are we really?
Now is a good time to remind ourselves where our code will run. Yes, we all know that 
Silverlight is cross-browser and cross-platform and can run on Windows, Macintoshes, 
Linux, and even on mobile devices. That means that your application runs on the Silverlight 
runtime, which resides in an HTML Document Object Model (DOM) hosted in a browser on 
the end user's operating system.

As you can see from this diagram, there are a lot of layers between your code and the actual 
silicon it's running on:

Our
App

Web
Browser

Silverlight Runtime

Operating System

Computer / Mobile Device

Silverlight 4 has out-of-browser functionality. Despite the name, you are actually 
running in a browser via some clever sleight of hand.



Enhancing a Website with Silverlight

[ 60 ]

Animation in Silverlight
Silverlight sports a rich animation system that is surprisingly easy to use. The animation 
model in Silverlight is time based, meaning that movements occur based on a set timeline. 
At the heart of every animation is a StoryBoard, which contains all the animation data and 
independent timeline. Silverlight controls can contain any number of Storyboards.

StoryBoards contain one or more Key frame elements, which are responsible for making 
objects on screen change position, color, or any number of properties. There are four general 
types of Key frames in Silverlight 4: Linear, Discrete, Spline, and Easing. The table below 
illustrates what each one does:

Key frame type Description

Linear Moves from the starting state to the end state in a smooth, linear fashion.

Discrete Jumps from the starting state to the end state instantaneously.

Spline Moves from the starting state to the end state varying speed based on 
mathematically defined curve..

Easing A more evolved version of the Spine, this type of key frame moves from
the starting state to the end state based on an Easing function.

Very different than Flash

The animation model in Silverlight is markedly different than the one found in 
Adobe Flash. Animations in Flash are frame-based, whereas in Silverlight they 
are time-based.

The term StoryBoard comes from the motion picture industry, where scenes are 
drawn out before they are filmed.

Time for action – animation time
The client would like to transform their text-only logo into something a little more elaborate. 
The designers have once again given us a XAML snippet of code exported from their graphic 
design tool. We will need to do the following:

1.	 Open up the CakeORama logo project from the Chapter 2 directory in Blend.

2.	 Blend should have automatically loaded the MainControl.xaml file and your 
screen should look like this:



Chapter 2

[ 61 ]

3.	 In the Objects and Timeline tab, you'll see a list of objects that make up this vector 
drawing. There is Path object for every character.

4.	 Let's add an animation. On the Object and Timeline tab, click the plus sign (+) to
create a new StoryBoard.

5.	 In the Create Storyboard Resource dialog, type introAnimationStoryboard into the
text box and click OK.



Enhancing a Website with Silverlight

[ 62 ]

6.	 You'll notice a couple of changes to your screen. For one, the art board is 
surrounded by a red border and a notification that: intoAnimationStoryboard 
timeline recording is on just like in this screenshot:

7.	 If you take a look at the Objects and Timeline tab, you'll see the timeline for our 
newly created introAnimationStoryboard:

8.	 Let's add a key frame at the very beginning. The vertical yellow line is the play head, 
which marks where you currently are in the timeline. Select the canvas1 object.

You can switch to the Animation Workspace in Blend by pressing F6.



Chapter 2

[ 63 ]

9.	 Click on the square icon with a green plus sign to create a new Key frame here at
position 0. A white oval appears representing the Key frame that you just created. 
It should look similar to the following screenshot:

10.	Move the play head to 0.7 seconds, by clicking on the tick mark to the immediate 
left of the number 1.

11.	Click the same button you did in step 9 to create a new key frame here so that your 
timeline looks like this:



Enhancing a Website with Silverlight

[ 64 ]

12.	Move the play head back to zero.

13.	Make sure the canvas1 object is still selected, click and drag the logo graphic up, so 
that all of it is in the grey area. This moves the logo "off stage".

14.	Hit the play button highlighted in the below screenshot, to preview the animation 
and enjoy the show!

15.	Now all we need to do is tell Silverlight to run the animation when our control loads, 
but first we need to get out of recording mode. To do this, click the x button on the 
Objects and Timeline tab.

16.	Click on [UserControl] in the Objects and Timeline tab.

17.	On the Properties tab, you'll see an icon with a lightning bolt on it. Click on it to see 
the events associated with a UserControl object:



Chapter 2

[ 65 ]

18.	To wire up an event handler for the Loaded event, type UserControl_Loaded  in the
text box next to Loaded, as shown in the next screenshot:

19.	Once you hit Enter, the code behind will immediately pop up with your cursor inside 
the event handler method.

20.	Add this line of code to the method:

introAnimationStoryboard.Begin();

Run the solution via the menu bar or by pressing F5. You should see the logo graphic
smoothly and evenly animate into view. If for some reason the animation doesn't get 
displayed, refresh the page in your browser. You should see it now.

What just happened?
You just created your first animation in Silverlight. First you created a Storyboard and then 
added a couple of Key frames. You changed the properties of the canvas on one key frame 
and Silverlight automatically interpolated them in between points to create a nice smooth 
animation. If your animation didn't show up on the initial page load but did when you 
reloaded the page, then you've just experienced how seriously the Silverlight animation 
engine respects time. Since our animation length is relatively short (0.7 seconds) it's possible 
that more than that amount of time elapsed from the call of the Begin method, to the
amount of time it took for your computer to render it. Silverlight noticed that and "jumped" 
ahead to that  part of the timeline to keep everything on schedule.



Enhancing a Website with Silverlight

[ 66 ]

Just like we did before, let's take a look at the XAML to get a better feel of what's really going 
on. You'll find the Storyboard XAML in the UserControl.Resources section towards the 
top of the document. Don't worry if the values are slightly different in your project:

<Storyboard x:Name="introAnimationStoryboard">
  <DoubleAnimationUsingKeyFrames BeginTime="00:00:00" Storyboard.
TargetName="canvas1" Storyboard.TargetProperty="(UIElement.RenderTrans
form).(TransformGroup.Children)[3].(TranslateTransform.Y)">
<EasingDoubleKeyFrame KeyTime="00:00:00" Value="-229"/>
<EasingDoubleKeyFrame KeyTime="00:00:00.7000000" Value="0"/>
  </DoubleAnimationUsingKeyFrames>
<DoubleAnimationUsingKeyFrames BeginTime="00:00:00" Storyboard.
TargetName="canvas1" Storyboard.TargetProperty="(UIElement.RenderTrans
form).(TransformGroup.Children)[3].(TranslateTransform.X)">
<EasingDoubleKeyFrame KeyTime="00:00:00" Value="1"/>
<EasingDoubleKeyFrame KeyTime="00:00:00.7000000" Value="0"/>
  </DoubleAnimationUsingKeyFrames>
</Storyboard>

There are a couple of things going on here, so let's dissect the animation XAML starting with 
the Storyboard declaration which creates a Storyboard and assigns the name we gave it in 
the dialog box:

<Storyboard x:Name="introAnimationStoryboard">

That's easy enough, but what about the next node? This line tells the Storyboard that we 
will be modifying a Double value starting at 0 seconds. It also further specifies a target for 
our animation: canvas1 and a property on our target:

<DoubleAnimationUsingKeyFrames BeginTime="00:00:00" Storyboard.
TargetName="canvas1" Storyboard.TargetProperty="(UIElement.RenderTrans
form).(TransformGroup.Children)[3].(TranslateTransform.Y)">

Clear enough, but what does the TargetProperty value mean? Here is that value 
highlight below.

(UIElement.RenderTransform).(TransformGroup.Children)[3].(TranslateTr
ansform.Y)

We know that the net effect of the animation is that the logo moves from above the visible 
area back to its original position. If we're familiar with X, Y coordinates, where X represents 
a horizontal coordinate and Y a vertical coordinate, then the TranslateTransform.Y part
makes sense. We are changing or, in Silverlight terms, transforming the Y property of the 
canvas. But what's all this TransformGroup about?



Chapter 2

[ 67 ]

Take a look at our canvas1 node further down in the XAML. You should see the following 
lines of XAML that weren't there earlier:

<Canvas.RenderTransform>
  <TransformGroup>
    <ScaleTransform />
    <SkewTransform/>
    <RotateTransform/>
    <TranslateTransform/>
  </TransformGroup>
</Canvas.RenderTransform>

Blend automatically inserted them into the Canvas when we created the animation. They 
have no properties. Think of them as stubbed declarations of these objects. If you remove 
them, Silverlight will throw an exception at runtime like the one below complaining about 
not being able to resolve TargetProperty:

Clearly this code is important, but what's really going on here? The TranslateTransform
object is a type of Transform object which determines how an object can change 
in Silverlight. They are packaged in a TransformGroup, which can be set in the 
RenderTransform property on any object descending from UIElement. UIElement  
is the base class for any kind of visual element.



Enhancing a Website with Silverlight

[ 6� ]

With that bit of knowledge, we now see that (TransformGroup.Children)[3] 
refers to the fourth element in a zero-based collection. Not so coincidentally, the 
TranslateTransform node is the fourth item inside the TransformGroup in our XAML. 
Changing the order of the transforms in the XAML will also cause an exception at runtime.

That line of XAML just tells the Silverlight runtime that we're going to animation, now we tell 
it how and when with our two EasingDoubleKeyFrame nodes:

<EasingDoubleKeyFrame KeyTime="00:00:00" Value="-229"/>
<EasingDoubleKeyFrame KeyTime="00:00:00.7000000" Value="0"/>

The first EasingDoubleKeyFrame node tells Silverlight that, at zero seconds, we want the 
value to be -229. This corresponds to when the logo was above the visible area. The second 
EasingDoubleKeyFrame node tells Silverlight that at 0.7 seconds, we want the value of 
the property to be 0. This corresponds to the initial state of the logo, where it was before 
any transformations were applied.

Silverlight handles all changes to the value in between the start and the end point. 
Silverlight's default frame rate is 60 frames per second, but Silverlight will adjust its frame 
rate based on the hardware that it is running on. Silverlight can adjust the amount by which 
it changes the values to keep the animation on schedule. If you had to reload the web page 
to see the animation run, then you've already experienced this. Once again, notice how few 
lines (technically only one line) of procedural code you had to write.

Have a go hero – exploring animation options
The animation we just created worked, but it feels too mechanical. What if there was a way, 
we could change the rate at which it "fell down" onto the screen.

In the real world, objects typically bounce when they hit a hard surface. Let's replicate that 
here by using a built in Easing function. To do this, we will need to do the following:

1. Go back to Expression Blend and click on the drop down button highlighted here:

2. Click on introAnimationStoryboard to edit that timeline.

3. Click on the key frame oval at 0.7 seconds.



Chapter 2

[ 6� ]

4. You'll notice that the Properties tab on the right has a combo box that has an angled
straight line next to the word None like this:

5. Click on the items marked Bounce in the Out Column and the text in the combo box
should read Bounce Out like this:

6. Run the solution via the menu bar or pressing F5,.and notice how the logo bounces 
onto the screen.



Enhancing a Website with Silverlight

[ 70 ]

7. You can also tweak the parameters of the bounce effect by changing the Bounces
and Bounciness values.

8. To further experiment, you could click on KeySpline where the graph appears,
representing the rate of animation. By default, it starts out as a straight line:

9. Hit the play button to preview the animation.

10. You can change the line by clicking and dragging the yellow circles around or by 
inserting values into the x1,x2, y1,y2 text boxes, so that your graph looks something
like this:



Chapter 2

[ 71 ]

11. Preview the animation again and note the changes.

12. Click on the Hold In button highlighted here:

Preview the animation once more to see how it just simply "jumps" from one value to the 
other. Feel free to experiment with different options for animating this logo.

Getting on the same page
So far, we've created two different Silverlight projects; one for the navigation buttons and 
one for the animated logo. Each resided in their own projects, on their own page. How 
can we integrate the two projects onto the HTML that we already have for our client's 
home page?

To do that we should take a look at the test page Blend and Visual Studio automatically 
created for us and see how to embed a Silverlight application onto a web page.



Enhancing a Website with Silverlight

[ 72 ]

Time for action – getting Silverlight onto a web page
We need to get both the logo and the navigation buttons on the same page. In this exercise, 
we're going to bring some new life to our old page:

1.	 Open up the CakeNavigationButtons solution in Visual Studio.

2.	 Let's take a closer look at the CakeNavigationButtons.Web project.

3.	 The project looks much like any other ASP.NET project, except for the 
ClientBin directory.

4.	 Double-click on the CakeNavigationButtonsTestPage.html to open it in our 
editor and scroll down the page until you see the following code:

<div id="silverlightControlHost">

    <object data="data:application/x-silverlight-2,"
type="application/x-silverlight-2" width="100%" height="100%">

      <param name="source" value="ClientBin/CakeNavigationButtons.
xap"/>

      <param name="onerror" value="onSilverlightError" />

      <param name="background" value="white" />

      <param name="minRuntimeVersion" value="4.0.41108.0" />

      <param name="autoUpgrade" value="true" />

      <a href="http://go.microsoft.com/fwlink/?LinkID=141205"
style="text-decoration: none;">

      <img src="http://go.microsoft.com/fwlink/?LinkId=108181"
alt="Get Microsoft Silverlight" style="border-style: none"/>

      </a>



Chapter 2

[ 73 ]

    </object>

    <iframe style='visibility:hidden;height:0;width:0;border:0px'>
</iframe>

</div>

Seasoned web developers will instantly recognize a plugin object wrapped 
inside a DIV tag. The object tag contains a number of param tags, which 
pass along parameters to the object. By default, the height and width are 
set to 100%, which fills up all the space available. Combined with the CSS 
rule #silverlightControlHost, both are Silverlight applications and will 
be much larger than they need to be. The source parameter points to the
CakeNavigationButtons.xap file in the ClientBin directory. The XAP 
file contains the compiled content of our Silverlight control.

The minRuntimeVersion parameter indicates that the user must have at least
Silverlight 4 in order to run the embedded Silverlight content.

The HTML inside the object tag is what displays if the user does not have Silverlight 
installed on their computer. Further up on the page, you'll see a reference to a 
Silverlight.js file. This contains all the plugin detection code.

5.	 Let's go back to our original HTML document, to see where the new code would 
best fit: 

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Cake-O-Rama</title>
<style type="text/css">
<!--
.Headline {
  color: #039; 
} 
--> 
</style> 
</head> 
<body> 
<h1 align="center" class="Headline">Cake-O-Rama</h1> 
<p align="left"><a href="#">Home</a></p> 
<p align="left"><a href="#">Gallery</a></p> 
<p align="left"><a href="#">Order</a></p> 
<p align="left"><a href="#">Locations</a></p> 
<p align="left"><a href="#">Contact Us</a></p> 
<p align="left"><a href="#">Franchise Opportunities</a></p>
</body> 
</html>



Enhancing a Website with Silverlight

[ 74 ]

6.	 In the same folder as the Cake-O-Rama HTML file, we will need to create a 
directory called ClientBin. We could name this directory anything we wanted, 
but for now, let's stick to the naming convention.

7.	 Copy the CakeNavigationButtons.xap and CakeORama_Logo.xap files to the 
ClientBin directory we just created.

8.	 Change the HTML, so that the contents of the body tag are now:

<div align="center">
<object data="data:application/x-silverlight-2,"
type="application/x-silverlight-2" width="908" height="258">
      <param name="source" value="ClientBin/CakeORama_Logo.xap"/>
      <param name="background" value="white" />
      <param name="minRuntimeVersion" value="4.0.41108.0" />
      <param name="autoUpgrade" value="true" />
            <H1 align="center" class="Headline">Cake-O-Rama</H1>
      <a href="http://go.microsoft.com/fwlink/?LinkID=141205"
style="text-decoration: none;">Get Silverlight</a> to experience
this site's interactive features.
  </object> 
</div> 
<object data="data:application/x-silverlight-2," 
type="application/x-silverlight-2" width="214" height="281">
      <param name="source" value="ClientBin/CakeNavigationButtons.
xap"/>
      <param name="background" value="white" />
      <param name="minRuntimeVersion" value="4.0.41108.0" />
      <param name="autoUpgrade" value="true" /> 
<p align="left"><a href="#">Home</a></p> 
<p align="left"><a href="#">Gallery</a></p> 
<p align="left"><a href="#">Order</a></p> 
<p align="left"><a href="#">Locations</a></p> 
<p align="left"><a href="#">Contact Us</a></p> 
<p align="left"><a href="#">Franchise Opportunities</a></p>
      <a href="http://go.microsoft.com/fwlink/?LinkID=141205"
style="text-decoration: none;">Get Silverlight</a> to experience
this site's interactive features.
</object>



Chapter 2

[ 75 ]

Load up the page in your browser. If you're running locally on your file system, you 
may get an error like this:

Or, if you are a user who hasn't installed Silverlight, you may see the following when 
you load the page:

9.	 Right-click on the security warning bar on the top of the browser window and 
choose Allow Blocked Content.



Enhancing a Website with Silverlight

[ 76 ]

10.	The page will reload and you will now see the client's home page in all its 
Silverlight glory.

What just happened? 
We took the output of our two Silverlight projects and combined them onto one page. In the 
process, we saw how Silverlight is embedded onto a static web page.

The client's home page right now is just static HTML, but it can get quite dynamic once 
you add Silverlight to it. The important thing to remember is that Silverlight is a client-side
technology and the backend server could run on any platform.

Summary
In this chapter, we learnt about Expression Blend, Container controls, Visual State Manager, 
Animation, and Designer/Developer workflow. We covered a lot of ground in this chapter 
and it lays the foundation for the work ahead of us. We took a drab website and turned 
it into something a little more modern. Certainly, the websites you will be migrating to 
Silverlight will not be this plain. I wanted to demonstrate with something as simple as 
possible, so that the concepts stood out.



Chapter 2

[ 77 ]

Specifically, we looked at:

Using container controls

Using styles to customize the look of a control

Working in Expression Blend

Changing the look and feel of a control using Control Templates

Using the Visual State Manager to add subtle transitions to controls

Creating animations in Silverlight and making them natural by using Easing 
Key frames

Embedding Silverlight controls onto a static web page

The power of declarative programming

Most of all, we learned how to use the power of XAML to create a rich experience with 
hardly any procedural code. Think about it: we really have only written two lines of C# code 
(three if you count the one that we deleted). Most of the work was done in XAML, and most 
of the XAML was actually generated by Blend.

In the next chapter, we will look at kicking our website up a notch by incorporating sound 
and video.





















3
Adding Rich Media

Sites such as YouTube and Hulu have pushed the boundaries of web video. 
Once thought to be impossible or impractical, watching everything from movie 
trailers to entire movies online is now commonplace.

Silverlight provides great support for rich media content. Media can enrich any 
application. Whether it's a sound to indicate that you've received a new email, 
help in the form of a video tutorial, or a greeting message from your company's 
CEO, incorporating multimedia into your application can give it extra depth and 
an edge over the competition.

One of the key features of Silverlight is the integration of multimedia. A full 
discourse on delivering rich media over the internet could fill an entire book. 
However, for all but the most sophisticated applications, a little knowledge 
will go a long way. Silverlight hides a lot of the complicated parts of deploying 
media over the web.

In this chapter, we shall:

Add sound and video to our website

Learn how to fill shapes with video, using video as a brush

Enhance the navigation control with sound

Use Expression Media Encoder to encode our own video clips











Adding Rich Media

[ �0 ]

Adding media to a Silverlight project
Silverlight provides built-in support for playing a variety of media formats, both movie and
sound files. The process for adding media to Silverlight projects is relatively easy to do; you 
may find yourself dreaming up all kinds of ways to enhance all your projects with rich media. 
You could add background music to create ambience or add sounds to provide feedback that
a button has been clicked or a process completed, the options are endless.

Tread carefully

Just because you can add media to your Silverlight applications doesn't mean 
you should. There are a number of factors to consider, such as additional 
bandwidth usage, media rights, and the patience of your users. Add media when 
it adds value, not just to show off your Silverlight skills!

Time for action – adding background music
Let's see how we can add some background music to the animated logo application that we 
created in the previous chapter. By doing this, we will add a little bit of atmosphere to our 
homepage. In order to get started, we will need to complete the following steps:

1.	 Open up the CakeORama Logo solution (that we worked on in Chapter 2) in 
Expression Blend. We're going to enhance that solution with sound and video.

Right-click on the CakeoRama Logo project in the Solution and choose 
Add Existing Item…



Chapter 3

[ �1 ]

2.	 Browse to the mp3 or WAV audio file that you'd like to use and place it in our 
project. You can use the one included in the downloadable content for this 
book (vocals.mp3) or another file on your hard drive. Now we need to add a 
MediaElement control to play our sound file. Click on the Assets button on the 
toolbar. It has chevrons pointing to the right:

3.	 When the dialog appears, type Media to limit the list to controls that contain the
word 'media'. Click on MediaElement:

4.	 Double-click anywhere on the art board to insert the MediaElement control. Since
we're only playing audio, the control can be invisible.

5.	 By default, the newly created MediaElement control will be selected. Use the 
Properties tab to name it mediaMusic.



Adding Rich Media

[ �2 ]

6.	 Further down in the Properties tab are the Media properties. Choose /vocals.mp3
from the drop down menu next to the Source property.

7.	 Make sure that AutoPlay is checked.

8.	 Run the solution. The animation will work as it did before, and you will hear the 
music in the background.

What just happened?
We just added some music to our logo application to add a fun atmosphere to our site. As 
you can see, it didn't take a single line of procedural code. We simply added a music file to 
our project, created a MediaElement control and set the source of the control to our music
file. That's all there was to it.

However, behind the scenes a few things happened here. When Blend added the audio file 
to the solution, it set the file's Build Action to Content:

If you open up the solution in Visual Studio, you can verify this for yourself. This tells the 
compiler to embed the sound file into the XAP deployment file. If you were to add the same 
file in Visual Studio, the default Build Action would be None. Blend did the extra step for you.



Chapter 3

[ �3 ]

Embedding files versus referencing files
Embedding a media file is generally a bad idea as it can bloat the size of your XAP file. 
The CakeORama Logo XAP file was 11k before adding the music loop. Now it's over 350k! 
Generally, this is not a good idea. However, for smaller sound effects, embedding the sound 
file makes more sense.

For larger media files, the best approach would be to place the media file in the web project 
or on a web server and then tell Silverlight to load it from there. This keeps the size of your 
XAP file smaller, so that it downloads and starts executing faster. Your application is still going 
to need time to download the larger media file, but you'll be able to control the experience. 
When it comes to the time to deploy your solution, make sure you copy over all your media 
files as well as your XAP file.

Have a go hero – improving the experience
Currently, the sound on our CakeORama Logo solution isn't interactive and plays only once. 
To keep up the atmospheric effect, we may wish to have the sound repeat indefinitely. Users 
should also have the ability to mute the sound. Additionally, the music file is contained 
within the XAP file. We want to display the logo as quickly as possible. The best way to do 
this is to take the music file of the Silverlight solution and place it into our web project. 
Let's make both of these improvements now:

1. Firstly, we will need to open up the CakeORama Logo solution in Expression Blend.

2. In the CakeORama_LogoSite project, expand the ClientBin directory and right-click
on that directory then choose Add Existing Item… from the context menu:



Adding Rich Media

[ �4 ]

3. Browse to a location which contains the vocals.mp3 file and click on Open to add it
to the CakeORama_LogoSite web site project.

4. Next, let's remove the vocals.mp3 file from the CakeORama_Logo Silverlight
project, so that it won't be embedded in the compiled XAP file. Right-click on 
the vocals.mp3 file in the CakeORama_Logo project and click Delete.



Chapter 3

[ �5 ]

5. Click Yes in the confirmation dialog box.

6. Build the project by choosing Build Project from the Project menu or by pressing
Ctrl+Shift+B.

7. Right-click on the ClientBin folder in the CakeORama_LogoSite project and click
Open Folder in Windows Explorer on the context menu.



Adding Rich Media

[ �6 ]

8. The ClientBin folder will open in Windows Explorer, and you'll see that our XAP file is 
back down to its original size.

9. Go back to Expression Blend and select the mediaMusic, MediaElement.

10. Click the Events button in the Properties tab to show all the events the 
MediaElement control exposes:

11. Among the events listed is the MediaEnded event. It fires when the media reaches 
the end.

Type mediaMusic_MediaEnded into the textbox next to MediaEnded and press
Enter, as shown in the next screenshot:

12. Add the following lines of code into the event handler that Blend 
automatically created:

    mediaMusic.Stop();

    mediaMusic.Play();

13. Run the solution again. The original clip is 22 seconds long. You'll notice that after 
it finishes playing, it starts over again.



Chapter 3

[ �7 ]

14. Close the browser window and go back into Blend. Select the LayoutRoot grid object
from the Objects and Timeline tab:

15. The Properties tab should still be in Events mode, type 
LayoutRoot_MouseLeftButtonUp into the text box next to 
MouseLeftButtonUp and press Enter to create the event handler:

16. In the event handler, add the following line of code: 

    mediaMusic.Volume = 0;

17. Run the solution. You will be able to click anywhere on the logo to mute the music.

Before we put this into production, we should probably make this feature more obvious, 
perhaps by adding a mute button. We could simply add a button with an event handler 
that contained the line of code in step 13 then set the Volume property to 0.

Adding video to a Silverlight project
The process of adding video to a Silverlight project is very similar to that of adding sound to 
a page. In the previous section where we added sound to a project, we didn't care that much 
about where we placed the MediaElement control or what it looked like. The sound we 
played didn't have a visual element. Therefore, the placement and appearance simply didn't 
matter. However, adding video requires us to have a visual element.



Adding Rich Media

[ �� ]

Time for action – adding video
We're going to add a short video clip to the animated logo project. We will place the media 
player element inside the O in Cake-O-Rama. This is the same project to which we just added 
the background music. To get started, we will need to do the following:

1.	 Open up the CakeORama Logo solution in Expression Blend.

In the Cakeorama_LogoSite project, right-click on the ClientBin folder.

2.	 Click Add Existing Item in the context menu. Browse for a WMV file, in the sample 
videos directory:

3.	 Choose Butterfly.wmv. Your ClientBin folder should look like this:

4.	 Then, go to the MainPage.XAML file in the CakeORama Logo project and add a new 
MediaElement control.



Chapter 3

[ �� ]

5.	 Make sure that the newly created MediaElement control is selected, and look for
the Source property in the Properties tab.

6.	 Click the drop down and choose Butterfly.wmv:

7.	 Run the solution and we should have something that looks like this:

8.	 That's a start, but let's move the image of the flower so that it fits inside the O in
Cake-O-Rama. Close the browser window and go back to Blend.

9.	 Use the mouse to re-size and position the MediaElement control. You'll notice that 
the movie thumbnail keeps its aspect ratio.

10.	To change the MediaElement control's resizing behavior, change its Stretch 
property to Fill:



Adding Rich Media

[ �0 ]

11.	The MediaElement control should look like this:

12.	Run the solution once more. It looks nice, but what if we wanted the movie to 
animate along with the logo?

13.	To do this, we would need to close the browser window and go back into Blend. 
In the Objects and Timeline tab, click on the [MediaElement] control, and drag 
it onto canvas1:

14.	You'll immediately notice that the MediaElement control with our movie clip in  
it has changed locations on screen. Its placement on screen is relative to its parent 
and we just changed its parent.

15.	Move the MediaElement again with the mouse to re-position it. Run the solution 
and you'll see that the movie plays with the animation.



Chapter 3

[ �1 ]

What just happened?
We just added video to our Silverlight application and we saw that it's just as easy to add 
video as it is to add sound. We also learned how to add media resources that exist outside
of our Silverlight XAP file. Lastly, we saw how a MediaElement control is just like any other
control: it can be moved around, re-sized, and animated. We're going to have a lot of fun 
with that shortly.

Using video as a brush
What if we wanted the video to fill every letter in the logo? Or what if we wanted to have the 
video fill any kind of shape, text, or control? How would we go about that?

The answer lies in making a VideoBrush, or a brush that renders a video stream. To
create a VideoBrush in XAML, all you need to do is declare it and get its content from a 
MediaElement control. The code to declare a VideoBrush is as easy as this:

<VideoBrush x:Key="brushName" SourceName="mediaElementControlName"/>

To use the VideoBrush, we simply reference it from where we want to use it:

Fill="{StaticResource brushName }"

The curly braces indicate that we are using markup extensions. The StaticResource
keyword tells the Silverlight runtime to refer to resources available to the control. In plain 
English, the above XAML snippet tells the object to fill the object with the VideoBrush
named brushName.

Time for action – creating and using a VideoBrush
We're going to fill the entire Cake-O-Rama logo with video by using a VideoBrush to fill up 
the shapes from a MediaElement control. So, let's get started.

1.	 Open up the CakeORama Logo solution in Expression Blend.

2.	 In the previous section, we didn't name the MediaElement control; let's do that 
now. Find the [MediaElement] control in the Objects and Timeline panel.

3.	 Right-click on the control and choose Rename. Rename the control to meButterfly.



Adding Rich Media

[ �2 ]

4.	 With the meButterfly MediaElement selected, choose Make Brush 
Resource|Make Brush Resource... from the Tools menu.

5.	 When the Create VideoBrush Resource dialog appears, enter
butterFlyVideoBrush in to the Name (Key) textbox and click OK.



Chapter 3

[ �3 ]

6.	 Go back to Design view and in the Objects and Timeline tab, select all the Path 
objects inside canvas1:

7.	 While all the Path objects are selected, go to the Properties tab and click on the
Brush Resource button (it's the one on the far right side of the screen).



Adding Rich Media

[ �4 ]

8.	 We should have one item in the list named butterFlyVideoBrush:

9.	 Click on butterFlyVideoBrush to select it and run the solution. You'll see that the 
entire logo is filled with the video image:

10.	However, there is one small problem. Our MediaElement control is still there, filling 
in the middle of the O. We will need to close the browser, go back into Blend and 
delete the meButterfly control.

11.	Run the solution again, and you will see that everything is blank!

12.	Close the browser and go back into Blend. Press Ctrl+Z to undo that last change.

13.	Select the meButterfly control and in the Properties tab, set its Visibility 
to Collapsed.

14.	Run the solution again to see that everything is right with the logo now:



Chapter 3

[ �5 ]

What just happened?
We just experienced the flexibility of the Silverlight rendering engine. Not only can you play 
video in Silverlight, you can play with it! We also saw that any given VideoBrush relies 
on the MediaElement control referenced in the SourceName property. Delete that and
everything goes haywire! This is because each VideoBrush references a MediaElement
control. If you want the source MediaElement control to be visible, simply set its
Visibility property to Collapsed. This hides the control from view, but still keeps  
it available to any dependent VideoBrush elements.

Enriching an application with audio cues
So far we've seen how to add sounds and videos to our Silverlight project, that are passive. 
They don't really interact with the user. Consider our navigation buttons application from 
Chapter 2. Wouldn't it be nice to have a sound play, when the user moves the mouse over 
each button? It would make the navigation buttons feel a little more tangible.

Time for action – adding interactive sounds
Let's add subtle audio cues to our site navigation project to provide a slightly more engaging 
experience for the user. We're going to add a short sound effect that plays when the user 
moves their mouse over any of the buttons, by completing the following steps:

1.	 Open up the CakeNavigationButtons solution in Expression Blend that we created 
in Chapter 2.

2.	 Let's add a sound to the project by right mouse clicking in the 
CakeNavigationButtons project and choosing Add Existing Item… as 
in the screen shot below:

3.	 Browse to the twang.mp3 file and add it to the project.

4.	 Expand the items in the Objects and Timeline panel, so that all the buttons are 
visible. Right-click on any one of the buttons.



Adding Rich Media

[ �6 ]

5.	 Choose Edit Template|Edit Current from the context menu to edit the control
template just like in this screenshot:

6.	 Now that we are in template editing mode, click on the [Grid] object in the 
Objects and Timeline tab to select it as you can see below:

7.	 In the upper left corner, next to the Projects tab, is a tab labeled Assets, click on it.

8.	 Next , click on Behaviors to see all the Behavior objects available to you. 
Double-click on the PlaySoundAction behavior:



Chapter 3

[ �7 ]

9.	 The Objects and Timeline list should now contain a new item labeled 
[PlaySoundAction]:

10.	With the [PlaySoundAction] item selected, look at the Properties tab. Let's change 
it so that the event is triggered by the MouseEnter event. Choose that event from
the drop down list next to EventName.

11.	Then, use the drop down list to choose /Twang.mp3, as shown in the 
following screenshot:

12.	Run the solution. When you move the mouse over each button, the Twang.mp3
sound plays.



Adding Rich Media

[ �� ]

What just happened?
We just added an MP3 file to our solution and edited the control template to insert a 
Behavior that plays a sound when a MouseEnter event is triggered. We didn't write a 
single line of procedural code. If you open up the XAML and examine the control template, 
you'll see that the following lines have been inserted into the control template:

<i:Interaction.Triggers>
  <i:EventTrigger EventName="MouseEnter">
    <im:PlaySoundAction Source="/Twang.mp3"/>
  </i:EventTrigger>
</i:Interaction.Triggers>

We could have just as easily assigned a Behavior to each button that did the same thing. 
However by adding it to the template, we only need to do it once. In the future, if we 
decide to change the sound or any other property, we'd only have to change the code  
in one location.

Have a go hero – adding a few more sounds 
Our client likes the new and improved navigation buttons. In fact, they like them so much 
that they've requested two changes: add another sound when the user clicks on a button 
and lower the volume on the mouse over sound. Let's do this now:

1. Go back to the CakeNavigationButtons solution in Expression Blend.

2. Right-click in the CakeNavigationButtons project and choose Add Existing Item…

3. Browse to where the project resources are and choose /thump.mp3. If you're not 
already in template editing mode, right-click on any of the buttons and choose 
Edit Template|Edit Current from the context menu.

4. Click on the [PlaySoundAction] item in the Objects and Timeline tab. Next, in the
Properties tab, change the Volume property to 0.25 to cut the volume in half on 
this sound:



Chapter 3

[ �� ]

5. Select the [Grid] again in the Objects and Timeline tab. Add another
PlaySoundAction behavior and select the newly created [PlaySoundAction].

6. In the Properties tab, choose MouseLeftButtonDown from the EventName 
drop down list and thump.mp3 from the Source dropdown list:

7. Run the solution again. The mouse over sound should be a little more subtle and 
you'll hear the thump sound when you click on any of the buttons. You can add  
as many PlaySoundAction behaviors as you like. However, consider that your users 
may get tired of hearing too many clicks, pops or thumps. A little subtlety goes  
a long way.

Coding videos with Expression Media Encoder
If you would like to use your own media content and need to convert it into a format that
Silverlight supports, then Expression Media Encoder will do the job. When you first launch 
Expression Media Encoder, you may think for a moment that you are back in Blend. Its
resemblance to Blend is not a coincidence. Media Encoder is in the same product family 
as Blend, and all products in the Expression line have a similar look and feel.



Adding Rich Media

[ 100 ]

A tour of the workspace
The Expression Media Encoder user interface can be broken down into four areas which I've 
marked in the following screenshot:

The upper left portion of the screen, marked in the above image as area A, contains the
video preview. This is where you will be able to view the video to be encoded as well as 
perform some basic editing functions. Think of this section as similar to the art board in 
Blend. Area B is where you will see all the movie files you have queued up for processing. 
This is similar to the Solution tab in Blend or Solution Explorer in Visual Studio. Areas C and
D contain all the settings and parameters for encoding the video. This is where you will be 
able to control video quality, sound and video compression settings, editing metadata, as 
well as exporting options.



Chapter 3

[ 101 ]

Encoding video
The primary purpose of Expression Media Encoder is encoding media files into a video format 
that Silverlight can understand. You also have the option of tweaking the settings to fit your 
needs. If bandwidth is a concern, you can use compression to shrink down the size of the file. If 
your users demand high quality video, you can adjust to a higher quality at the cost of file size. 
Most often, you'll want to have a happy medium between video quality and file size.

If you want to use QuickTime movie files in your Silverlight application, 
you'll need to have QuickTime installed on your system to encode the Media 
Encoder. Once encoded, the video will work with Silverlight on any machine 
that support Silverlight. You can download Quicktime for free at: 
http://www.apple.com/quicktime/download/.

A quick word on video formats
Silverlight supports various audio and video formats in a variety of deployment scenarios.
When used in conjunction with IIS7 Smooth Streaming, you can pretty much guarantee a 
stutter-free media experience to the end user. You will rarely need to worry about which 
software; media players or codecs are installed on your end user's computers. Silverlight 
encapsulates a large number of formats. If you ever have any doubts about a media source's 
compatibility, you could always run the file through Expression Media Encoder to ensure 
compatibility with Silverlight.

IIS7 Smooth Streaming provides a high-quality viewing experience that scales 
quite well. Smooth Streaming works by adapting the video stream sent to 
Silverlight clients based on network speed. When conditions are optimal, the 
client gets the highest quality feed. If network conditions degrade, the server will 
automatically adjust the video stream to play smoothly on the client.

Codec stands for 'coder-decoder' and refers to the encoding and decoding of a digital data. 
The term usually refers to the compression mechanism of digital media files. The bottom line 
for now, is that Silverlight natively supports WMV, WMA, MP3, and MPEG-4-based H.264/
AAC audio. If you're a High Definition individual, then you'll be happy to learn that Silverlight 
supports full HD (720p+) playback and the H.264 codec. If this sounds like alphabet soup to 
you, then don't worry. The chances are that unless you work for a media company you will 
never have to concern yourself with such minute details.

Hey, where's my favourite codec?

If you are stuck on the fact that your favourite codec isn't listed among the 
supported formats, then don't worry. The Raw AV pipeline opens up a wider 
variety of third-party codec support. You could decode audio and video outside
the runtime and render them in Silverlight.



Adding Rich Media

[ 102 ]

Time for action – let's encode a video!
Expression Media Encoder 3 encodes video into formats that Silverlight can natively 
understand. Additionally, the software will also resize media files by adjusting resolution and 
compression. You can tweak your source files to meet the specific needs of your projects. 
We're going to take a high definition video and shrink it down to a more manageable size 
and along the way get a feel for how Expression Media encoder works.

Firstly, we will need to download and install Expression Media Encoder 3. If you've not 
already done so, you can download the program from: http://www.microsoft.com/
expression/products/Encoder_Overview.aspx. Expression Media Encoder is also
bundled with Expression Studio 3.

1.	 Launch Expression Media Encoder 3.

2.	 Click on the Import button at the bottom of the screen:

3.	 Browse to a video file on your hard drive and click open. The video will load into 
your main work area.

4.	 Expand Encoding for Silverlight|VC-1|Constant bitrate|VC-1 512k DSL CBR 
in the Presets panel on the right hand side of the window as the following 
screenshot shows:



Chapter 3

[ 103 ]

5.	 Click Apply. Below the Presets tab, you'll find a tab named Output, click on it to
reveal the Job Output options.

6.	 Choose Clean from the Template dropdown list, as the following screenshot shows:

7.	 In the area below the video preview window, find the Encode button and click on it:

8.	 You'll see a progress bar like the one in the following screenshot, indicating that the 
encoding has begun:



Adding Rich Media

[ 104 ]

9.	 When completed, Expression Media Encoder will launch the video and the template 
video player in your default browser:

10.	Test out the video player. Be sure to examine all the features that the templated
player comes with: full screen, pause/play, the progress slider and volume controls.

11.	Close the browser window and go back into Expression Media Encoder. On the 
Output panel, there's a little button that looks like the gear in this screenshot:

12.	Clicking on the gear reveals a popup menu as shown in the next screenshot:



Chapter 3

[ 105 ]

13.	Click Open Job Location and you will see a list of files in Windows Explorer:

14.	Here you can see what Media Encoder has just created for you: a video file, the 
HTML test page, and a XAP file containing the default player.

What just happened?
We told Media Encoder to take a video file and compress it to a smaller size. We also told it 
to use a template video player reminiscent of YouTube. You could easily upload this to your
web server. We didn't have to write any code here, at least not yet, as Media Encoder did all 
the work. If you want to use the exported video in your own projects, independent of the 
provided media player, simply place the video onto a web server. Then you will need to add a 
MediaElement control to your application and set its Source property to the video file's URL.

Have a go hero – explore the other templates
You can explore the other templates that Media Encoder comes with or click the Get more 
templates online link to see what other templates are available:



Adding Rich Media

[ 106 ]

Summary
In this chapter, we added a little bit of multimedia magic to make our web site really stand 
out. The navigation control now responds with visual and auditory cues which usability 
experts recommend to engage users. We saw that a MediaElement control is just like any
other control, it can be resized and animated. We also learned how to encode video with 
Expression Media Encoder.

Specifically, we learnt how to do the following:

Add audio to our Silverlight project

Use the MediaElement control to play media

Control media playback via code

Insert a movie file into our projects

Use the PlaySoundAction behavior to play a sound clip based on user 
initiated events

Understand the video and audio formats natively supported by Silverlight

Understand Expression Media Encoder

Encode a movie file in Expression Media Encoder

Use the video player templates in Expression Media Encoder

Once again, we saw that XAML does a lot of the work that we developers are usually used 
to doing in procedural code. Thus far, we've not written a lot of procedural code. That is all 
going to change in the next chapter when we combine the power of XAML with code to build 
incredible experiences with Silverlight.





















4
Taking the RIA Experience Further

with Silverlight

So far we've explored the power of declarative programming to build our 
interfaces. While everything we've done so far will certainly spice up any 
website or online application, let's kick it up a notch. With Silverlight 4, we 
can take the web to the next level by adding advanced interactivity. Silverlight 
provides inbuilt support for adding impressive user interactions.

In this chapter we shall:

Create a Deep Zoom experience 

Add a map of business locations with the Bing Map control

Use digital ink to sketch out ideas 

Learn about Isolated Storage

Deep Zoom
First publicly demonstrated at the MIX08 trade show in March 2008, Deep Zoom introduces 
a novel way to display image collections on the web that challenges all pre-conceived notions 
about putting high resolution imagery online. Users can browse through hundreds of images 
without any noticeable lag time.  The technology automatically shows the images at the 
resolution required at any given moment. The end result is a smooth experience for the end 
user. To anyone who remembers dial-up access to the internet, it appears almost magical.

MIX is an annual conference showcasing Microsoft's technologies in the 
design, user experience, and web space.











Taking the RIA Experience Further with Silverlight

[ 10� ]

The magic lies in how larger images are broken down into smaller ones. At design time, 
you can use the Deep Zoom Composer to break down larger images into smaller versions. 
At runtime, the MultiScaleImage control automatically downloads only what is needed. 
There may be gigabytes of images on the server, but the user can only view a very small 
fraction of that at any given moment.

Deep Zoom works by breaking down each image into tiles. For example, a 1024 x 1024 pixel 
image will be resized to 512 x 512 and 256 x 256 pixel versions. Each of these images will be 
further broken down into tiles. The entire process is shown in the following screenshot:

Best of all, as a developer, you don't need to consider the implementation details.

If you're wondering how much extra storage you'll need to handle all the files at 
different resolutions, the overhead Deep Zoom introduces is roughly 30%. This 
means that if you have 1GB of images to convert to display via Deep Zoom, plan
on using about 1.3GB of disk space, give or take a hundred megabytes or so.



Chapter 4

[ 10� ]

Deep Zoom in action
The best way to understand Deep Zoom and its implications is to see it in action. The 
canonical example of Deep Zoom technology is the Hard Rock Cafe's Memorabilia website 
at: http://memo.hardrock.com. If you've ever been to a Hard Rock Cafe, then you have 
undoubtedly seen some of the items that they have in their collection of music-related 
articles. When you first load the Hard Rock Memorabilia website, it looks like the 
screenshot below:



Taking the RIA Experience Further with Silverlight

[ 110 ]

Using the mouse wheel, you can zoom in to individual images to an amazing level of detail. In 
fact, you can zoom close enough in to a picture of Bo Diddley's guitar to see fingerprints on it:

Notice that while you zoom and pan around, the images start out fuzzy or pixelated and then 
suddenly 'pop' into clearer detail. This is Deep Zoom loading the higher resolution images 
over the lower resolution ones. You may also notice the subtle 'springiness' added to the 
animation. This is built-in to the MultiScaleImage control. If you don't happen to like it,
this feature can be turned off.

While on the Hard Rock Memorabilia site, type V into the Search text box and
press Enter to activate an Easter Egg. You'll be zoomed 'deep' into the image 
collection. Zoom out to see where you started from to get a better appreciation 
of Deep Zoom.

With Deep Zoom, the Hard Rock Cafe showcased a collection that spans six continents on 
one web page. We're going to do something similar. Instead of guitars and autographed 
photos, we're going to show off the cakes that our client, Cake-O-Rama, has created.



Chapter 4

[ 111 ]

Time for action – creating a Deep Zoom photo montage
We're going to see just how easy it is to create a Deep Zoom photo montage application 
using Deep Zoom Composer.

1.	 Assuming that you already have Deep Zoom Composer installed, launch
Deep Zoom Composer. If you don't have the application installed, you can 
download it from: http://www.microsoft.com/downloads/details.
aspx?FamilyID=457B17B7-52BF-4BDA-87A3-FA8A4673F8BF&displaylang=
en.

2.	 After the splash screen disappears, you will see the Welcome Screen:

3.	 To create a new project, click on New Project. After which, the New Project dialog
box appears.

4.	 Enter CakeShowCase in the Name field. The Location can be any valid path on 
your computer:



Taking the RIA Experience Further with Silverlight

[ 112 ]

5.	 Click OK to create the project.

6.	 You will then be presented with an empty screen, reminiscent of Expression Blend:

7.	 In the top part of the screen you'll notice three buttons: Import, Compose, and
Export. Import should be highlighted by default. If not, click on it now to go into 
Import mode:

8.	 When in Import mode, you will be able to add images to your collage by clicking on
the Add image… button, as in the following screenshot:

9.	 Click on Add image now and browse for files. You can choose to use the sample 
image files or your own.



Chapter 4

[ 113 ]

10.	As you add images to your project, they will appear as thumbnails in the list box on 
the right hand side of the screen. After you've added enough files, your screen will 
resemble the screenshot below:

11.	Once you've added enough images, we can move on to composing our montage by 
clicking Compose.



Taking the RIA Experience Further with Silverlight

[ 114 ]

12.	 Initially, your composition area will appear blank with the images you added lined 
up at the bottom:

13.	To add an image to our composition, simply click and drag an image from the 
bottom of the composition area:



Chapter 4

[ 115 ]

14.	Add as many images as you like. Deep Zoom Composer will even assist you in 
aligning images with one another with snap lines like so:

15.	Once you've added a few images, or more, if you are industrious, click on the Export
button at the top of the screen to see how to get our creation out of Deep Zoom 
Composer and into a Silverlight project.



Taking the RIA Experience Further with Silverlight

[ 116 ]

16.	There are a number of options in the Export menu. For our purposes, we'll want to 
click on the Custom tab as in the following screenshot:

17.	The Custom tab presents us with a large number of export options. For now, we are 
going to keep things simple. Enter CakeShowCase in the Name field. Make sure all 
the other field entries and settings match the following screen shot:

18.	When you are ready, click on Export to export the project. The export process will 
take a few moments. How long it will take depends on the number of images in the
composition, the resolution of the images, and the speed of your computer.



Chapter 4

[ 117 ]

19.	When the export process is complete you will see the following dialog:

20.	Click on Preview in Browser, to see that we've actually created a Silverlight 
project with Deep Zoom content. You should see the web page load up with 
the following content:



Taking the RIA Experience Further with Silverlight

[ 11� ]

21.	Click around to explore the montage. Use the mouse wheel to zoom in and out. 
If you do not have a mouse wheel, click to zoom in on an image and Shift+click 
to zoom out.

22.	Close your browser window and go back to Deep Zoom Composer.

23.	The previous dialog box should still be on screen. Click on View Project Folder to see
the Silverlight project Deep Zoom Composer just generated for you.

What just happened?
The Deep Zoom Composer just did a lot of work for us. Not only did the program process our 
images, it also created a solution with everything set up for us. The program built more or 
less everything we need to deliver a nice DeepZoom montage to our client. Naturally, we'll 
want to take a closer look at what the program built for us.

If you were to open the DeepZoomProject.sln that we just created, in Blend 3, you would 
see the two project solutions that we've become familiar with over the last few chapters: 
one project for the Silverlight project and another for the web project. 

First, let's take a look at the Default.html file that hosts our Silverlight control. We can 
open the file, by double-clicking the Default.html file in the Projects tab in Blend:



Chapter 4

[ 11� ]

Inside the Default.html file, you'll see the object tag that actually hosts the Silverlight
control. Inside the object tag, you'll notice a series of param tags. Take special note of 
the param tag with the name attribute of initparams. It is highlighted in the code 
snippet below: 

<object data="data:application/x-silverlight-2," type="application/x-
silverlight-2" width="800px" height="600px">
<param name="source" value="ClientBin/DeepZoomProject.xap"/>
  <param name="onerror" value="onSilverlightError" />
  <param name="background" value="white" />
  <param name="initparams" value="path=GeneratedImages/dzc_output.
xml,zoomIn=3" /> 

    <param name="minRuntimeVersion" value="3.0.40624.0" />
    <param name="autoUpgrade" value="true" />
    <a href="http://go.microsoft.com/fwlink/
?LinkID=149156&v=3.0.40624.0" style="text-decoration:none">
  <img src="http://go.microsoft.com/fwlink/?LinkId=108181" alt="Get
Microsoft Silverlight" style="border-style:none"/>
    </a>
</object>

The value attribute contains a name/value list of parameter names and values that get read 
by the Silverlight runtime into a Dictionary object. If you open the Silverlight project and 
open up the App.xaml.cs file, you'll find this code inside the Application_Startup
method. The Application_Startup method is actually an event handler that fires when 
our Silverlight application starts up. The highlighted code reads all items in the InitParams
property into the application resources object. This means we can access the value from 
anywhere in our Silverlight application:

private void Application_Startup(object sender, StartupEventArgs 
e)
{
    this.RootVisual = new Page();

    if (e.InitParams != null)
    {
    foreach (var data in e.InitParams)
    {
        this.Resources.Add(data.Key, data.Value);
    }

    }
}



Taking the RIA Experience Further with Silverlight

[ 120 ]

Next, open the Page.xaml file in the same Silverlight project. In design view you will 
see a MultiScaleImage control named msi in the Objects and Timeline tab as in the
following screenshot:

Or, if you prefer looking at the XAML:

    <MultiScaleImage x:Name="msi"/>

The source value for the MultiScaleImage control is actually set in the Page_Loaded
event handler. The code below sets the Source attribute based on the value in the 
application Resource dictionary, which was populated by contents of the param tag  
in the hosting HTML file:

string path = App.Current.Resources["path"].ToString();

this.msi.Source = new DeepZoomImageTileSource(new Uri(path, UriKind.
Relative));

Why go through all this trouble? Why not just set the source URI property of the 
MultiScaleImage control in XAML or in the code-behind? Simply put, this approach 
provides a greater deal of flexibility. We can easily change the Source property of
MultiScaleImage by simply changing the content of the hosting HTML page. And 
we don't need to recompile a new XAP file to do that.

Have a go hero – exploring the tiles
Now that we've explored the code that Deep Zoom Composer automatically generated 
for us, let's see how it broke apart the images into tiles. In the web project of the solution 
Deep Zoom Composer created, expand the ClientBin directory and the GeneratedImages
directory.  Right mouse click the dzc_output.xml file and choose Open Folder in Windows 
Explorer, as the following screenshot demonstrates:



Chapter 4

[ 121 ]

A Windows Explorer window will open and display a series of files and directories. We are 
most interested in the contents of the dzc_output.xml file and the dzc_output_images
directory. The dzc_output.xml acts as an index linking all the image meta data files. 
The MultiScaleImage control uses the data in these files to stitch the image tiles back 
together. The dzc_output_images directory contains all the image tiles, that Deep Zoom 
Composer created. Each one of the directories here contains subdirectories with image tiles 
in them.

Feel free to explore them to see how Deep Zoom breaks apart larger images. An example of 
the image tiles in thumbnail view is shown in the following screenshot:



Taking the RIA Experience Further with Silverlight

[ 122 ]

Renaming and moving Deep Zoom image collections

If you decide to rename or move files around, remember to update the XML 
files accordingly!

Using the Bing Maps Silverlight Control
Mapping was one of the first great applications on the web. Customers could search for store 
locations, print directions from their house to just about anywhere and even check traffic; all 
from their computer.

Every major search engine has some kind of mapping feature. While all the major search 
engines offer publicly accessible APIs (application programming interfaces), only Bing Maps
integrates tightly with Silverlight with a custom Silverlight control. You can use this control 
to easily add mapping functionality to any Silverlight project. What makes the Bing Maps 
Silverlight Map Control so great is that it leverages the power of Deep Zoom to seamlessly 
blend different aerial photos together for a much smoother map viewing experience.

Integrating mapping solutions into your website keeps your users on your site, and not off 
to a third party site where they could easily get distracted or click on a competitor's ad.

At the time of writing this, Microsoft was in the middle of re-branding Live Maps 
and Virtual Earth to Bing Maps. As a result, you may see both names used in the
documentation, sample code, and namespaces.

In November 2009, Microsoft released version 1 of the Bing Maps Silverlight Map Control
and made the control available as a free download from Microsoft. Browse to: http://
www.microsoft.com/downloads/details.aspx?displaylang=en&familyid=beb2
9d27-6f0c-494f-b028-1e0e3187e830 and you'll see the Bing Maps Silverlight Control 
SDK download page. Click the Download button (highlighted in the following screenshot) 
to start the download.



Chapter 4

[ 123 ]

Once the download completes, run the install program and follow the onscreen directions in 
the installation wizard. The final screen (shown in the following screenshot) will give you the
option to launch the Bing Maps Silverlight Control SDK help file after the install completes.



Taking the RIA Experience Further with Silverlight

[ 124 ]

Leaving the checkbox checked will automatically launch the Windows Help file: 
BingMapsSilverlightControlSDK.chm which you can use to read more about the 
control's features, methods, and properties. This file contains a great deal of information 
about the control:

The installer places all the relevant files in the C:\Program Files\Microsoft Virtual
Earth Silverlight Map Control\v1 directory. This directory contains a license file 
and two subdirectories: one for documentation and the other for a DLL that contains the 
actual control.

If you changed the destination folder when you ran the installer, then all of these 
components will be in the location that you specified.

If the Microsoft Help file documentation isn't helpful enough for you, then you can 
consult the Interactive SDK which is available at: http://www.microsoft.com/maps/
isdk/silverlight/.

The Interactive SDK is a real time example of the control in use as well as how to use its 
many features. The following screenshot demonstrates the interactive SDK in action. Simply 
click on what you would like to do on the left-hand side and click on the Source Code tab to
see the XAML code that made it work:



Chapter 4

[ 125 ]

Using the Map Control
Once you have the Bing Maps Silverlight Map Control installed on your
development machine, you'll need to add a reference to the DLL in order to use 
the control in your projects.

Time for action – getting started with mapping
Let's get started and create a Silverlight application that shows a map.

1.	 Launch Visual Studio and create a new Silverlight application by choosing 
File|New|Project  and then selecting Silverlight Application from the 
application templates.



Taking the RIA Experience Further with Silverlight

[ 126 ]

2.	 Name the solution CakeORamaLocations. Once its loads, go to the Solution 
Explorer, expand the References directory in the CakeORamaLocations project.
Right-click on the References directory and click on the Add Reference… context
menu, as the following screenshot demonstrates:

3.	 This will bring up a dialog box, so click on the Browse tab. Using the file browser 
on this tab, browse to the C:\Program Files\Microsoft Virtual Earth
Silverlight Map Control\CTP\Libraries\ directory. (If you changed
the install path, then you will need to use that directory instead.)

4.	 Once in the proper directory, you will see the Microsoft.Maps.MapControl.dll
and Microsoft.Maps.MapControl.Common.dll files. Select both these files 
and then click OK:



Chapter 4

[ 127 ]

5.	 We'll need to reference the namespace of the map control in the MainPage.xaml
file in order to use it. Add the two highlighted lines, our XAML now looks like this:

<UserControl x:Class="CakeORamaLocations.MainPage"
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
    xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
    mc:Ignorable="d"
    xmlns:map="clr-namespace:Microsoft.Maps.MapControl;assembly=Mi
crosoft.Maps.MapControl"
    d:DesignHeight="300" d:DesignWidth="400">
    <Grid x:Name="LayoutRoot" Background="White">
        <map:Map />
    </Grid>
</UserControl>

6.	 Run the solution. If prompted, choose to allow debugging. Your application should 
now appear:

7.	 Click to explore and zoom around.



Taking the RIA Experience Further with Silverlight

[ 12� ]

8.	 After a moment, you may notice an error message appear saying you have 
Invalid Credentials:

9.	 Close the host browser window. We'll fix this shortly.

What just happened?
We just created our first map using the Bing Maps Silverlight Map Control! Since 
the map control is not part of the normal DLLs referenced by a Silverlight application, we 
had to add the reference to the project. The XAML file needs to have a way to address the 
assembly in which the map control resides. We did this by assigning an XML namespace 
that references that assembly:

xmlns:map="clr-namespace:Microsoft.Maps.MapControl;assembly=Microsoft.
Maps.MapControl"

Once referenced, Visual Studio probably even provided you with Intellisense to assist you in
typing out the XAML as follows:

Getting credentials
In the previous section, we added a fully functional map control that worked quite well aside 
from a message about Invalid Credentials. In order to use the Bing Silverlight Maps
control, we will need to sign up for a Bing Maps Account. Signing up for a developer account
is free and is quite easy to do. To start the process, open up http://www.microsoft.
com/maps/developers/ in your browser. This is the developer home page for Bing Maps 



Chapter 4

[ 12� ]

and contains a lot of information about developing mapping solutions with Bing. Click on the 
Get a Bing Maps Account button (highlighted in the following screenshot) to go to the Bing
Maps Account page.

At the Bing Maps Account Center home page (shown below), you'll need to login with your 
Windows Live ID to proceed further.



Taking the RIA Experience Further with Silverlight

[ 130 ]

You most likely have a Windows Live ID if you use Hotmail or Windows Live Messenger. If 
you do not have one, you can create one by clicking on the link highlighted below and then 
clicking the Sign Up button.

Once you've logged in to Windows Live, your browser will take you back to the Bing Maps 
Account Center homepage. The page will prompt you to create a Bing Maps key. Enter an 
application name and the domain name of your site and then click Create Key.



Chapter 4

[ 131 ]

You will now see a key on the screen uniquely assigned to you. (I've blocked it out in the 
screenshot below).

Store this key in a safe location and don't share it. We will use this key in our applications in 
order to remove the onscreen warning.

Time for action – adding our credentials
Let's add the Bing Maps key we just created to our XAML to remove the Invalid 
Credentials warning.

1.	 Go back into the CakeORamaLocations solution from the previous section.

2.	 Open the MainPage.xaml file and modify the code <map:Map/> to look like this:

<map:Map CredentialsProvider="[Bing Maps Account Key]">

3.	 Replace the [Bing Maps Account Key] with the key that we just created in the 
Bing Maps Account Center. For instance, if the key were 12345678, then we would 
type: CredentialsProvider="12345678" 



Taking the RIA Experience Further with Silverlight

[ 132 ]

4.	 Run the solution once again, and you'll notice that the invalid credentials warning 
is gone.

5.	 Close the host browser window to end the debugging session.

While the control is sufficient by itself, it doesn't do much of anything for our client. As they 
do not have any locations in Africa or South America (yet), centering the map on that part of 
the world will do Cake-O-Rama no good. 

Taking control of the Map control
In the previous section, we supplied the map control with no parameters. We simply defined 
a map. In the absence of a latitude and longitude, the control will use 0 degrees West and
0 degrees North (a location just off the west coast of Africa on the equator). If you have a 
GPS system in your car or mobile phone, then you are at least casually familiar with latitude 
and longitude. Your car or phone ties the map data it has with the data received from the 
GPS satellite system using latitude and longitude, sometimes abbreviated to LatLong,

Latitude (usually shown as a horizontal line) is the angular distance of a point 
north or south of the Equator. Longitude (usually shown as a vertical line) is the 
angular distance of a point east or west of the Prime (Greenwich) Meridian. For 
reference, the Prime Meridian is near London, UK.



Chapter 4

[ 133 ]

What we need to do is center the map nearer to an area that Cake-O-Rama cares about. 
Since most of their locations lie in Maryland between the cities of Washington, DC and 
Baltimore, we should probably place the map's initial location in that region of the world.

Time for action – taking control of the Map control
Let's change the map so that it starts out somewhere more relevant to our client.

1.	 Return to the CakeORamaLocations solution in Visual Studio.

2.	 Add a Center attribute to the Map node, so that it now looks like this:

<map:Map Center="39.04801,-76.84817" CredentialsProvider="[Bing 
Maps Account Key]" />

3.	 Run the solution and you'll see that we've changed the initial location of the map, 
but we're still zoomed out:

4.	 Close the browser window and return to the MainPage.xaml file in Visual Studio.

5.	 We can also set the initial zoom level on the map control by adding a ZoomLevel
attribute to out map like so: 

<map:Map Center="39.04801,-76.84817" ZoomLevel="10" CredentialsPro 
vider="[Bing Maps Account Key]" />



Taking the RIA Experience Further with Silverlight

[ 134 ]

6.	 Run the solution again and you'll see we're at a more reasonable zoom level:

7.	 Close the solution and go back to the MainPage.xaml file in Visual Studio.

8.	 What the client would really like to see is a map that has the aerial view with map data 
overlaid. Fortunately, that's an easy modification. Change the Map control node to:
<map:Map Center="39.04801,-76.84817" ZoomLevel="10" 
Mode="AerialWithLabels" CredentialsProvider="[Bing Maps Account
Key]" />



Chapter 4

[ 135 ]

9.	 Run the solution again and you'll see that the map has changed.

10.	Now close the host browser window.

What just happened?
The Bing Maps Silverlight Map control has a lot of built in properties for changing the 
location, zoom level, and view mode. We changed where the map is initially centered on, its 
zoom level and the type of map that we would like to see. We've not written a single line of 
procedural code so far, yet we've got a fully functional professional-looking map.

The map has three modes: Road, Aerial and AerialWithLabels. We've already seen Road and 
AerialWithLabels. Aerial is the aerial view without any labels for roads, towns, or geographic 
features superimposed on it.

For now, let's pretend we know the LatLongs coordinates of all the places that we are 
interested in. In Chapter 9, we'll discuss converting street addresses, place names, and postal 
codes into latitude and longitude coordinates for use in our mapping solutions in a process 
called Geo-Coding.



Taking the RIA Experience Further with Silverlight

[ 136 ]

Have a go hero – changing the map programmatically
Right now, Cake-O-Rama is small, but they have global ambitions. In fact, they are launching 
their franchise program and hope to have stores all over the world. They would like to have 
a map that is able to move to different areas. Therefore, they would like to have buttons 
to move the map view to various markets that they are in. There will likely be franchisees 
added in New York City and London. Let's add that feature now:

1. Return to the  CakeORamaLocations solution in Visual Studio.

2. Edit the MainPage.xaml so that the contents of the Grid control contains 
the following: 

<Grid x:Name="LayoutRoot" Background="White">
<Grid.RowDefinitions>
   <RowDefinition Height="40" />
   <RowDefinition Height="*" />
</Grid.RowDefinitions>
   <StackPanel Orientation="Horizontal">
      <Button x:Name="btnDC" 
              Content="US-DC Area Locations" 
              Click="btnDC_Click" /> 
      <Button x:Name="btnNY" 
              Content="US-NY Area Locations" 
              Click="btnNY_Click" />
      <Button x:Name="btnUK" 
              Content="UK-LON Area Locations" 
              Click="btnEurope_Click" />
   </StackPanel>
   <map:Map x:Name="map" 
            Center="39.04801,-76.84817" 
            ZoomLevel="10" 
            Mode="AerialWithLabels" 
            Grid.Row="1" 
            CredentialsProvider="[Bing Maps Account Key]" />
</Grid>

3. Add the following code to the MainPage.xaml.cs:

private void btnDC_Click(object sender, RoutedEventArgs e)
{
    this.map.Center = new Location(39.04801, -76.84817);
}

private void btnEurope_Click(object sender, RoutedEventArgs e)
{
    this.map.Center = new Location(51.51228, -0.12286);



Chapter 4

[ 137 ]

}

private void btnNY_Click(object sender, RoutedEventArgs e)
{
    this.map.Center = new Location(40.73647, -73.98190);
}

4. Run the solution. Click on the UK-London Area Locations button and you'll see the 
map move from DC to New York City. Now click on the US-NY Area Locations button 
to see New York:

5. Close the host browser window.

6. If you don't like the animation that the map control automatically generated, you 
can turn it off by adding AnimationLevel="None" to the map control.

7. Run the solution again. You will now see that the animation effect is gone.



Taking the RIA Experience Further with Silverlight

[ 13� ]

Adding store locations to the map
So far, we have a Silverlight application that shows a map of various metropolitan areas. To 
make the map more useful, we should add markers where Cake-O-Rama has locations so 
prospective customers can find a Cake-O-Rama location easily. Let's add those markers now.

Time for action – adding store locations
Let's add markers to the map where Cake-O-Rama currently has shops.

1.	 Return to the CakeORamaLocations solution in Visual Studio.

2.	 Let's change the Map control node in the MainPage.xaml file so that it contains 
the following:

<map:Map x:Name="map" 
         Center="39.04801,-76.84817" 
         ZoomLevel="10" 
         Mode="Road" 
         Grid.Row="1"
         CredentialsProvider="[Bing Maps Account Key]" >
    <map:Pushpin Location="39.28345, -76.61714" />
    <map:Pushpin Location="39.21485, -76.86082" />
    <map:Pushpin Location="38.95981, -77.08540"  />
    <map:Pushpin Location="38.89153, -77.0850" />
    <map:Pushpin Location="39.12242, -77.23495"  />
    <map:Pushpin Location="38.92415, -77.22659" />
    <map:Pushpin Location="39.09325, -76.85680" />
    <map:Pushpin Location="38.97804, -76.48695" />
    <map:Pushpin Location="38.9589,-77.3623"  />
</map:Map>



Chapter 4

[ 13� ]

3.	 Run the solution and you'll see markers (known as pushpins) scattered across the 
map; each marker represents a Cake-O-Rama location:

4.	 Zoom in and you will notice how the pushpin stays the same size:



Taking the RIA Experience Further with Silverlight

[ 140 ]

5.	 Zoom out and you will notice how the pushpin remains the same size:

6.	 Close the host browser window.

What just happened?
We just added pushpin markers to the map by placing them 'inside' the beginning and end 
tags of the map control. Let's examine the XAML of one of these Pushpin controls more
closely to learn more:

<map:Pushpin Location="38.95981, -77.08540"  />

The Pushpin object has a Location property which accept a LatLong property.  This tells 
the map control where to place the PushPin on the map. By default, they look rather
unremarkable, as shown in the next screenshot:

Let's see how we can use the power of Silverlight to re-style the marker.



Chapter 4

[ 141 ]

Have a go hero – re-styling a Pushpin
Right now, Cake-O-Rama is small, but they have global ambitions. In fact, they are launching 
their franchise program and hope to have stores all over the world. They would like to have 
a map that is able to move to different areas.  Therefore, they would like to have buttons 
to move the map view to various markets that they are in. There will likely be franchisees 
added in New York City and London. Let's add that feature now: 

1. Return to the  CakeORamaLocations solution in Visual Studio. 

2. Edit the MainPage.xaml and modify the XAML to that it looks like this: 
(I've highlighted the new and modified lines of code.)

<UserControl x:Class="CakeORamaLocations.MainPage"
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
    xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
    mc:Ignorable="d"
    xmlns:map="clr-namespace:Microsoft.Maps.MapControl;assembly=Mi
crosoft.Maps.MapControl"
    d:DesignHeight="300" d:DesignWidth="400">
  <UserControl.Resources>
     <ControlTemplate x:Key="FancyMarker" TargetType="map:
Pushpin">
         <Canvas Width="50" 
                 Height="80" 
                 Opacity="0.8" 
                 map:MapLayer.PositionOrigin="BottomCenter">
             <Path Data="M 0,0 L 50,0 50,50 25,80 0,50 0,0" 
                   Fill="LightBlue" 
                   StrokeEndLineCap="Round" 
                   Stroke="DarkRed" 
                   StrokeThickness="2" />
             <TextBlock FontSize="10" 
                        Width="50" 
                        Foreground="Black" 
                        Margin="1" 
                        TextAlignment="Center" 
                        Text="{TemplateBinding Content}" />
         </Canvas>
     </ControlTemplate>



Taking the RIA Experience Further with Silverlight

[ 142 ]

  </UserControl.Resources>
 <Grid x:Name="LayoutRoot" Background="White">
     <Grid.RowDefinitions>
         <RowDefinition Height="40"></RowDefinition>
         <RowDefinition Height="*"></RowDefinition>
     </Grid.RowDefinitions>

     <StackPanel Orientation="Horizontal">
         <Button x:Name="btnDC" 
                 Content="US-DC Area Locations" 
                 Click="btnDC_Click" />
         <Button x:Name="btnNY" 
                 Content="US-NY Area Locations" 
                 Click="btnNY_Click" />
         <Button x:Name="btnUK" 
                 Content="UK-LON Area Locations" 
                 Click="btnEurope_Click" />
     </StackPanel>

    <map:Map x:Name="map" 
              Center="39.04801,-76.84817" 
              ZoomLevel="10" 
              Mode="Road" 
              Grid.Row="1"
              CredentialsProvider="[Bing Maps Account Key]" >
         <map:Pushpin Location="39.28345, -76.61714"              
                            
                      Template="{StaticResource FancyMarker}" 
                      Content="Baltimore" />
         <map:Pushpin Location="39.21485, -76.86082" 
                      Template="{StaticResource FancyMarker}" 
                      Content="Columbia" />
         <map:Pushpin Location="38.95981, -77.08540"
                      Template="{StaticResource FancyMarker}" 
                      Content="DC" />
         <map:Pushpin Location="38.89153, -77.0850" 
                      Template="{StaticResource FancyMarker}" 
                      Content="Arlington" />
         <map:Pushpin Location="39.12242, -77.23495" 
                      Template="{StaticResource FancyMarker}" 
                      Content="Kentlands" />



Chapter 4

[ 143 ]

         <map:Pushpin Location="38.92415, -77.22659" 
                      Template="{StaticResource FancyMarker}" 
                      Content="Tysons" />
         <map:Pushpin Location="39.09325, -76.85680"
                      Template="{StaticResource FancyMarker}" 
                      Content="Laurel" />
         <map:Pushpin Location="38.97804, -76.48695" 
                      Template="{StaticResource FancyMarker}" 
                      Content="Annapolis" />
         <map:Pushpin Location="38.9589,-77.3623"
                      Template="{StaticResource FancyMarker}" 
                      Content="Reston" />
     </map:Map>
</Grid>
</UserControl>

3. Run the solution now and you'll see that the Pushpins look quite different:

4. Close the browser window to end the debugging session.

Yet again, we see how powerful and flexible Silverlight can be in terms of re-styling controls.



Taking the RIA Experience Further with Silverlight

[ 144 ]

What just happened?
We created a new ControlTemplate to override the appearance of a PushPin using some
of the techniques we've used before. However, we simply created a ControlTemplate,
instead of defining a Style which contains one. Here is the new ControlTemplate with 
some of the more interesting lines highlighted:

<UserControl.Resources>
 <ControlTemplate x:Key="FancyMarker" TargetType="map:Pushpin">
    <Canvas Width="50" 
            Height="80"
            Opacity="0.8" 
            map:MapLayer.PositionOrigin="BottomCenter">
       <Path Data="M 0,0 L 50,0 50,50 25,80 0,50 0,0" 
             Fill="LightBlue" 
             StrokeEndLineCap="Round" 
             Stroke="DarkRed" 
             StrokeThickness="2" />
       <TextBlock FontSize="10" 
                  Width="50" 
                  Foreground="Black" 
                  Margin="1" 
                  TextAlignment="Center" 
                  Text="{TemplateBinding Content}" />
     </Canvas>
  </ControlTemplate>
</UserControl.Resources>

Our new ControlTemplate contains a Canvas panel with a Path and a TextBlock
inside it. We're already familiar with the TextBlock control, but the Path object may be
unfamiliar to you. Paths define geometric shapes in Silverlight. You may be looking at the 
contents of the Data attribute and wonder what all that gibberish means. It is a form of 
shorthand called the Path Mini-Language to define geometric paths in XAML.

You can read more about the Path Mini-Language on MSDN at: http://
msdn.microsoft.com/en-us/library/cc189041(VS.95).aspx.

The Path defines a shape that creates with a sharp point focused at the bottom center. We 
want to make sure that the bottom center of our custom marker is aligned with the LatLong 
given to the Pushpin.



Chapter 4

[ 145 ]

We need to tell the map control how to align the PushPin control. We want the bottom 
center to line up with the Location and that's exactly what this attribute does: 
map:MapLayer.PositionOrigin="BottomCenter"

As an added touch, the custom template also adds a TextBlock, which displays the name of 
the town in which a given store is located. Looking closely at the code, you'll notice that the 
Text property of the TextBlock is set to {TemplateBinding Content}. This markup
extension binds the value of the Pushpin's Content property to the TextBlock in our 
control template.

There's one last step: tell our Pushpins to use our new control template. It has a Key
property of FancyMarker. Now all we have to do is set each Pushpin's Template property
to {StaticResource FancyMarker} and set a value for the Content property to
populate the textbox in our control template.

<map:Pushpin Location="39.28345, -76.61714" Template="{StaticResource
FancyMarker}" Content="Baltimore" />

Naturally, hard coding the store nodes in the XAML may not be a great long term strategy as 
Cake-O-Rama adds more stores. We will revisit the map control in the Chapter 9 to learn how 
to include directions routing and more.

To learn more about the Bing Maps Silverlight control, watch the Deep Dive on Bing Maps 
Silverlight Control session from the Professional Developers Conference 2009 (PDC09) at:
http://microsoftpdc.com/Sessions/CL36.

Drawing out ideas
Designing a custom cake sometimes requires creative input from the customer. Cake-O-Rama 
would like to put this process on the web by allowing the end user to draw out their ideas on 
a virtual sketchpad. Potential customers can submit this sketch along with other data when 
they request more information. A couple looking for a wedding cake, for example, could 
sketch out what they would like to have made. The following sketch conveys the customer's 
wishes much better than mere words could:



Taking the RIA Experience Further with Silverlight

[ 146 ]

The InkPresenter control
In 2001, Microsoft introduced the Tablet PC and with it an SDK, software development kit, 
for handling digital ink. Much of the same code that powers Tablet PC development resides 
in Silverlight as well. This means that, among other things, we can quickly create a simple 
drawing system with just a little bit of code.

The control that renders and allows us to edit and render Ink is the InkPresenter control.
Ink is a data type that stores a series of X and Y coordinates in containers called Strokes. 
A Stroke is analogous to the stroke of pen. A stroke starts when you place your pen down 
on a piece of paper (or a Tablet PC screen) and release. It contains one or more Points in 
a StylusPointCollection. In the absence of a stylus, the mouse acts as a substitute. 
Clicking and holding the mouse button down simulates the pressing down on the screen 
with a stylus.

A stylus is another word for pen, usually reserved for dealing with 
computerized pen input devices.

Creating an InkPresenter control is quite easy. The XAML is simply: 

<InkPresenter />

However, this alone would do nothing. Unlike many Silverlight controls, which have built in 
functionality, the InkPresenter control needs a little bit of help from us to capture strokes. 
The InkPresenter contains only the bits necessary to render the ink, not collect it. We'll 
have to attach some code to make it work like a drawing canvas.

InkPresenter has none of the built in amenities of WPF's 
InkCanvas control, which both renders and collects ink.

Capturing strokes
Fortunately, capturing strokes isn't all that difficult. What we really need to do is make note 
of when the user presses the mouse button, moves the mouse around, and releases the 
mouse button. We can do all of this by attaching event handlers to the appropriate events: 
MouseLeftButtonDown, MouseLeftButtonUp and MouseMove events. Doing this in
XAML is fairly straightforward as the following code snippet demonstrates: 

<InkPresenter MouseLeftButtonDown="inkPresenter_MouseLeftButtonDown"
              MouseLeftButtonUp="inkPresenter_MouseLeftButtonUp"
              MouseMove="inkPresenter_MouseMove"
              />



Chapter 4

[ 147 ]

Naturally, the event handlers have to actually have code in them to be of any use. By adding
code that collects the movement of the user's mouse (or stylus) we can build a nice drawing 
application fairly easily. Let's build our sketching application now.

Time for action – building a basic sketching application
Let's build out a sketching application in Silverlight using the InkPresenter control and 
a little bit of code.

1.	 Launch Visual Studio and create a new Silverlight application by choosing 
File|New|Project from the file menu and choosing Silverlight Application in the
dialog box that follows.

2.	 Name the solution SilverInk.

3.	 Once the solution is created, we'll want to add the following line of XAML inside the 
Grid element already in our MainPage.xaml:

<InkPresenter x:Name="inkPresenter" Background="LightBlue" MouseLe
ftButtonDown="inkPresenter_MouseLeftButtonDown"
              MouseLeftButtonUp="inkPresenter_MouseLeftButtonUp"
              MouseMove="inkPresenter_MouseMove"
              />

4.	 The fastest and easiest way to create event handlers is to let Visual Studio do it for 
us. Right-click on the MouseLeftButtonDown event handler attribute to get the
following context menu:

5.	 Click on Navigate to Event Handler.



Taking the RIA Experience Further with Silverlight

[ 14� ]

6.	 Visual Studio will automatically create an empty event handler method for you and 
transfer you to the MainPage.xaml.cs code behind file: 

private void inkPresenter_MouseLeftButtonDown(object sender, 
MouseButtonEventArgs e)
{

}

7.	 Repeat steps 2 through 4 for the MouseLeftButtonUp and MouseMove events 
to create empty handler methods for both of these events as well.

8.	 Next, we'll want to add a reference to the namespace where all the Ink 
related objects are. Towards the top of the MainPage.xaml.cs file add 
the following  statement: 

using System.Windows.Ink;

9.	 Let's create a Stroke object member in our MainPage class:

Stroke _stroke;

10.	 In the MouseLeftButtonDown event handler, we'll need to add code to create 
a new Stroke object and assign the _stroke variable to it and add this to the
Stroke property of the InkPresenter like so: 

this._stroke = new Stroke();

this.inkPresenter.Strokes.Add(this._stroke);

11.	Next, we'll need to capture any mouse or stylus movements that occur over our 
InkPresenter control as we move the mouse or stylus. Add these lines of code 
to the inkPresenter_MouseMove method: 

if (this._stroke != null)
{
  this._stroke.StylusPoints.Add(
       e.StylusDevice.GetStylusPoints(this.inkPresenter)
       );
}

12.	Finally, we'll need to stop collecting strokes when the MouseLeftButtonUp
event occurs. We'll also need to set the _stroke variable to null to indicate that
we are no longer adding strokes to the InkPresenter. In the inkPresenter_
MouseLeftButtonUp method, add the following lines of code: 

if (this._stroke != null)
{
   this._stroke = null;
}



Chapter 4

[ 14� ]

13.	Your entire code file should look like this:

using System;
using System.Collections.Generic;
using System.Linq; 
using System.Net; 
using System.Windows; 
using System.Windows.Controls; 
using System.Windows.Documents; 
using System.Windows.Input; 
using System.Windows.Media; 
using System.Windows.Media.Animation;
using System.Windows.Shapes; 
using System.Windows.Ink; 
namespace SilverInk 
{
    public partial class MainPage : UserControl
 {
     Stroke _stroke;
     public MainPage()
     {
         InitializeComponent();
     }
     private void inkPresenter_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)
     {
         this._stroke = new Stroke(); 
         this.inkPresenter.Strokes.Add(this._stroke);
     }
     private void inkPresenter_MouseLeftButtonUp(object sender,
MouseButtonEventArgs e)
     {
         if (this._stroke != null)
         {
           this._stroke = null;
         }
     }
     private void inkPresenter_MouseMove(object sender,
MouseEventArgs e)
     {
         if (this._stroke != null)
         {
            this._stroke.StylusPoints.Add(
              e.StylusDevice.GetStylusPoints(this.inkPresenter)



Taking the RIA Experience Further with Silverlight

[ 150 ]

            );
         }
     }
  }
}

14.	Run the solution now by choosing Start Debugging from the Debug menu or
pressing the F5 key.

15.	 If prompted, choose to enable debugging.

16.	Use the mouse to draw inside the light blue area. Hold the left mouse button 
down while you move the mouse around to draw. Release the left mouse button  
to stop drawing. Depending on your artistic skill set, your screen will look something 
like this:

17.	Next, close down the host browser and return to Visual Studio.

What just happened?
We just created a simple drawing application leveraging an existing control in Silverlight: the 
InkPresenter. Notice that we didn't write any code to handle rendering our drawing. All our 
code was focused on creating a Stroke object and adding StylusPoints points to it.

A Point is a structure that has two members: an X and Y coordinate.

A StylusPoint is a typical point object with an added property of PressureFactor to track the
relative amount of pressure applied by the stylus. Its value is between 0 and 1. Many Tablet
and touch screen devices also record the amount of pressure applied to the stylus or screen.
If you're using a device that does not track applied pressure, like a mouse, then the value of 
PressureFactor is always set to .5.

The topic of developing for Tablet PCs and touch devices is a passion of mine.
There is enough content to write a book about it. Perhaps, one day I will.



Chapter 4

[ 151 ]

Changing drawing attributes
It may be cool to us developers to create a simple sketching program with hardly any code, 
but our end users may expect a little more. Our application still lacks many features that any 
drawing program worth its salt should have. For instance, what if you wanted to write with a 
wider stroke or draw in a different color? Fortunately for us, this is actually quite easy.

The Stroke object contains a property called DrawingAttribute, which lets us alter the 
height, width and color of any given Stroke object. For instance, if we wanted to make a 
Stroke red we would write the following line of code:

_stroke.DrawingAttributes.Color = Colors.Red;

What if we wanted to create a highlighter effect, like the one demonstrated below:

We would need to use a semi-transparent yellow. Yellow in the RGB color space is 255, 255, 
0. A semi-transparent yellow in the ARGB color space would be represented as 127, 255,
255, 0. To set a Stroke's DrawingAttribute to a semi-transparent yellow requires the 
following code:

_stroke.DrawingAttributes.Color = Color.FromArgb(127, 255, 255, 0);

The RGB color space refers to the way computers render colors. R stands for 
red, G for green and B for blue. The A in ARGB stand for Alpha, which means 
transparency. Each can have a value from 0 to 255, or 8 bits.

Highlighter pen tips also tend to be taller than they are wide. To create an accurate 
highlighter, we would also need to mimic that. To do this, we'll set the height to a 
larger number like so:

this._stroke.DrawingAttributes.Height = 10;



Taking the RIA Experience Further with Silverlight

[ 152 ]

Time for action – controlling the appearance of Ink
Let's add the ability to highlight our drawing. We'll need to add a few interface elements to 
switch back and forth between highlighter mode and regular pen mode. We will do this now 
as follows:

1.	 Firstly, load up the project we created in the SilverInk solution just created in 
Launch Visual Studio.

2.	 Let's add some space for a miniature toolbar in our application to hold buttons.

3.	 To do this, we'll need to split the Grid named LayoutRoot into two rows. In 
MainPage.xaml, add the following XAML code belongs right below the line 
of code <Grid x:Name="LayoutRoot" Background="White">:

     <Grid.RowDefinitions>
         <RowDefinition Height="40" />
         <RowDefinition Height="*" />
     </Grid.RowDefinitions>

4.	 The above line creates two rows or space for controls to reside. The top space is 
40 units high and the bottom space takes up the remaining space.

5.	 We'll need to add an attribute to our InkPresenter control to tell it to  
reside inside the second row. Add the following attribute to the InkPresenter
XAML node:

Grid.Row="1"

6.	 If you look at the Preview pane in Visual Studio, you should see the 
following screenshot:



Chapter 4

[ 153 ]

7.	 Now, we need to make a toolbar of buttons in the top row. We'll need to add a 
StackPanel and fill it with buttons. To do this, add the following XAML code 
to our Grid node: 

<StackPanel Orientation="Horizontal">
    <Button x:Name="btnPen" 
            Content="Pen" 
            Click="btnPen_Click" />
    <Button x:Name="btnHighlighter" 
            Content="Highlighter" 
            Click="btnHighlighter_Click" />
</StackPanel>

8.	 Right-click on both the button nodes and choose Navigate to Event Handler 
to have Visual Studio generate both the  btnHighlighter_Click and
btnHighlighter_Click event handlers.

9.	 Go to the code behind file (MainPage.xaml.cs) and add the two following 
members to the class file:

Color _strokeColor = Colors.Black;
double _strokeHeight = 3;

10.	Next, add the following two lines of code to the 
inkPresenter_MouseLeftButtonDown method:

this._stroke.DrawingAttributes.Color = this._strokeColor;
this._stroke.DrawingAttributes.Height = this._strokeHeight;

11.	Change the button event handlers so they look like this: 

private void btnPen_Click(object sender, RoutedEventArgs e)
{
    this._strokeColor = Colors.Black;
    this._strokeHeight = 3; 
} 
private void btnHighlighter_Click(object sender, RoutedEventArgs 
e)
{
    this._strokeHeight = 10;
    this._strokeColor = Color.FromArgb(192, 255, 255, 0);
}

12.	The MainPage.XAML.cs code behind should contain the following code:

using System;
using System.Collections.Generic;
using System.Linq; 
using System.Net;



Taking the RIA Experience Further with Silverlight

[ 154 ]

using System.Windows; 
using System.Windows.Controls; 
using System.Windows.Documents; 
using System.Windows.Input; 
using System.Windows.Media; 
using System.Windows.Media.Animation;
using System.Windows.Shapes; 
using System.Windows.Ink;

namespace SilverInk
{
  public partial class MainPage : UserControl
  {
     Stroke _stroke;
     Color _strokeColor = Colors.Black;
     double _strokeHeight = 3;

     public MainPage()
     {
         InitializeComponent();
     }

     private void inkPresenter_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)
     {
         this._stroke = new Stroke();
         this._stroke.DrawingAttributes.Color = this._strokeColor;
         this._stroke.DrawingAttributes.Height = this._
strokeHeight;

         this.inkPresenter.Strokes.Add(this._stroke);

     }

 private void inkPresenter_MouseLeftButtonUp(object sender,
MouseButtonEventArgs e)
  {
    if (this._stroke != null)
    {
       this._stroke = null;
    }

  }



Chapter 4

[ 155 ]

 private void inkPresenter_MouseMove(object sender, MouseEventArgs 
e)
  {
      if (this._stroke != null)
      {
         this._stroke.StylusPoints.Add(
            e.StylusDevice.GetStylusPoints(this.inkPresenter)
          );
      }
  }

 private void btnPen_Click(object sender, RoutedEventArgs e)
  {
      this._strokeColor = Colors.Black;
      this._strokeHeight = 3;
  }

private void btnHighlighter_Click(object sender, RoutedEventArgs 
e)
  {
      this._strokeHeight = 10;
      this._strokeColor = Color.FromArgb(192, 255, 255, 0);
  }
 }
}

13.	Run the solution and draw! You should be presented with the following:

14.	Close the host browser window.



Taking the RIA Experience Further with Silverlight

[ 156 ]

What just happened?
We just enhanced our drawing application by giving the user a choice in what brush to paint 
with. We're certainly a long way off from giving Microsoft Paint or Adobe Photoshop any 
competition, but our users will appreciate the added functionality.

Erasing Strokes
If you've played with the sample application enough, you're probably wishing there was an 
option to delete what you've drawn. There are actually two ways to erase ink.

One option is to delete the stroke or strokes from the Strokes collection of an 
InkPresenter. To clear an InkPresenter entirely, simply clear its Strokes collection. 
The code to do this is a simple one liner:

inkPresenter.Strokes.Clear();

With a little bit of logic to narrow down the Stroke that we wish to remove from the Stroke
collection of an InkPresenter, we can be a bit more selective in what we remove. The 
code to determine which stroke, can take on many forms, but it could be as simple as this:

inkPresenter.Strokes.Remove(strokeToDelete);

Removing the last stroke comes in handy when you want to provide an undo function to your 
drawing application. To remove the last stroke added to an InkPresenter, we could get the 
last item in the Strokes collection of an InkPresenter:

inkPresenter.Strokes.Remove(this.inkPresenter.Strokes.Last());

The Last method used in the above line of code is an Extension Method.
Extension methods form the basis of LINQ, which is something we'll be seeing 
a lot of in forthcoming chapters.

So far all the approaches to deleting ink strokes involve removing the entire stroke, which 
doesn't feel natural to an end user. What we'd really like to do is erase only what the user 
moves the mouse over. Think about moving an eraser across a piece of paper: only the pencil
strokes that the eraser touches are erased. To duplicate this, we'll need to capture the stroke 
that the user makes when intending to erase strokes and then use the HitTest method 
to determine if there are any intersections. Both Stroke and StrokeCollection have a
HitTest method that accepts a StylusPointCollection. This method comes in handy
when you want to add delete functionality.



Chapter 4

[ 157 ]

For example, the following code removes strokes from the inkPresenter using a
StylusPointCollection named, _erasePoints:

StrokeCollection hitStrokes = this.inkPresenter.Strokes.HitTest(_
erasePoints);
if (hitStrokes.Count > 0)
{
    foreach (Stroke hitStroke in hitStrokes)
    {
        this.inkPresenter.Strokes.Remove(hitStroke);
    }
}

Time for action – adding an erase feature
Let's improve our sketching application in Silverlight by adding an erase feature.

1.	 Open the SilverInk application in Visual Studio.

2.	 We're going to add three new buttons: one to switch to eraser mode, the second to 
delete the last stroke added, and the third one to clear the entire inkPresenter.

3.	 Add the following XAML to the StackPanel where all the other buttons reside:

<Button x:Name="btnErase" 
        Content="Eraser" 
        Click="btnErase_Click" />
<Button x:Name="btnDeleteLastStroke" 
        Content="Delete Last Stroke" 
        Click="btnDeleteLastStroke_Click" />
<Button x:Name="btnClear" 
        Content="Clear All" 
        Click="btnClear_Click" />

4.	 Right-click on each of the Button nodes and select Navigate to Event Handler to
have Visual Studio create the event handlers in code.

5.	 Right now, our application should look like this in design preview mode:



Taking the RIA Experience Further with Silverlight

[ 15� ]

6.	 In order to support erasing, we'll need to add two new members to our class file. 
Add the following two lines of code to our class:

StylusPointCollection _erasePoints;
bool _erase = false;

7.	 We'll need to modify the MouseLeftDown, MouseLeftUp, and MouseMove
event handlers to support erasing. We'll use the _erase Boolean to store the 
erase state. Here are the modifications to these methods: 

private void inkPresenter_MouseLeftButtonDown(object sender, 
MouseButtonEventArgs e)
{
  if (this._erase == false)
  {
    this._stroke = new Stroke();
    this.inkPresenter.Strokes.Add(this._stroke);

    this._stroke.DrawingAttributes.Color = this._strokeColor;
    this._stroke.DrawingAttributes.Height = this._strokeHeight;

  }
  else
 {
    _erasePoints = e.StylusDevice.GetStylusPoints(this.
inkPresenter);
 }
}

private void inkPresenter_MouseLeftButtonUp(object sender,
MouseButtonEventArgs e)
{
    if (this._stroke != null)
    {
       this._stroke = null;
    }

} 
private void inkPresenter_MouseMove(object sender, MouseEventArgs 
e)
{
   if (this._erase == false)
   {
      if (this._stroke != null)
      {
        this._stroke.StylusPoints.Add(



Chapter 4

[ 15� ]

          e.StylusDevice.GetStylusPoints(this.inkPresenter));
      }
   }
   else
   {
      if (this._erasePoints != null)
      {
         _erasePoints.Add(
           e.StylusDevice.GetStylusPoints(this.inkPresenter));

         StrokeCollection hitStrokes =
           this.inkPresenter.Strokes.HitTest(_erasePoints);

         if (hitStrokes.Count > 0)
         {
            foreach (Stroke hitStroke in hitStrokes)
            {
               this.inkPresenter.Strokes.Remove(hitStroke);
            }
         }
      }
   }
}

8.	 We'll need to turn erase mode off when we click on Pen or Highlighter and on
when we click Eraser. Accordingly, we'll modify the event handlers like so:

private void btnPen_Click(object sender, RoutedEventArgs e)
{
    this._erase = false;
    this.inkPresenter.Cursor = Cursors.Stylus;
    
    this._strokeColor = Colors.Black;
    this._strokeHeight = 3;
}

private void btnHighlighter_Click(object sender, RoutedEventArgs 
e)
{
    this._erase = false;
    this.inkPresenter.Cursor = Cursors.Stylus;

    this._strokeHeight = 10;
    this._strokeColor = Color.FromArgb(192, 255, 255, 0);
}



Taking the RIA Experience Further with Silverlight

[ 160 ]

private void btnErase_Click(object sender, RoutedEventArgs e)
{
    this._erase = true;
    this.inkPresenter.Cursor = Cursors.Eraser;
}

9.	 Finally, we'll want to add some code to delete the last stroke and to clear all the ink 
from the inkPresenter:

private void btnDeleteLastStroke_Click(object sender,
RoutedEventArgs e)
{
    if (inkPresenter.Strokes.Count > 0)
    {
       this.inkPresenter.Strokes.Remove( 
         this.inkPresenter.Strokes.Last());
    }
}

private void btnClear_Click(object sender, RoutedEventArgs e)
{
    this.inkPresenter.Strokes.Clear();
}

10.	Run the solution, you should notice that the cursor changes to an eraser when in 
eraser mode:



Chapter 4

[ 161 ]

What just happened?
My artwork aside, you can see that we've built a relatively functional drawing program that 
customers can use to sketch out their ideas. However, before we can call this finished we'll 
need to find a way to preserve our artwork and then submit it to Cake-O-Rama.

S ggg   sss   nnn   ddd   eeetttooorrriiinnn  SSStttrrroookkkeee  iii  IIIsssooolllaaattteee  SSStttooorrraaaggg
With the sample sketching application we created earlier in this chapter, we could easily 
lose our artwork if we were to close our browser window, reboot our computer or do 
anything that would reload the page. This may not be a big deal for our development time 
doodles, but customers who put a lot of time and effort into getting their ideas down on 
the computer, might feel otherwise.

Isolated Storage
You may have heard that Silverlight does not have access to the local file system, but it does 
support something known as Isolated Storage. Isolated storage can be treated like a file 
system or persist like application settings in key/value pairs. Isolated Storage allows your 
Silverlight applications to store data locally on the end users' computers. Isolated storage is 
per user storage, per computer, and per application (technically, per application URI). This 
means that one Silverlight application cannot access the file store of another directly. The 
same goes for different users on the same computer. This is a security feature. You wouldn't 
want anyone to write malware that could snoop around the hard drive or access other 
users' data.

In full trust mode, Silverlight has more access to the local file system.

Another interesting feature of isolated storage is that it is browser independent. If your 
Silverlight application saves data to isolated storage in FireFox, you will be able to access 
that data from Internet Explorer on the same machine.



Taking the RIA Experience Further with Silverlight

[ 162 ]

You can see a list of all the Silverlight applications that store data on your computer by 
right-clicking on any Silverlight application and selecting on Silverlight from the context
menu. Click on the Application Storage tab to see what is being stored on your computer:

Silverlight applications receive a quota of 1MB of disk space. In order to receive more space, 
an application must request more space and the user must accept the request. Silverlight 
Out-of-Browser applications automatically get 25MB of space and must get permission from
the user to use more. You'll also notice that users have the ability to turn application storage 
off as well as delete the local application store. They will be asked to confirm their decision 
with another dialog box like this:



Chapter 4

[ 163 ]

Always treat data in isolation storage as volatile, as you never know when 
it could be deleted.

Also remember that the data in isolated storage is stored on the local computer, not the
web server. This means that if your application stores data on one computer, the content 
in isolated storage will not automatically appear on another computer even if it's the same 
user. Typically, you'll want to treat isolated storage as a temporary caching mechanism and 
post the changes to some kind of server-side service. Naturally, you'll want to minimize the
number of roundtrips to the server.

Time for action– adding persistence
Let's make sure that no sketches are lost when the user reloads the page. The best way to 
approach this is to save the stroke data as they draw. When the user reloads our application, 
we should add code that checks to see if there is already ink data in the local store.

We could also write files to isolated storage.

We will now save the Strokes collection to isolated storage every time a stroke is added to 
the inkPresenter control. We will do this by completing the following steps:

1.	 Firstly, open the SilverInk application in Launch Visual Studio.

2.	 In the MainPage.xaml.cs file, add the following using statements:

using System.IO.IsolatedStorage;
using System.Text; 
using System.Xml; 
using System.Windows.Markup;

3.	 Add a method that will take the Strokes in the inkPresenter control and convert
them into a XAML string: 

private string ConvertStrokesToXaml()
{
  StringBuilder stringBuilder = new StringBuilder();
  XmlWriter xmlWriter = XmlWriter.Create(stringBuilder);

  xmlWriter.WriteStartElement("StrokeCollection",  
    "http://schemas.microsoft.com/winfx/2006/xaml/presentation");



Taking the RIA Experience Further with Silverlight

[ 164 ]

  foreach (Stroke stroke in this.inkPresenter.Strokes)
  {
    xmlWriter.WriteStartElement("Stroke");
    xmlWriter.WriteStartElement("Stroke.DrawingAttributes");
    xmlWriter.WriteStartElement("DrawingAttributes");
    xmlWriter.WriteAttributeString("Width",
      stroke.DrawingAttributes.Width.ToString());
    xmlWriter.WriteAttributeString("Height",
      stroke.DrawingAttributes.Height.ToString());

    xmlWriter.WriteAttributeString("Color",
      string.Format("#{0:X2}{1:X2}{2:X2}{3:X2}",
      stroke.DrawingAttributes.Color.A,
      stroke.DrawingAttributes.Color.R,
      stroke.DrawingAttributes.Color.G,
      stroke.DrawingAttributes.Color.B));

    xmlWriter.WriteAttributeString("OutlineColor",
      string.Format("#{0:X2}{1:X2}{2:X2}{3:X2}",
      stroke.DrawingAttributes.OutlineColor.A,
      stroke.DrawingAttributes.OutlineColor.R,
      stroke.DrawingAttributes.OutlineColor.G,
      stroke.DrawingAttributes.OutlineColor.B));

    xmlWriter.WriteEndElement();
    xmlWriter.WriteEndElement();

    xmlWriter.WriteStartElement("Stroke.StylusPoints");
    xmlWriter.WriteStartElement("StylusPointCollection");

    foreach (StylusPoint sp in stroke.StylusPoints)
    {
        xmlWriter.WriteStartElement("StylusPoint");
        xmlWriter.WriteAttributeString("X", sp.X.ToString());
        xmlWriter.WriteAttributeString("Y", sp.Y.ToString());
        xmlWriter.WriteEndElement();
    }

    xmlWriter.WriteEndElement();
    xmlWriter.WriteEndElement();
    xmlWriter.WriteEndElement();

 }



Chapter 4

[ 165 ]

    xmlWriter.WriteEndElement();
    xmlWriter.Flush();

    return stringBuilder.ToString();
}

4.	 Create a method called PersistInk that will write the ink to isolated storage:

private void PersistInk()
{
  IsolatedStorageSettings settings =  
   IsolatedStorageSettings.ApplicationSettings;

  string strokesXaml = ConvertStrokesToXaml();

  if (settings.Contains("sketchData"))
  {
     settings["sketchData"] = strokesXaml;
  }
  else
  {
    settings.Add("sketchData", strokesXaml);
  }
}

5.	 Next we'll add a call to PersistInk to any method that modifies the Stroke 
collection of the inkPresenter. Specifically, these methods: inkPresenter_
MouseLeftButtonUp, btnDeleteLastStroke_Click, and btnClear_Click.

6.	 In the MainPage.xaml file, add an event handler for the Loaded event:

Loaded="UserControl_Loaded"

7.	 In the MainPage.xaml.cs file, add the following code which will look inside the 
isolated storage for stored data. If it finds data, it will de-serialize the XAML code 
describing the strokes and load it into the InkPresenter control: 

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
    IsolatedStorageSettings settings = 
      IsolatedStorageSettings.ApplicationSettings;

    if (settings.Contains("sketchData"))
    {
      string sketchXAML = settings["sketchData"] as string;
      this.inkPresenter.Strokes = XamlReader.Load(sketchXAML) as 
        StrokeCollection;
    }
}



Taking the RIA Experience Further with Silverlight

[ 166 ]

8.	 Next, run the solution and draw anything!

9.	 Reload the page and it should re-appear.

10.	Close the browser window and return back to Visual Studio. Run the solution again 
and your sketch should reappear.

11.	Copy the location in the browser's address bar. Then, launch another browser.

12.	Paste the address into the address bar and you'll see your sketch re-appear. Close 
the browser window again. 

What just happened?
You created some strokes and saved them into isolated storage as an application setting. 
There was a lot of code inside the ConvertStrokesToXaml method. The important thing
to take away is that it took the StrokesCollection of the InkPresenter and converted
it to a fragment of XAML code as demonstrated below:

<?xml version="1.0" encoding="utf16" ?>
<StrokeCollection   
  xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" >
  <Stroke>
  <Stroke.DrawingAttributes>
    <DrawingAttributes Width="3" Height="3" Color="#FF000000"        
         OutlineColor="#00000000" /> 
  </Stroke.DrawingAttributes>
  <Stroke.StylusPoints>
    <StylusPointCollection>
        <StylusPoint X="127" Y="28" /> 
      <StylusPoint X="125" Y="33" /> 
      <StylusPoint X="123" Y="40" /> 
      <StylusPoint X="118" Y="48" /> 
      <StylusPoint X="114" Y="57" /> 
    </StylusPointCollection>
    </Stroke.StylusPoints>
  </Stroke>
</StrokeCollection>

The PersistInk method uses this XAML and places it inside the ApplicationSettings,
which is essentially a Dictionary, with key and value pairs. The code fragment below checks 
to see if a given key already exists. If it does, it overwrites the value. Otherwise, it adds a new 
key/value pair and sets its initial value:

    IsolatedStorageSettings settings = 
     IsolatedStorageSettings.ApplicationSettings;

    string strokesXaml = ConvertStrokesToXaml();



Chapter 4

[ 167 ]

    if (settings.Contains("sketchData"))
    {
       settings["sketchData"] = strokesXaml;
    }
    else
    {
       settings.Add("sketchData", strokesXaml);
    }

The following line of code de-serializes the XAML in the application store and uses the 
as keyword in C# to cast it as a StrokeCollection and sets the Strokes property 
of our inkPresenter:

this.inkPresenter.Strokes = XamlReader.Load(sketchXAML) as  
  StrokeCollection;

What we did in this last step should be familiar to any seasoned developer: we serialized 
data, stored it and de-serialized it.

Have a go hero – where is isolated storage?
You may be a little curious about where the data you place into isolated storage ends up. 
Well, that all depends on what operating system your application runs on.

In the table below, you will see where the isolated storage files actually resides on disk.

Platform Path

Windows 7 and
Windows Vista

%userprofile%\AppData\LocalLow\Microsoft\
Silverlight\is

Windows XP %userprofile%\Local Settings\Application Data\
Microsoft\Silverlight\is

MacOS /Users/<user>/Library/Application/Support/Microsoft/
Silverlight/is

For security reasons, the file and directory names are randomly generated, but if you dig 
around enough you'll eventually see a file named __LocalSettings, which contains 
the application settings data for a given Silverlight application. The file in the image below 
happens to be the settings file for our SilverInk application:



Taking the RIA Experience Further with Silverlight

[ 16� ]

Never store sensitive data unencrypted in isolated storage. You never know who 
will be snooping for what!

You can open this file in notepad: 

ArrayOfKeyValueOfstringanyType xmlns:i="http://www.w3.org/2001/
XMLSchema-instance" xmlns="http://schemas.microsoft.com/2003/10/
Serialization/Arrays"><KeyValueOfstringanyType><Key>sketchData</
Key><Value xmlns:d3p1="http://www.w3.org/2001/XMLSchema" i:type="d3p1:
string">&lt;?xml version="1.0" encoding="utf-16"?&gt;&lt;StrokeCollec
tion 

Note that this information is not encrypted or automatically protected. Security by 
obscurity is a terrible policy that is sure to get you hacked. Never store sensitive data 
such as passwords or credit card numbers unencrypted in isolated storage.  

One more important warning: be careful what you store in your code as well. Any code 
in your Silverlight application can be decompiled and examined. SilverlightSpy, a tool I 
recommend for all Silverlight developers in Chapter 1, does exactly that. Keep in mind that
your code executes on the client computer and, as such, the client computer has access to it.
This means that malicious persons can snoop around your code and look for sensitive data.

We've barely just scratched the surface of the feature set of inkPresenter.
To learn more about using the inkPresenter in Silverlight, Stefan Wick's 
blog is a superb resource for a more in depth look at using Ink in Silverlight:
http://blogs.msdn.com/swick/.

The code in the ConvertStrokesToXaml came from one of his blog posts.

Uploading sketches
In order for our application to be of use to Cake-O-Rama, we'll need to take the stored 
sketches and send them up to the server. The process of uploading to the server involves
serializing our data, then making a connection to the receiving server and sending  
the serialized data up. We should probably also inform the user whether or not the 
process succeeded.



Chapter 4

[ 16� ]

Asynchronous calls
All network operations take time. Anyone who has ever waited for a web page to load 
knows this. The amount of time a network operation takes varies based on a wide number 
of factors, including but not limited to network traffic, volume of data to transfer, and server 
load. Why does this matter? Silverlight runs network operations asynchronously, meaning 
that while we wait for a network operation to complete, we can move on to doing other 
things. The network operations run on a separate thread from the user interface. This will 
become important in the next section.

Time for action – submitting sketches
Thus far, we've built a simple drawing application that stores its data locally. Now, it's time 
to share our artwork with the world, or at least the server at Cake-O-Rama. Once there, 
the receiving computer can do anything with the ink data. Let's add that ability now.

1.	 Open the SilverInk solution in Launch Visual Studio.

2.	 In the MainPage.xaml file, let's add another button. In the same StackPanel as
all the other buttons, add this line of XAML: 

<Button x:Name="btnSend" 
        Content="Send Sketch" 
        Click="btnSend_Click" 
        Margin="20,0,0,0" />

3.	 Right-click on each of the Button nodes and select Navigate to Event Handler to
have Visual Studio create the event handlers in code.

4.	 In the MainPage.xaml.cs file, we'll need to add two more members. Their 
meaning and purpose will become clear shortly: 

public delegate void UpdateUI(HttpStatusCode httpStatusCode);
static string _postData;

5.	 Next, we need to put some code into the event handler we had Visual Studio create 
for us in step 3: 

private void btnSend_Click(object sender, RoutedEventArgs e)
{
    _postData = ConvertStrokesToXaml();

    SendData();
}



Taking the RIA Experience Further with Silverlight

[ 170 ]

6.	 Now, we'll need to define the SendData method, add the following code:

private void SendData()
{
    HttpWebRequest httpRequest =  
      (HttpWebRequest)WebRequest.Create(new  
        Uri("http://www.franksworld.com/"));
    httpRequest.Method = "POST";
    httpRequest.ContentType = "application/x-www-form-urlencoded";
    httpRequest.BeginGetRequestStream(new 
      AsyncCallback(ResponseActive), httpRequest);
}

7.	 In the above snippet of code, I've highlighted a line that creates an asynchronous 
callback delegate. If you're not familiar with the concept, this is a way of telling 
Silverlight to call the ResponseActive method. We'll need to add that method 
now by adding the following code: 

private void ResponseActive(IAsyncResult asyncRes)
{

    // Continue getting response
    HttpWebRequest httpRequest = 
      (System.Net.HttpWebRequest)asyncRes.AsyncState;

    System.IO.StreamWriter postStreamWriter = new System.IO.Stre
amWriter(httpRequest.EndGetRequestStream(asyncRes), System.Text.
Encoding.Unicode);

  postStreamWriter.Write("XAML=" +    System.Windows.Browser.
HttpUtility.UrlEncode(_postData));
            postStreamWriter.Close();

    httpRequest.BeginGetResponse(new 
      AsyncCallback(ResponseCompleteAsync), httpRequest);
}

8.	 Here is another snippet of code and another asynchronous callback delegate. You 
guessed it, we need to define the ResponseCompleteAsync method now by 
writing the following code: 

private void ResponseCompleteAsync(IAsyncResult asyncRes)
{

    System.Net.HttpWebRequest httpRequest = 
      (System.Net.HttpWebRequest)asyncRes.AsyncState;
    System.Net.HttpWebResponse httpResponse = 



Chapter 4

[ 171 ]

      (System.Net.HttpWebResponse)httpRequest.EndGetResponse(async
Res);

    this.Dispatcher.BeginInvoke(new UpdateUI(ReportUploadStatus), 
      httpResponse.StatusCode);
}

9.	 We will need to add another method. This one notifies the user whether or not the 
upload was successful: 

private void ReportUploadStatus(HttpStatusCode httpStatusCode)
{
    if (httpStatusCode == HttpStatusCode.OK)
    {
      MessageBox.Show("Sketch successfully sent!");
    }
    else
    {
      MessageBox.Show("An error has occurred. Please try again.");
    }
}

10.	Next, run the solution. After you draw something, your screen should look similar to 
the following screenshot:

11.	Click on the Send Sketch Button. After a moment, you should see a dialog box 
pop up to tell you that the result was successful.

12.	Click OK and then close the browser host window.



Taking the RIA Experience Further with Silverlight

[ 172 ]

What just happened?
We just added the ability for our drawing application to send drawings back to a web server. 
Along the way, we got a glimpse of networking programming and making asynchronous calls 
in Silverlight. We used the HttpWebRequest class to make an HTTP POST call to a URI on 
the internet.

Veteran ASP.NET developers ought to know what I mean when I say HTTP POST. For all 
others, it means I sent our serialized stroke data to a web page using a protocol built in to 
HTTP. But let's not get too caught up in the particulars of our implementation. We'll talk 
a lot more about making network calls in the next chapter.

Summary
In this chapter, we covered some of the wow factors of Silverlight that will give your RIA 
projects an added edge over the competition. You may be thinking that you'll never need 
to browse images via Deep Zoom, but you may be wrong.

You may not be working with cakes or rock star memorabilia, but imagine allowing users to 
browse through terabytes of scanned documents with a minimum drain on your company's 
network resources. Remember, only the bits being viewed get sent across the wire. Deep 
Zoom can save time and money.

You may also think you'll never need to use mapping, but consider that you can leverage GIS
(Geographic Information Systems) data consider changing to "to" quickly populate a map in 
your applications.

Lastly, adding the power of digital ink to your solutions could allow you to electronically 
sign documents with a stylus or create a white board application, where multiple users 
could share ideas. You are only limited by your imagination. In this chapter, we discussed 
the following:

How to create a Deep Zoom photo montage in Deep Zoom Composer

How to work with the Bing Map control 

How to sign up for a Bing Maps developer account 

How to add a reference to other DLLs in our Silverlight projects 

The wonders of the inkPresenter 

How to use Isolated Storage 

How to communicate over HTTP 

How to make asynchronous calls in Silverlight

Although, we only briefly covered the last two points in this chapter, it does make for a great 
cliff-hanger to keep you on the edge of your seats for the next chapter.



















5
Handling Data

Business applications are all about data; input received from clients, metrics 
regarding performance or sales, inventory, assets, and so on. Silverlight 
provides a robust and easy way to handle, bind, and validate this data.

In addition to data handling capabilities, Silverlight can also communicate via 
Windows Communication Foundation (WCF) services, providing an extensible 
means of communication with backend servers and data stores.

In this chapter, we shall:

Create a WCF service and business object for receiving data

Create a form for allowing users to submit information

Bind the data from a data object to Silverlight controls

Validate data and display feedback to the user

Data applications
When building applications that utilize data, it is important to start with defining what data 
you are going to collect and how it will be stored once collected. In the last chapter, we 
created a Silverlight application to post a collection of ink strokes to the server. We are going 
to expand the inkPresenter control to allow a user to submit additional information.

Most developers would have had experience building business object layers, and with 
Silverlight we can still make use of these objects, either by using referenced class projects/
libraries or by consuming WCF services and utilizing the associated data contracts.











Handling Data

[ 174 ]

Time for action – creating a business object
We'll create a business object that can be used by both Silverlight and our ASP.NET 
application. To accomplish this, we'll create the business object in our ASP.NET application, 
define it as a data contract, and expose it to Silverlight via our WCF service.

Start Visual Studio and open the CakeORamaData solution. When we created the solution, 
we originally created a Silverlight application and an ASP.NET web project.

1. In the web project, add a reference to the System.Runtime.Serialization
assembly.

2. Right-click on the web project and choose to add a new class. Name this class 
ServiceObjects and click OK.



Chapter 5

[ 175 ]

3. In the ServiceObjects class file, replace the existing code with the 
following code: 

using System;
using System.Runtime.Serialization;

namespace CakeORamaData.Web
{
  [DataContract]
  public class CustomerCakeIdea
  {
    [DataMember]
    public string CustomerName { get; set; }
    [DataMember]
    public string PhoneNumber { get; set; }
    [DataMember]
    public string Email { get; set; }
    [DataMember]
    public DateTime EventDate { get; set; }
    [DataMember]
    public StrokeInfo[] Strokes { get; set; } 
  }

  [DataContract]
  public class StrokeInfo
 {
    [DataMember]
    public double Width { get; set; }
    [DataMember]
    public double Height { get; set; }
    [DataMember]
    public byte[] Color { get; set; }
    [DataMember]
    public byte[] OutlineColor { get; set; }
    [DataMember]
  public StylusPointInfo[] Points { get; set; } 
  }

   [DataContract]
  public class StylusPointInfo
  {
     [DataMember]
    public double X { get; set; }
     [DataMember]
    public double Y { get; set; } 
  }
}

4. What we are doing here is defining the data that we'll be collecting from 
the customer.



Handling Data

[ 176 ]

What just happened?
We just added a business object that will be used by our WCF service and our Silverlight 
application. We added serialization attributes to our class, so that it can be serialized with 
WCF and consumed by Silverlight.

The [DataContract] and [DataMember] attributes are the serialization attributes that 
WCF will use when serializing our business object for transmission. WCF provides an 
opt-in model, meaning that types used with WCF must include these attributes in order to 
participate in serialization. The [DataContract] attribute is required, however if you wish 
to, you can use the [DataMember] attribute on any of the properties of the class.

By default, WCF will use the System.Runtime.Serialization.
DataContractSerialzer to serialize the DataContract classes into XML. The .NET 
Framework also provides a NetDataContractSerializer which includes CLR information 
in the XML or the JsonDataContractSerializer that will convert the object into 
JavaScript Object Notation (JSON). The WebGet attribute provides an easy way to define 
which serializer is used.

For more information on these serializers and the WebGet attribute visit the 
following MSDN web sites:

http://msdn.microsoft.com/en-us/library/system.
runtime.serialization.datacontractserializer.aspx.

http://msdn.microsoft.com/en-us/library/system.
runtime.serialization.netdatacontractserializer.aspx.

http://msdn.microsoft.com/en-us/library/system.runtime.
serialization.json.datacontractjsonserializer.aspx.

http://msdn.microsoft.com/en-us/library/system.
servicemodel.web.webgetattribute.aspx.

Windows Communication Foundation (WCF)
Windows Communication Foundation (WCF) provides a simplified development experience 
for connected applications using the service oriented programming model. WCF builds upon 
and improves the web service model by providing flexible channels in which to connect and 
communicate with a web service. By utilizing these channels developers can expose their 
services to a wide variety of client applications such as Silverlight, Windows Presentation 
Foundation and Windows Forms.

Service oriented applications provide a scalable and reusable programming model, allowing 
applications to expose limited and controlled functionality to a variety of consuming clients 
such as web sites, enterprise applications, smart clients, and Silverlight applications.



Chapter 5

[ 177 ]

When building WCF applications the service contract is typically defined by an interface 
decorated with attributes that declare the service and the operations. Using an interface 
allows the contract to be separated from the implementation and is the standard practice 
with WCF.

You can read more about Windows Communication Foundation on the MSDN 
website at: http://msdn.microsoft.com/en-us/netframework/
aa663324.aspx.

Time for action – creating a Silverlight-enabled WCF service
Now that we have our business object, we need to define a WCF service that can accept the 
business object and save the data to an XML file.

1. With the CakeORamaData solution open, right-click on the web project and choose 
to add a new folder, rename it to Services.

2. Right-click on the web project again and choose to add a new item. Add a new 
WCF Service named CakeService.svc to the Services folder. This will create 
an interface and implementation files for our WCF service. Avoid adding the 
Silverlight-enabled WCF service, as this adds a service that goes against the 
standard design patterns used with WCF:



Handling Data

[ 17� ]

The standard design practice with WCF is to create an interface that defines 
the ServiceContract and OperationContracts of the service. The
interface is then provided, a default implementation on the server. When the 
service is exposed through metadata, the interface will be used to define the 
operations of the service and generate the client classes. The Silverlight-enabled 
WCF service does not create an interface, just an implementation, it is there as a 
quick entry point into WCF for developers new to the technology.

3. Replace the code in the ICakeService.cs file with the definition below. We are 
defining a contract with one operation that allows a client application to submit  
a CustomerCakeIdea instance:

using System; 
using System.Collections.Generic;
using System.Linq; 
using System.Runtime.Serialization;
using System.ServiceModel; 
using System.Text;

namespace CakeORamaData.Web.Services
{
  // NOTE: If you change the interface name "ICakeService" here,
you must also update the reference to "ICakeService" in Web.
config.
  [ServiceContract]
  public interface ICakeService
  {
    [OperationContract]
    void SubmitCakeIdea(CustomerCakeIdea idea);
  }
}

4. The CakeService.svc.cs file will contain the implementation of our service 
interface. Add the following code to the body of the CakeService.svc.cs file 
to save the customer information to an XML file: 

using System;
using System.ServiceModel.Activation;
using System.Xml;

namespace CakeORamaData.Web.Services
{
  // NOTE: If you change the class name "CakeService" here, you
must also update the reference to "CakeService" in Web.config.



Chapter 5

[ 17� ]

  [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
  public class CakeService : ICakeService
  {
    public void SubmitCakeIdea(CustomerCakeIdea idea)
    {
      if (idea == null) return;

      using (var writer = XmlWriter.Create(String.Format(@"C:\
Projects\CakeORama\Customer\Data\{0}.xml", idea.CustomerName)))
      {
        writer.WriteStartDocument();

        //<customer>
        writer.WriteStartElement("customer");
        writer.WriteAttributeString("name", idea.CustomerName);
        writer.WriteAttributeString("phone", idea.PhoneNumber);
        writer.WriteAttributeString("email", idea.Email);

        // <eventDate></eventDate>
        writer.WriteStartElement("eventDate");
        writer.WriteValue(idea.EventDate);
        writer.WriteEndElement();

        // <strokes>
        writer.WriteStartElement("strokes");

        if (idea.Strokes != null && idea.Strokes.Length > 0)
        {
          foreach (var stroke in idea.Strokes)
          {
            // <stroke>
            writer.WriteStartElement("stroke");

            writer.WriteAttributeString("width", stroke.Width. 
            ToString());
            writer.WriteAttributeString("height", stroke.Height. 
            ToString());

            writer.WriteStartElement("color");
            writer.WriteAttributeString("a", stroke.Color[0]. 
            ToString());
            writer.WriteAttributeString("r", stroke.Color[1]. 
            ToString());
            writer.WriteAttributeString("g", stroke.Color[2]. 
            ToString());



Handling Data

[ 1�0 ]

            writer.WriteAttributeString("b", stroke.Color[3]. 
            ToString());
            writer.WriteEndElement();

            writer.WriteStartElement("outlineColor");
            writer.WriteAttributeString("a", stroke. 
            OutlineColor[0].ToString());
            writer.WriteAttributeString("r", stroke. 
            OutlineColor[1].ToString());
            writer.WriteAttributeString("g", stroke. 
            OutlineColor[2].ToString());
            writer.WriteAttributeString("b", stroke. 
            OutlineColor[3].ToString());
            writer.WriteEndElement();

            if (stroke.Points != null && stroke.Points.Length > 0)
            {
              writer.WriteStartElement("points");
              foreach (var point in stroke.Points)
              {
                writer.WriteStartElement("point");
                writer.WriteAttributeString("x", point. 
                X.ToString());
                writer.WriteAttributeString("y", point. 
                Y.ToString());
                writer.WriteEndElement();
              }
              writer.WriteEndElement();
            }

            // </stroke>
            writer.WriteEndElement();
          }
        }

        // </strokes>
        writer.WriteEndElement();

       //</customer>
        writer.WriteEndElement();

        writer.WriteEndDocument();
      }
    }
  }
}



Chapter 5

[ 1�1 ]

We added the AspNetCompatibilityRequirements attribute to our 
CakeService implementation. This attribute is required in order to use a 
WCF service from within ASP.NET.

5. Open Windows Explorer and create the path C:\Projects\CakeORama\
Customer\Data on your hard drive to store the customer XML files.

One thing to note is that you will need to grant write permission to this
directory for the ASP.NET user account when in a production environment.

6. When adding a WCF service through Visual Studio, binding information is added to 
the web.config file. The default binding for WCF is wsHttpBinding, which is not a 
valid binding for Silverlight. The valid bindings for Silverlight are basicHttpBinding,
binaryHttpBinding (implemented with a customBinding), and netTcpBinding. We 
need to modify the web.config, so that Silverlight can consume the service. 
Open the web.config file and add this customBinding section to the 
<system.serviceModel> node: 

<bindings>

  <customBinding>

    <binding name="customBinding0">

      <binaryMessageEncoding />

      <httpTransport>

        <extendedProtectionPolicy policyEnforcement="Never" />

      </httpTransport>

    </binding>

  </customBinding>

</bindings>

7. We'll need to change the <service> node in the web.config to use our new 
customBinding, (we use the customBinding to implement binary HTTP 
which sends the information as a binary stream to the service), rather than 
the wsHttpbinding from:

<service behaviorConfiguration="CakeORamaData.Web.Services.
CakeServiceBehavior"

 name="CakeORamaData.Web.Services.CakeService">

  <endpoint address="" binding="wsHttpBinding"
contract="CakeORamaData.Web.Services.ICakeService">

    <identity>

      <dns value="localhost" />



Handling Data

[ 1�2 ]

    </identity>

  </endpoint>

  <endpoint address="mex" binding="mexHttpBinding" contract="IM
etadataExchange" />

</service>

To the following:

<service behaviorConfiguration="CakeORamaData.Web.Services.
CakeServiceBehavior"

 name="CakeORamaData.Web.Services.CakeService">

  <endpoint address="" binding="customBinding" bindingConfiguratio
n="customBinding0"

   contract="CakeORamaData.Web.Services.ICakeService" />

  <endpoint address="mex" binding="mexHttpBinding" contract="IMeta
dataExchange" />

</service>

8. Set the start page to the CakeService.svc file, then build and run the solution. 
We will be presented with the following screen, which lets us know that the service 
and bindings are set up correctly:



Chapter 5

[ 1�3 ]

9. Our next step is to add the service reference to Silverlight. On the Silverlight project,
right-click on the References node and choose to Add a Service Reference:

10. On the dialog that opens, click the Discover button and choose the Services in
Solution option. Visual Studio will search the current solution for any services:



Handling Data

[ 1�4 ]

11. Visual Studio will find our CakeService and all we have to do is change the 
Namespace to something that makes sense such as Services and click 
the OK button:

12. We can see that Visual Studio has added some additional references and files to 
our project. Developers used to WCF or Web Services will notice the assembly 
references and the Service References folder:



Chapter 5

[ 1�5 ]

13. Silverlight creates a ServiceReferences.ClientConfig file that stores the 
configuration for the service bindings. If we open this file, we can take a look at the 
client side bindings to our WCF service. These bindings tell our Silverlight application 
how to connect to the WCF service and the URL where it is located:

<configuration>
    <system.serviceModel>
        <bindings>
            <customBinding>
                <binding name="CustomBinding_ICakeService">
                    <binaryMessageEncoding />
                    <httpTransport
maxReceivedMessageSize="2147483647" maxBufferSize="2147483647">
                        <extendedProtectionPolicy policyEnforcemen
t="Never" />
                    </httpTransport>
                </binding>
            </customBinding>
        </bindings>
        <client>
            <endpoint address="http://localhost:2268/Services/
CakeService.svc"
                binding="customBinding" bindingConfiguration="Cust
omBinding_ICakeService"
                contract="Services.ICakeService"
name="CustomBinding_ICakeService" />
        </client>
    </system.serviceModel>
</configuration>

What just happened?
We created a Windows Communication Foundation service that is Silverlight ready. In the 
process, we also followed the best practice guidelines by defining a service interface and a 
separate implementation. The service accepts a complex data object and writes the data to 
an XML file.

We included the AspNetCompatibilityRequirements attribute to the CakeService.
svc.cs class which is required in order to host a WCF service from within ASP.NET. We added 
to the class declaration rather than the interface, because it is implementation-specific and is 
only valid on class declarations.

We saw how easy it is to create a WCF service and add a service reference to a 
Silverlight application.



Handling Data

[ 1�6 ]

Collecting data
Now that we have created a business object and a WCF service, we are ready to collect 
data from the customer through our Silverlight application. Silverlight provides all of the 
standard input controls that .NET developers have come to know with Windows and ASP.NET 
development, and of course the controls are customizable through styles.

Time for action – creating a form to collect data
We will begin by creating a form in Silverlight for collecting the data from the client. In the 
last chapter, we created an Ink control to allow clients to draw their cake ideas and submit 
them. We are going to modify this page to include a submission form to collect the name, 
phone number, email address, and the date of event for the person submitting the sketch. 
This will allow the client (Cake O Rama) to contact this individual and follow up on a 
potential sale.

We'll change the layout of MainPage.xaml to include a form for user input. We will need 
to open the CakeORama project in Expression Blend and then open MainPage.xaml for
editing in the Blend art board.

1. Our Ink capture controls are contained within a Grid, so we will just add a column 
to the Grid and place our input form right next to the Ink surface. To add columns
in Blend, select the Grid from the Objects and Timeline panel, position your mouse 
in the highlighted area above the Grid and click to add a column:



Chapter 5

[ 1�7 ]

2. Blend will add a <Grid.ColumnDefinitions>  node to our XAML:

<Grid.ColumnDefinitions>

<ColumnDefinition Width="0.94*"/>

<ColumnDefinition Width="0.06*"/>

</Grid.ColumnDefinitions>

3. Blend also added a Grid.ColumnSpan="2" attribute to both the StackPanel
and InkPresenter controls that were already on the page.

4. We need to modify the StackPanel and inkPresenter, so that they do not span both
columns and thereby forcing us to increase the size of our second column. In Blend,
select the StackPanel from the Objects and Timeline panel: 

5. In the Properties panel, you will see a property called ColumnSpan with a value of 2.
Change this value to 1 and press the Enter key.



Handling Data

[ 1�� ]

6. We can see that Blend moved the StackPanel into the first column, and we now 
have a little space next to the buttons. 

7. We need to do the same thing to the inkPresenter control, so that it is also 
within the first column. Select the inkPresenter control from the Objects and 
Timeline panel:



Chapter 5

[ 1�� ]

8. Change the ColumnSpan from 2 to 1 to reposition the inkPresenter into the 
left column:

9. The inkPresenter control should be positioned in the left column and aligned with 
the StackPanel containing our ink sketch buttons: 

10. Now that we have moved the existing controls into the first column, we will change 
the size of the second column, so that we can start adding our input controls. We 
also need to change the overall size of the MainPage.xaml control to fit more 
information on the right side of the ink control.



Handling Data

[ 1�0 ]

11. Click on the [UserControl] in the Objects and Timeline panel, and then in the
Properties panel change the Width to 800:

12. Now we need to change the size of our grid columns. We can do this very easily in 
XAML, so switch to the XAML view in Blend by clicking on the XAML icon:

13. In the XAML view, change the grid column settings to give both columns an 
equal width: 

<Grid.ColumnDefinitions>

<ColumnDefinition Width="0.5*"/>

<ColumnDefinition Width="0.5*"/>

</Grid.ColumnDefinitions>

14. Switch back to the design view by clicking on the design button:



Chapter 5

[ 1�1 ]

15. Our StackPanel and inkPresenter controls are now positioned to the left of the 
page and we have some empty space to the right for our input controls:

16. Select the LayoutRoot control in the Objects and Timeline panel and then double-
click on the TextBlock control in the Blend toolbox to add a new TextBlock control:

17. Drag the control to the top and right side of the page:



Handling Data

[ 1�2 ]

18. On the Properties panel, change the Text of the TextBlock to Customer 
Information, change the FontSize to 12pt and click on the Bold indicator:

19. The MainPage.xaml should look like the following:

20. Double-click the TextBlock icon on the toolbox again and drop this into the top-left 
of column 2, row 2. 



Chapter 5

[ 1�3 ]

21. On the Properties panel, change the text of the TextBlock to Name. This will serve 
as the label for our Name textbox control:

22. Repeat this process, adding Phone Number, Email Address, and Date of Event
labels, and rearranging them on the page as illustrated. 

Duplicating Controls

If you click on a control in the Objects and Timeline panel, you can make a copy
of the control by holding down the Alt key, left-click the mouse, and drag the 
copy into the new position.



Handling Data

[ 1�4 ]

23. Right-click the TextBlock icon in the toolbox again and choose the TextBox control:

24. Double click the TextBox control, which adds a new textbox to the page. Drag this 
control next to our Name label and resize it to maximize the available space:

25. Name the textbox customerName in the Properties panel, and set its MaxLength
to 40. The MaxLength can be found by typing MaxLength in the search field of the
Properties panel:

26. Create textbox controls for both the Phone Number and Email Address fields and 
name them phoneNumber and emailAddress respectively; position them on the 
page next to the appropriate labels. Set the MaxLength of the phoneNumber field 
to 15 and the MaxLength of the emailAddress field to 120:



Chapter 5

[ 1�5 ]

27. To make date entry easier for our users, we will add a DatePicker control to our page
to allow the user to page through a calendar and select the date of their event. To 
add a DatePicker control, click the Assets button, type the word date into the
search field and select the DatePicker control:



Handling Data

[ 1�6 ]

28. Double-click on the DatePicker in the toolbox to add it to the page, drag the
DatePicker next to the TextBlock label for Date of Event and name the 
control eventDate:

29. Add a button control to the page, drag down below the input controls, name the 
button submitButton and change the Content of the control to Submit:



Chapter 5

[ 1�7 ]

30. Select our Submit button and in the Properties panel click on the Events icon:

31. Double-click inside of the Click event field to have Blend auto create the event 
handler for the button click event:

32. We added a new Submit button, so now we need to hide the Send Sketch button. 
Select the btnSend button from the Objects and Timeline panel:

33. Set the Visibility of the btnSend control to Collapsed:

Be sure to save your work throughout the development process, you would not 
want to lose all this effort!



Handling Data

[ 1�� ]

What just happened?
We modified an existing control and added several input controls in order to collect some 
information from a potential customer. We learned how to add columns to a Grid and 
used Blend to create an event handler for our submit button.

By using Blend, we are able to set up our input controls very quickly and have visual 
feedback of our progress the entire time. Hand coding of all this XAML, while possible, is 
just not what most developers are going to want to spend their time doing, not when 
there is code to write!

Validating data
With Silverlight, data validation has been fully implemented, allowing controls to be bound 
to data objects and those data objects to handle the validation of data and provide feedback 
to the controls via the Visual State Machine.

The Visual State Machine is a feature of Silverlight used to render to views of a control based 
on its state. For instance, the mouse over state of a button can actually change the color of 
the button, show or hide parts of the control, and so on.

Controls that participate in data validation contain a ValidationStates group that includes
a Valid, InvalidUnfocused, and InvalidFocused states. We can implement custom styles for 
these states to provide visual feedback to the user.

Data object
In order to take advantage of the data validation in Silverlight, we need to create a data 
object or client side business object that can handle the validation of data.

Time for action – creating a data object
We are going to create a data object that we will bind to our input form to provide validation. 
Silverlight can bind to any properties of an object, but for validation we need to do two 
way binding, for which we need both a get and a set accessor for each of our properties. In 
order to use two way binding, we will need to implement the INotifyPropertyChanged
interface that defines a PropertyChanged event that Silverlight will use to update the 
binding when a property changes.



Chapter 5

[ 1�� ]

1. Firstly, we will need to switch over to Visual Studio and add a new class named 
CustomerInfo to the Silverlight project:

2. Replace the body of the CustomerInfo.cs file with the following code:

using System; 
using System.ComponentModel;

namespace CakeORamaData
{
  public class CustomerInfo : INotifyPropertyChanged
  {
    public event PropertyChangedEventHandler PropertyChanged =
delegate { };

    private string _cutomerName = null;
    public string CustomerName
    {
      get { return _cutomerName; }
      set
      {
        if (value == _cutomerName)
          return;

        _cutomerName = value;

        OnPropertyChanged("CustomerName");
      }
    }

    private string _phoneNumber = null;
    public string PhoneNumber
    {
      get { return _phoneNumber; }
      set



Handling Data

[ 200 ]

      {
        if (value == _phoneNumber)
          return;

        _phoneNumber = value;

        OnPropertyChanged("PhoneNumber");
      }
    }

    private string _email = null;
    public string Email
    {
      get { return _email; }
      set
      {
        if (value == _email)
          return;

        _email = value;

        OnPropertyChanged("Email");
      }
    }

    private DateTime _eventDate = DateTime.Now.AddDays(7);
    public DateTime EventDate
    {
      get { return _eventDate; }
      set
      {
        if (value == _eventDate)
          return;

        _eventDate = value;

        OnPropertyChanged("EventDate");
      }
    }
            
    private void OnPropertyChanged(string propertyName)
    {
      PropertyChanged(this, new PropertyChangedEventArgs 
      (propertyName));
    }
  }
}



Chapter 5

[ 201 ]

Code Snippets

Code snippets are a convenient way to stub out repetitive code and increase 
productivity, by removing the need to type a bunch of the same syntax over 
and over.

The following is a code snippet used to create properties that execute the 
OnPropertyChanged method and can be very useful when implementing 
properties on a class that implements the INotifyPropertyChanged interface.

To use the snippet, save the file as propnotify.snippet to your hard drive.

In Visual Studio go to Tools | Code Snippets Manager (Ctrl + K, Ctrl + B) and click 
the Import button. Find the propnotify.snippet file and click Open, this will 
add the snippet.

To use the snippet in code, simply type propnotify and hit the Tab key; a property
will be stubbed out allowing you to change the name and type of the property.

<?xml version="1.0" encoding="utf-8" ?>
<CodeSnippets  xmlns="http://schemas.microsoft.com/
VisualStudio/2005/CodeSnippet">
    <CodeSnippet Format="1.0.0">
        <Header>
            <Title>propnotify</Title>
            <Shortcut>propnotify</Shortcut>
            <Description>Code snippet for a property that raises  
             the PropertyChanged event in a class.</Description>
            <Author>Cameron Albert</Author>
            <SnippetTypes>
                <SnippetType>Expansion</SnippetType>
            </SnippetTypes>
        </Header>
        <Snippet>
            <Declarations>
                <Literal>
                    <ID>type</ID>
                    <ToolTip>Property type</ToolTip>
                    <Default>int</Default>
                </Literal>
                <Literal>
                    <ID>property</ID>
                    <ToolTip>Property name</ToolTip>



Handling Data

[ 202 ]

                    <Default>MyProperty</Default>
                </Literal>
                <Literal>
                    <ID>field</ID>
                    <ToolTip>Private field</ToolTip>
                    <Default>_myProperty</Default>
                </Literal>
                <Literal>
                    <ID>defaultValue</ID>
                    <ToolTip>Default Value</ToolTip>
                    <Default>null</Default>
                </Literal>
            </Declarations>
            <Code Language="csharp">
                <![CDATA[private $type$ $field$ = $defaultValue$;
    public $type$ $property$
        {
            get { return $field$; }
            set
            {
                if (value == $field$)
                    return;

                $field$ = value;

                OnPropertyChanged("$property$");
            }
        }
            $end$]]>
            </Code>
        </Snippet>
    </CodeSnippet>
</CodeSnippets>

What just happened?
We created a data object or client-side business object that we can use to bind to our 
input controls.

We implemented the INotifyPropertyChanged interface, so that our data object can
raise the PropertyChanged event whenever the value of one of its properties is changed. 
We also defined a default delegate value for the PropertyChanged event to prevent 
us from having to do a null check when raising the event. Not to mention we have a nice 
snippet for stubbing out properties that raise the PropertyChanged event.



Chapter 5

[ 203 ]

Now we will be able to bind this object to Silverlight input controls and the controls can 
cause the object values to be updated so that we can provide data validation from within our 
data object, rather than having to include validation logic in our user interface code.

Data binding
Binding data is one of the most powerful features of .NET Windows and ASP.NET 
programming, and Silverlight was not left out. Silverlight provides a Binding class due to
which any property of an object can be bound to any DependencyProperty of a control.

Because Silverlight controls are defined in XAML, the Binding class can also be defined in 
XAML using a Binding Expression, which is just a XAML way of declaring a Binding class.

Time for action – binding our data object to our controls
We are going to bind our CustomerInfo object to our data entry form, using Blend. Be sure
to build the solution before switching back over to Blend.

1. With MainPage.xaml open in Blend, select the LayoutRoot control. In the
Properties panel enter DataContext in the search field and click the New button:

2. In the dialog that opens, select the CustomerInfo class and click OK:



Handling Data

[ 204 ]

3. Blend will set the DataContext of the LayoutRoot to an instance of 
a CustomerInfo class:

4. Blend inserts a namespace to our class; set the Grid.DataContext in the XAML 
of MainPage.xaml:

xmlns:local="clr-namespace:CakeORamaData"

<Grid.DataContext>

  <local:CustomerInfo/>

</Grid.DataContext>

5. Now we will bind the value of CustomerName to our customerName textbox. 
Select the customerName textbox and then on the Properties panel enter Text in
the search field. Click on the Advanced property options icon, which will open  
a context menu for choosing an option:



Chapter 5

[ 205 ]

6. Click on the Data Binding option to open the Create Data Binding dialog:

7. In the Create Data Binding dialog (on the Explicit Data Context tab), click the arrow 
next to the CustomerInfo entry in the Fields list and select CustomerName:

8. At the bottom of the Create Data Binding dialog, click on the Show advanced 
properties arrow to expand the dialog and display additional binding options:



Handling Data

[ 206 ]

9. Ensure that TwoWay is selected in the Binding direction option and that Update
source when is set to Explicit. This creates a two-way binding, meaning that when 
the value of the Text property of the textbox changes the underlying property,
bound to Text will also be updated. In our case the customerName property of 
the CustomerInfo class:

10. Click OK to close the dialog; we can now see that Blend indicates that this property 
is bound by the yellow border around the property input field:

11. Repeat this process for both the phoneNumber and emailAddress textbox controls,
to bind the Text property to the PhoneNumber and Email properties of the 
CustomerInfo class. You will see that Blend has modified our XAML using the 
Binding Expression: 

<TextBox x:Name="customerName" Margin="94,8,8,0" Text="{Binding 
CustomerName, Mode=TwoWay, UpdateSourceTrigger=Explicit}"
TextWrapping="Wrap" VerticalAlignment="Top" Grid.Column="1" Grid.
Row="1" MaxLength="40"/>

12. In the Binding Expression code the Binding is using the CustomerName property
as the binding Path. The Path (Path=CustomerName) attribute can be omitted since 
the Binding class constructor accepts the path as an argument.



Chapter 5

[ 207 ]

13. The UpdateSourceTrigger is set to Explicit, which causes any changes in the 
underlying data object to force a re-bind of the control.

14. For the eventDate control, enter SelectedDate into the Properties panel search
field and following the same process of data binding, select the EventDate property
of the CustomerInfo class. Remember to ensure that TwoWay/Explict binding is
selected in the advanced options:

What just happened?
We utilized Silverlight data binding to bind our input controls to properties of our 
CustomerInfo class. In the process, we setup the binding to be two way, allowing the 
controls to set the property values of the CustomerInfo class, thus removing the need 
to add a bunch of text changed event handlers to manually do it ourselves, saving us more
time in development.

We also had a chance to see how much time using Blend can save and how easy it is to add 
data bindings to controls. We saw the Binding Expression syntax used to define a Binding
in XAML and also how to setup a Binding so that changes to the underlying object cause
the control to re-bind the value.

Validation
Before we submit information to the server using our WCF service, we need to validate the 
data input from the user and provide feedback to the user if invalid information is supplied.

Silverlight can report a validation error in one of three scenarios:

Exceptions thrown from the binding type converter

Exceptions thrown from the binding object's set accessor

Exceptions thrown from one of the validation attributes found in the 
DataAnnotations assembly

We will focus on the set accessor method as this provides the simplest way to get our 
data validated.









Handling Data

[ 20� ]

Time for action – validating data input
We will make use of some additional properties of Binding to allow the controls to display 
the validation states. Blend does not provide a visual way for us to add these additional 
properties so we have to do it manually in XAML.

1. Switch to the XAML view of the MainPage.xaml in Blend and scroll down to where 
our textbox controls are located.

2. Within the Binding Expression (between the { and } of the Binding), add the
following two attributes to each one of the bindings on our input controls:

{Binding CustomerName, Mode=TwoWay, UpdateSourceTrigger=Explicit, 
NotifyOnValidationError=True, ValidatesOnExceptions=True }

3. The NotifyOnValidationError and ValidatesOnException will both cause 
the control to display an error message if a validation or exception error occurs 
when the value of the bound property changes.

4. Now we need to modify our data object to provide validation in the set 
accessor of each property. Change the CustomerInfo.cs file to implement 
our property validation: 

using System;
using System.ComponentModel; 
using System.Text.RegularExpressions;

namespace CakeORamaData
{
  public class CustomerInfo : INotifyPropertyChanged
  {
    private static Regex RegexPhoneNumber = new Regex(@"((\(\
d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}", RegexOptions.Multiline);
    private static Regex RegexEmail = new Regex(@"^([\w\-
\.]+)@((\[([0-9]{1,3}\.){3}[0-9]{1,3}\])|(([\w\-]+\.)+)([a-zA-
Z]{2,4}))$", RegexOptions.Multiline | RegexOptions.IgnoreCase);

    public event PropertyChangedEventHandler PropertyChanged =
delegate { };

    private string _cutomerName = null;
    public string CustomerName
    {
      get { return _cutomerName; }
      set
      {



Chapter 5

[ 20� ]

        if (value == _cutomerName)
          return;

        if (String.IsNullOrEmpty(value))
          throw new ArgumentException("Customer Name is  
          required.");

        if (value.Length < 3 || value.Length > 40)
          throw new ArgumentException("Customer Name must be at  
           least 3 characters and not more than 40 characters  
           in length.");

        _cutomerName = value;

        OnPropertyChanged("CustomerName");
      }
    }

    private string _phoneNumber = null;
    public string PhoneNumber
    {
      get { return _phoneNumber; }
      set
      {
        if (value == _phoneNumber)
          return;

        if (String.IsNullOrEmpty(value))
          throw new ArgumentException("Phone Number is  
          required.");

        if (!RegexPhoneNumber.IsMatch(value))
          throw new ArgumentException("A valid phone number in the  
          format (XXX) XXX-XXXX or XXX-XXX-XXXX is required.");

        _phoneNumber = value;

        OnPropertyChanged("PhoneNumber");
      }
    }

    private string _email = null;
    public string Email
    {
      get { return _email; }



Handling Data

[ 210 ]

      set
      {
        if (value == _email)
          return;

        if (String.IsNullOrEmpty(value))
          throw new ArgumentException("Email Address is  
          required.");

        if (!RegexEmail.IsMatch(value))
          throw new ArgumentException("A valid email address is  
          required.");

        _email = value;

        OnPropertyChanged("Email");
      }
    }

    private DateTime _eventDate = DateTime.Now.AddDays(7);
    public DateTime EventDate
    {
      get { return _eventDate; }
      set
      {
        if (value == _eventDate)
          return;

        _eventDate = value;

        OnPropertyChanged("EventDate");
      }
    }
            
    private void OnPropertyChanged(string propertyName)
    {
      PropertyChanged(this, new PropertyChangedEventArgs 
      (propertyName));
    }
  }
}



Chapter 5

[ 211 ]

5. Open the MainPage.xaml.cs file and in the constructor add the following code to 
set the LayoutRoot.DataContext with a new instance of CustomerInfo:

public MainPage()
{
  this.Loaded += new RoutedEventHandler(MainPage_Loaded);
  InitializeComponent();
}

private void MainPage_Loaded(object sender, RoutedEventArgs e)
{
  LayoutRoot.DataContext = new CustomerInfo();
}

6. Also within the MainPage.xaml file in the submitButton_Click event handler,
we will add code to force validation of our data object: 

private void submitButton_Click(object sender, System.Windows.
RoutedEventArgs e)
{
  var bindingExpression = customerName.GetBindingExpression(TextBo
x.TextProperty);
  bindingExpression.UpdateSource();

  bindingExpression = phoneNumber.GetBindingExpression(TextBox.
TextProperty);
  bindingExpression.UpdateSource();

  bindingExpression = emailAddress.GetBindingExpression(TextBox.
TextProperty);
  bindingExpression.UpdateSource();
}

7. In Visual Studio, choose Debug | Start without Debugging from the file menu. We 
are not going to debug because our properties throw exceptions and we just want to 
see the result. Just click the Submit button and all the textbox controls will highlight 
with red borders:



Handling Data

[ 212 ]

8. If you hover over the small arrow in the top-right corner of the textbox you will see 
the error message from the data object:

What just happened?
We implemented simple data validation in our objects and let the built in Silverlight binding 
process handle the rest by including some additional attributes in the Binding Expression.
We implemented the INotifyPropertyChanged interface in our data object so that 
the data will be re-bound whenever the values are changed. We also made use of regular 
expressions to ensure that the phone number and email address are in a valid format.

Data submission
Data collected from users does not provide a benefit unless the user can submit it and we 
can store the information for later retrieval. The ability to analyze and report on the data is 
how businesses acquire and maintain clients and customers, which is where the profits are 
derived from.

Time for action – submitting data to the server
Now that we have setup a form for data input and validated the data, we can now submit the 
data to the server using our WCF service. We need to submit the information to the server in 
order for the sales staff of Cake O Rama to be able to review and contact the customer.

1. Switch back over to Visual Studio, open the MainPage.xaml.cs file and then add 
the following to the using statements: 

using CakeORamaData.Services;

2. At the bottom of this file add the ConvertStrokesToStrokeInfoArray method.
This method will convert the Silverlight Stroke objects from the inkPresenter
to StrokeInfo objects as defined by our WCF service: 

private ObservableCollection<StrokeInfo> 
ConvertStrokesToStrokeInfoArray()
{



Chapter 5

[ 213 ]

  var strokeCollection = new ObservableCollection<StrokeInfo>();

  foreach (Stroke stroke in this.inkPresenter.Strokes)
  {
    var strokeInfo = new StrokeInfo
    {
      Width = stroke.DrawingAttributes.Width,
      Height = stroke.DrawingAttributes.Height,
      Color = new byte[]
        {
          stroke.DrawingAttributes.Color.A, 
          stroke.DrawingAttributes.Color.R, 
          stroke.DrawingAttributes.Color.G, 
          stroke.DrawingAttributes.Color.B
        },
      OutlineColor = new byte[]
        {
          stroke.DrawingAttributes.OutlineColor.A, 
          stroke.DrawingAttributes.OutlineColor.R, 
          stroke.DrawingAttributes.OutlineColor.G, 
          stroke.DrawingAttributes.OutlineColor.B
        }
    };
    strokeCollection.Add(strokeInfo);

    var pointCollection = new ObservableCollection 
      <StylusPointInfo>();
    strokeInfo.Points = pointCollection;
    foreach (StylusPoint point in stroke.StylusPoints)
    {
      var pointInfo = new StylusPointInfo
      {
        X = point.X,
        Y = point.Y
      };
      pointCollection.Add(pointInfo);
    }
  }
  return strokeCollection;
}



Handling Data

[ 214 ]

Note here that when we added a reference to the WCF service, our 
StrokeInfo[] array on the CustomerCakeIdea object was converted to 
a System.Collections.ObjectModel.ObservableCollection<S
trokeInfo> by Silverlight.

3. Go to the submitButton_Click method and modify it to resemble the 
following code: 

private void submitButton_Click(object sender, System.Windows.
RoutedEventArgs e)
{
  var bindingExpression = customerName.GetBindingExpression(TextBo
x.TextProperty);
  bindingExpression.UpdateSource();

  bindingExpression = phoneNumber.GetBindingExpression(TextBox.
TextProperty);
  bindingExpression.UpdateSource();

  bindingExpression = emailAddress.GetBindingExpression(TextBox.
TextProperty);
  bindingExpression.UpdateSource();

  if (!Validation.GetHasError(customerName)
    && !Validation.GetHasError(phoneNumber)
    && !Validation.GetHasError(emailAddress))
  {
    var info = LayoutRoot.DataContext as CustomerInfo;

    var idea = new CustomerCakeIdea
    {
      CustomerName = info.CustomerName,
      PhoneNumber = info.PhoneNumber,
      Email = info.Email,
      EventDate = info.EventDate,
      Strokes = ConvertStrokesToStrokeInfoArray()
    };

    var client = new CakeServiceClient();
    client.SubmitCakeIdeaCompleted += new EventHandler 
     <AsyncCompletedEventArgs>(OnCakeIdeaSubmissionComplete);  
     client.SubmitCakeIdeaAsync(idea);
  }
}



Chapter 5

[ 215 ]

4. Add the following method to handle the SubmitCakeIdeaCompleted event to 
display a MessageBox once the submission is complete: 

private void OnCakeIdeaSubmissionComplete(object sender, 
AsyncCompletedEventArgs e)

{

  MessageBox.Show("Sketch has been submitted.");

}

Now we will test out our cake idea submission form and process. Build and run the 
solution in Visual Studio and when the Silverlight application loads in the browser 
input some information and draw a cake sketch:

5. When we submit the information to the server, we will get a MessageBox telling us 
that we submitted the information, as shown in the next screenshot:



Handling Data

[ 216 ]

6. Open Windows Explorer and navigate to the path that we setup in the WCF service 
for storing the customer XML files, and open the newly submitted file. We should 
now have the data from the cake sketch and customer information in our XML file.

If we open the XML file, we should see the saved customer and ink stroke information:

<?xml version="1.0" encoding="utf-8"?> 

<customer name="John Doe" phone="555-555-5555" email="jdoe@ 
somewhere.com">

  <eventDate>2009-10-04T16:03:41.0966771-04:00</eventDate>

  <strokes>

    <stroke width="3" height="3">

      <color a="255" r="0" g="0" b="0" />

      <outlineColor a="0" r="0" g="0" b="0" />

      <points>

        <point x="92" y="189" />

        <point x="91" y="192" />

        <point x="90" y="197" />

        <point x="89" y="199" />

        <point x="88" y="208" />

        <point x="88" y="210" />

        <point x="88" y="212" />

        <point x="88" y="213" />

      </points>

  </strokes>

</customer>

What just happened?
We placed code in the MainPage.xaml.cs file to ensure that all of our text input controls 
did not have any validation errors, by making use of the Validation class.

We made use of the CustomerCakeIdea business object to store the customer input 
and ink stroke data and sent that information to the server via the WCF service, where we 
saved the information to an XML file for later use by the sales staff. We used an anonymous 
delegate to handle the asynchronous response from the WCF service and utilized a 
messagebox to inform the user of the successful submission.



Chapter 5

[ 217 ]

Summary
In this chapter, we covered the process of collecting and handling data input from a 
customer and saving that input on the server. We also looked at how to bind data to control 
properties and how to provide simple data validation using the built in visual states provided 
in the textbox control. We discussed the following:

How to create a Windows Communication Foundation service

How to mark a business object for serialization in WCF

How to create an input form in Silverlight

How to create a data object for use with binding

How to bind data from a data object to Silverlight controls

How to provide input validation using the built-in validation states

How to consume a WCF in Silverlight and process an asynchronous request

In the next chapter, we will learn how to leverage the WCF RIA services to build a common 
middle tier, access saved data using RIA services, add Silverlight support to a SharePoint site, 
and access SharePoint data from Silverlight.



















6
Back Office Applications

Data storage is always a major concern with business applications, after 
all, what good is collecting data if you cannot access it and consume it for 
reporting, sales forecasts, and so on.

Silverlight opens up some new avenues for data communication and storage 
by utilizing Windows Communication Foundation services, WCF Rich Internet 
Application Services, or SharePoint Services to transmit and store data.

In this chapter, we shall:

Leverage the WCF RIA Services to build a common middle tier

Access the data we saved from the previous chapter using RIA Services

Add Silverlight support to a SharePoint site

Access SharePoint data from Silverlight

WCF Rich Internet Application (RIA) Services
The Silverlight framework is termed a Rich Internet Application or RIA for short. Microsoft 
has provided a pattern that can be used in connection with ASP.NET to provide a common 
middle tier. Complex business applications typically make use of data and business layers 
along with service layers to pass data across tiers. These layers or tiers can become complex 
over time, and WCF RIA Services provides a pattern for utilizing best practices in web and 
service development to provide maintainable and extendable application logic.











Back Office Applications

[ 220 ]

By providing a common middle tier and separating presentation logic from business logic we 
can ensure that both our website and our Silverlight application will be accessing and using 
our data in the same manner. Typical applications require developers to either duplicate 
application logic on both the client and server or use the linking feature of Visual Studio  
to share files between projects. 

For instance, if we were to create a database table to hold customers and a customer data 
object in our web application project we would also need to re-create that same file in our 
Silverlight application. If we were sharing the files using the Add as Link feature, we 
might also need to make the customer class partial and split up some of the logic to handle 
both server and client side requirements. On the server, our customer class might include 
a property that accesses data from the database or Data Access Layer (DAL). We could not 
include that property on the client, since the DAL does not exist on the client. In this scenario
we would have to spilt the customer file into both a client and server version. 

WCF RIA Services bridges this gap and creates the client code automatically, ignoring the 
properties that we do not want included via simple attributes.

The below diagram outlines the role of RIA Services in a Silverlight/Web Application scenario:

App LogicViews

Silverlight Application Internet/Network

Data Access
Layer(DAL)

Database

Web Application

WCF RIA Services

App Logic

WCF RIA Services is designed to work with various data storage mechanisms, from relational 
databases to Plain Old CLR Objects (POCO).

Time for action – creating a RIA Services application
We are going to create a WCF RIA Services application to read the customer information and 
sketch details we setup in the last chapter.

1.	 We need to download the free WCF RIA Services package in order to get started. The 
official Silverlight website will always contain the latest downloads for all Silverlight 
related tools. Visit http://silverlight.net/riaservices/ and click on the
Download WCF RIA Services link.



Chapter 6

[ 221 ]

2.	 Install WCF RIA Services:

3.	 Start Visual Studio and on the File menu, choose New, and then Project. In the
New Project Dialog, select Silverlight Business Application and name the project
CakeORamaApp and click OK.

The Silverlight Business Application template will add a Silverlight project and an 
ASP.NET project. The default installation requires SQL Server Express and Visual 
Studio to be installed on the same machine. 

The Silverlight Business Application template generates code and XAML 
files for a basic business application. The XAML files that are created and 
placed into the Views folder include Home, About, ErrorWindow, LoginForm,
LoginRegistrationWindow, LoginStatus, and RegistrationForm. In addition, code 
files are placed in the Models, Helpers, and Controls folders, along with some 
resource files. 



Back Office Applications

[ 222 ]

A file called Styles.xaml is placed in the Assets folder to hold the styles for the
application, as shown in the following screenshot:

If SQL Server Express is installed, a default membership database will be created 
the first time you register a user.



Chapter 6

[ 223 ]

4.	 Run the application to see the default layout and pages:

5.	 Open the Assets|Resources|ApplicationStrings.resx file and change the 
ApplicationName value to Cake O Rama:

6.	 We will add a new page to our application that will enable us to view information 
submitted by customers. To do this, we need to right-click on the Views folder in the
Silverlight CakeORamaApp project in Solution Explorer, and choose Add, then New
Item. In the Add New Item dialog box select the Silverlight Page. Name the page
Submissions.xaml and click Add.

7.	 A Silverlight Page is part of the Silverlight Navigation Framework, which allows us 
to provide a frame in which to display pages much like an iframe in HTML.

8.	 Open the MainPage.xaml file and find the following code segment:

<Rectangle 
  x:Name="Divider1" 
  Style="{StaticResource DividerStyle}"/>
<HyperlinkButton 
  x:Name="Link2" 
  Style="{StaticResource LinkStyle}" 
  NavigateUri="/About" 
  TargetName="ContentFrame" 
  Content="{Binding Path=ApplicationStrings.AboutPageTitle,
Source={StaticResource ResourceWrapper}}"/>



Back Office Applications

[ 224 ]

9.	 We will add a navigation link to our page by adding the following code just below 
the previous code segment: 

<Rectangle 
  x:Name="Divider2" 
  Style="{StaticResource DividerStyle}"/>
<HyperlinkButton 
  x:Name="Link3" 
  Style="{StaticResource LinkStyle}" 
  NavigateUri="/Submissions" 
  TargetName="ContentFrame" 
  Content="submissions"/>

10.	 If we build and run our solution, we should see a new navigation button 
called submissions.

11.	Right-click on the Submissions.xaml file and choose Open in Expression Blend:



Chapter 6

[ 225 ]

12.	We are going to create a page that can display a list of the customer submissions, 
and when an item is selected, it can display the details of each submission. For that, 
we will use a grid divided into two columns. The left column will be our list and the 
right column will display the selected item details. Open the Submissions.xaml
page and add a column to the default LayoutRoot grid.

13.	Click on the Button icon in the toolbox and hold the left button down. When the 
menu appears displaying other controls, select the ListBox control:

14.	Double click on the ListBox icon in the toolbar to add a new listbox to our page, into 
the left column of our grid automatically. If we wanted to move it into a different 
column, we can simply drag it into the column or row of the grid:



Back Office Applications

[ 226 ]

15.	Name the listbox SubmissionList, right-click on the new listbox control, choose 
AutoSize and then Fill; this makes the listbox fill the entire column and row. This 
is equivalent to setting the HorizontalAlignment and VerticalAlignment 
to Stretch:

16.	Change the Background of the SubmissionList to the following gradient with 
a left color value of #FF0D293F and a right color value of #FF284053:



Chapter 6

[ 227 ]

17.	Change the Foreground of the SubmissionList to #FFFFFFFF.

18.	Because we will be viewing the information that was submitted by customers and 
it includes an ink sketch, we need to add an InkPresenter control to the right
column. Click on the Assets button and type ink into the search field. Select the 
InkPresenter control and then double-click on the InkPresenter in the toolbar to
add a new instance to our page. Name the InkPresenter SketchInk, change the
Background to #FFFFFFFF and position it into the left column of the grid as follows:

Be sure that the LayoutRoot is selected in the Objects and Timeline panel before
double-clicking on controls on the toolbar as Blend will add the new control as a 
child of the selected control.

19.	Change the properties of the SketchInk control to the following:



Back Office Applications

[ 22� ]

20.	Add the following series of TextBlock controls below the SketchInk control and
change the Text properties to reflect the labels:

Remember that in Blend Alt + Click and Drag will make a copy 
of the selected control.

21.	There is no need to worry about the black text, our page background is white, so it 
will look fine when the application is running.

22.	Now we will add a series of labels that will display the results of the selected item. 
Add four more TextBlock controls and name them Customer Name, Phone 
Number, Email Address, and Date of Event. Change the color of the Text to
#FF136EDA and position the controls as follows:

23.	Save your work, switch back over to Visual Studio and press Yes to All on the dialog
box that pops up in Visual Studio. In Solution Explorer, right-click on the Services
folder of the CakeORamaApp.Web project and choose Add, New Item. In the Add
New Item dialog box select Domain Service Class from the Web Categories and
name it CustomerSubmissionService.



Chapter 6

[ 22� ]

24.	On the Add New Domain Service class dialog ensure the following options are 
selected and click OK:

RIA Services and ADO.NET Entity Framework work very well together when data 
is stored in a SQL Server database. Since our data was stored in an XML file we 
will not need the Entity Framework. We will cover RIA Services and the Entity 
Framework in the next chapter.

25.	Add a new class to the Services folder of the CakeORama.Web project 
called CustomerSubmission.



Back Office Applications

[ 230 ]

26.	Replace the code in the CustomerSubmission.cs file with the following:

using System;
using System.ComponentModel.DataAnnotations;

namespace CakeORamaApp.Web.Services
{
  public class CustomerSubmission
  {
     [Key]
    public string CustomerName { get; set; }
    public string PhoneNumber { get; set; }
    public string Email { get; set; }
    public DateTime EventDate { get; set; }
    public string Strokes { get; set; } 
  }
}

27.	The CustomerSubmission class will serve as our domain object that we can use 
to communicate between Silverlight and our ASP.NET application.

28.	The Strokes property is a string that contains the XML for the strokes and points. 
We use a string because RIA Services can handle primitive types much easier than 
complex types when using POCO.

29.	Open the CustomerSubmissionService.cs file and replace the code with 
the following: 

namespace CakeORamaApp.Web 
{
  using System;
  using System.Collections.Generic;
  using System.IO;
  using System.Web.DomainServices;
  using System.Web.Ria;
  using System.Xml.Linq;

  [EnableClientAccess()]
  public class CustomerSubmissionService : DomainService
  {
    private static string SubmissionDirectory =  
     @"C:\Projects\CakeORama\Customer\Data\";

    public IEnumerable<CustomerSubmission> GetSubmissions()
    {
      var submissions = new List<CustomerSubmission>();
      var files = Directory.GetFiles(SubmissionDirectory);
      foreach (var file in files)



Chapter 6

[ 231 ]

      {
        var submission = new CustomerSubmission();
        submissions.Add(submission);

        // Customer
        var customerRoot = XElement.Load(file);
        submission.CustomerName = customerRoot.Attribute("name"). 
        Value;
        submission.Email = customerRoot.Attribute("email").Value;
        submission.PhoneNumber = customerRoot.Attribute("phone"). 
        Value;
        submission.EventDate = DateTime.Parse(customerRoot. 
        Element("eventDate").Value);
        submission.Strokes = customerRoot.Element("strokes"). 
        ToString();
      }
      return submissions;
    }
  }
}

30.	What we are doing here is reading the XML files that we saved from the previous 
chapter containing the data submitted by the customer and loading the data into 
a list of our CustomerSubmission objects.

31.	Next we'll build the solution; this will cause Visual Studio to generate client code 
and add a Generated_Code folder to the Silverlight project. Visual Studio generates
the code required to access data from the server, hiding the underlying WCF 
implementation, and generating the proxy classes. Using RIA Services we do not 
need to implement a separate WCF service or deal with data class duplication, 
saving us time and effort with building and testing a WCF service and related 
wire-up code. The folder is initially hidden but can be viewed by enabling the 
Show All Files option in Solution Explorer.



Back Office Applications

[ 232 ]

32.	Open the Submissions.xaml.cs file and replace the existing code with the 
following code: 

using System.Windows.Controls;
using System.Windows.Navigation;

using CakeORamaApp.Web.Services;

namespace CakeORamaApp.Views
{
  public partial class Submissions : Page
  {
    public Submissions()
    {
      InitializeComponent();
    }

    // Executes when the user navigates to this page.
    protected override void OnNavigatedTo(NavigationEventArgs e)
    {
      var context = new CustomerSubmissionContext();
  context.Load<CustomerSubmission>(context.GetSubmissionsQuery());
      SubmissionList.ItemsSource = context.CustomerSubmissions;
    }

  }
}

33.	Build and run the solution, navigate to the Submissions page, and we can see that 
our customers are being loaded in the listbox.



Chapter 6

[ 233 ]

34.	Switch back over to Blend and open the Submissions.xaml page. Add an event
handler to the SubmissionList listbox for the SelectionChanged event.

35.	Switch back over to Visual Studio, press Yes to All on the dialog box that is 
displayed and add a reference to System.Xml.Linq in the CakeORama.App
Silverlight project:



Back Office Applications

[ 234 ]

36.	Replace the using section at the top of the Submissions.xaml.cs file with 
the following: 

using System;
using System.Windows.Controls;
using System.Windows.Ink; 
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Navigation;
using System.Xml.Linq; 
using CakeORamaApp.Web.Services;

37.	Replace the SubmissionList_SelectionChanged event handler of the
Submissions.xaml.cs file with the following code: 

private void SubmissionList_SelectionChanged(object sender, 
System.Windows.Controls.SelectionChangedEventArgs e)
{
  if (e.AddedItems.Count == 0) return;

  var submission = e.AddedItems[0] as CustomerSubmission;
  if (submission == null) return;

  CustomerName.Text = submission.CustomerName;
  PhoneNumber.Text = submission.PhoneNumber;
  EmailAddress.Text = submission.Email;
  DateOfEvent.Text = submission.EventDate.ToShortDateString();

  var strokes = new StrokeCollection();

  var xml = XElement.Parse(submission.Strokes);
  foreach (var strokeElement in xml.Elements("stroke"))
  {
    var stroke = new Stroke();
    strokes.Add(stroke);

    stroke.DrawingAttributes.Width = Double.Parse(strokeElement. 
     Attribute("width").Value);
    stroke.DrawingAttributes.Height = Double.Parse(strokeElement. 
     Attribute("height").Value);

    var colorElement = strokeElement.Element("color");
    stroke.DrawingAttributes.Color = Color.FromArgb(
      Byte.Parse(colorElement.Attribute("a").Value),
      Byte.Parse(colorElement.Attribute("r").Value),
      Byte.Parse(colorElement.Attribute("g").Value),
      Byte.Parse(colorElement.Attribute("b").Value));



Chapter 6

[ 235 ]

    var outlineColorElement = strokeElement. 
    Element("outlineColor");
    stroke.DrawingAttributes.OutlineColor = Color.FromArgb(
      Byte.Parse(outlineColorElement.Attribute("a").Value),
      Byte.Parse(outlineColorElement.Attribute("r").Value),
      Byte.Parse(outlineColorElement.Attribute("g").Value),
      Byte.Parse(outlineColorElement.Attribute("b").Value));

    var points = new StylusPointCollection();
    stroke.StylusPoints = points;

    foreach (var pointElement in strokeElement.Element("points"). 
    Elements("point"))
    {
      points.Add(new StylusPoint(Double.Parse(pointElement. 
      Attribute("x").Value),
        Double.Parse(pointElement.Attribute("y").Value)));
    }

  }
  SketchInk.Strokes = strokes;}

38.	Build and run the solution, we should now see the cake sketch that was submitted 
when we click on a customer record in the listbox:



Back Office Applications

[ 236 ]

What just happened?
We utilized the WCF RIA Services framework to create a common middle tier that is shared 
between Silverlight and ASP.NET. We loaded the XML that we had saved from the previous 
chapter, so that the customer service representatives from Cake O Rama can view the 
information submitted by customers.

We got to see how easy it was to setup RIA Services and how our business objects on the 
server can be auto generated on the client, removing the tedious step of duplicating objects 
in ASP.NET and Silverlight.

Because we used the Silverlight Business Application template, we got the added benefit 
of a stubbed out customer service application complete with user authentication.

Have a go hero – styling the listbox
When we bound the CustomerSubmission data to our ListBox we used the default view, 
which just renders the object name and the property marked with the [Key] attribute. 
While this is fine for testing we should provide a cleaner look to the list.

1. Start Expression Blend with the CakeORama solution and open the 
Sumissions.xaml file. Click on the SubmissionsList control in the Objects and 
Timeline panel, then click on the breadcrumb at the top of the artboard, just under
the File Name tab and create a new DataTemplate for the generated items:

2. Name the template SubmissionListItemTemplate and save it locally:



Chapter 6

[ 237 ]

3. Add a textblock to the grid of the template, set the font size to 10pt and change the
Foreground to #FFFFFFFF:

4. Set the Databinding of the Text property of the textblock to CustomerName,
so that this property will bind to the CustomerName property of the
CustomerSubmission object:

5. Save the Submissions.xaml page, build and run the solution, and our list should 
now display the value of the CustomerName field that we configured in the data 
binding options:



Back Office Applications

[ 23� ]

SharePoint
Microsoft Office SharePoint is a collaboration tool useful for content management, search 
and information sharing within or across organizations. With the list management and 
document storage capabilities, SharePoint can provide a central portal for employees of an 
organization, allowing for one location in which to keep important company information, 
client lists, and sales data.

We can utilize Silverlight in our SharePoint applications to spice them up and for improving 
the user experience. We can also consume SharePoint data from within our Silverlight 
applications, making SharePoint another data source from which to gather and  
display information.

Time for action – hosting a Silverlight application in SharePoint
We will setup a Silverlight application that we can host from within SharePoint.

1.	 Firstly, download and install the Visual Studio 2008 extensions for Windows 
SharePoint Services 3.0 from http://www.microsoft.com/downloads/
details.aspx?FamilyID=FB9D4B85-DA2A-432E-91FB-D505199C49F6&disp
laylang=en.

We need to install this on a machine that has Windows SharePoint 
Services 3.0 installed. An evaluation Virtual PC download pre-
installed with SharePoint, Visual Studio 2008 and the Visual Studio 
2008 extensions for Windows SharePoint Services is available at 
http://www.microsoft.com/downloads/details.
aspx?FamilyID=FB9D4B85-DA2A-432E-91FB-D505199
C49F6&displaylang=en.

2.	 Start Visual Studio, choose New Project and under the SharePoint category 
choose WebPart.



Chapter 6

[ 23� ]

3.	 We are going to create a Web Part that can host a Silverlight application. 
Replace the code in the WebPart1.cs file with the following (from the 
code provided at: http://thebreakpoint.spaces.live.com/blog/
cns!25ED1118FDA97850!219.entry): 

using System;
using System.ComponentModel; 
using System.Runtime.InteropServices;
using System.Web.UI; 
using System.Web.UI.WebControls.WebParts;
using System.Xml.Serialization;

namespace SilverlightWebPart
{
    [Guid("a23c42db-353d-4692-95c1-4e45de6de30c")]
    [ToolboxData("<{0}:SilverlightWebPart runat=server></{0}: 
    SilverlightWebPart>")]
    [XmlRoot(Namespace = "SilverlightWebPart")]
    public class WebPart1 : System.Web.UI.WebControls.WebParts. 
    WebPart
    { 
       #region Constructor

        public WebPart1()
        {
            // Initialize the properties with default values...
            XAPURL = "";
            SLHeight = 300;
            SLWidth = 300;
        }

        #endregion
        #region Properties

        // This property will be used to store the
        // Silverlight application url
        [WebBrowsable(true)]
        [Personalizable(PersonalizationScope.Shared)]
        [WebDisplayName(".Xap Url")]
        [WebDescription("The Url of the Silverlight Application  
         you want to show in this web part.")]
        [Category("Silverlight")]
        public string XAPURL { get; set; }



Back Office Applications

[ 240 ]

        // This property must be used to indicate the Height
        // of the Silverlight application - it will be used
        // in the object tag
        [WebBrowsable(true)]
        [Personalizable(PersonalizationScope.Shared)]
        [WebDisplayName("Silverlight object Height")]
        [WebDescription("Height of the Silverligth object.")]
        [Category("Silverlight")]
        [DefaultValue(300)]
        public int SLHeight { get; set; }

        // This property must be used to indicate the Width
        // of the Silverlight application - it will be used
        // in the object tag
        [WebBrowsable(true)]
        [Personalizable(PersonalizationScope.Shared)]
        [WebDisplayName("Silverlight object Width")]
        [WebDescription("Width of the Silverlight object.")]
        [Category("Silverlight")]
        [DefaultValue(300)]
        public int SLWidth { get; set; }

       #endregion

        #region Methods

        protected override void CreateChildControls()
        {

            base.CreateChildControls();
        }

        protected override void Render(HtmlTextWriter writer)
        {

            base.Render(writer);

            // Here, the object tag is rendered using the width  
            // and height
            // of the control, and the .xap url used as parameter  
            // of the object
            // tag...
            
      // <object>



Chapter 6

[ 241 ]

      writer.AddAttribute(HtmlTextWriterAttribute.Id,  
      "Silverlight3WebPartPlugin");
      writer.AddAttribute(HtmlTextWriterAttribute.Width, this. 
      SLWidth.ToString());
      writer.AddAttribute(HtmlTextWriterAttribute.Headers, this. 
      SLHeight.ToString());
      writer.AddAttribute("data",  
      "data:application/x-silverlight-2");
      writer.AddAttribute("type", "application/x-silverlight-2");
      writer.RenderBeginTag(HtmlTextWriterTag.Object);

      // <param/>
      writer.AddAttribute(HtmlTextWriterAttribute.Name, "source");
      writer.AddAttribute(HtmlTextWriterAttribute.Value,  
      this.XAPURL);
      writer.RenderBeginTag(HtmlTextWriterTag.Param);
      writer.RenderEndTag();

     // <a>
      writer.AddAttribute(HtmlTextWriterAttribute.Href,  
      "http://go.microsoft.com/fwlink/?LinkID=149156");
      writer.AddAttribute(HtmlTextWriterAttribute.Style,  
      "text-decoration: none;");
      writer.RenderBeginTag(HtmlTextWriterTag.A);

      // <img/>
      writer.AddAttribute(HtmlTextWriterAttribute.Src,  
      "http://go.microsoft.com/fwlink/?LinkId=108181");
      writer.AddAttribute(HtmlTextWriterAttribute.Alt,  
      "Get Microsoft Silverlight");
      writer.AddAttribute(HtmlTextWriterAttribute.Style,  
      "border-style: none");
      writer.RenderBeginTag(HtmlTextWriterTag.Img);
      writer.RenderEndTag();

      // </a>
      writer.RenderEndTag();

      // </object>
      writer.RenderEndTag();        }

        #endregion

    }

}



Back Office Applications

[ 242 ]

4.	 Build and run the application. (If using the SharePoint VPC, Visual Studio is already 
setup to configure and install the WebPart into our SharePoint site). When the WSS 
site loads, choose Edit Page from the Site Action menu:

5.	 Click the Add a Web Part link in the center window panel:

6.	 We can see our web part in the available web parts. Select the WebPart1 and click
the Add button.

7.	 This installs the WebPart on the home page of the SharePoint application.

8.	 Now we will add a new list to SharePoint, that we will be able to access from 
within Silverlight. Choose Create from the Site Actions menu:



Chapter 6

[ 243 ]

9.	 Click on the Custom List link in the Custom Lists category:

10.	Name the list Sales Associates and click the Create button:

11.	Select New|New Item from the menu:



Back Office Applications

[ 244 ]

12.	Add some Sales Associates:

13.	Now we need to go back to Visual Studio and choose File|New|Project and select
Silverlight Application. Name the project SharePointApp and click OK.

14.	Add the following code to the grid of the MainPage.xaml file:

<ListBox x:Name="SalesAssociates"></ListBox>

15.	SharePoint provides web services for accessing data, and we can take advantage of 
these services in Silverlight by adding a Service Reference to the SharePoint Lists 
Service named ListService.

16.	Because we are going to access a web service from a Silverlight application we need 
to include a client access policy file in the SharePoint server root (C:\Inetpub\
wwwroot\wss\VirtualDirectories\80).



Chapter 6

[ 245 ]

17.	Open Windows Explorer and create a new file in the SharePoint root called 
clientaccesspolicy.xml. Copy the following code into it, save, and close it:

<?xml version="1.0" encoding="utf-8" ?>
<access-policy>
  <cross-domain-access>
    <policy>
      <allow-from http-request-headers="*">
        <domain uri="*"/>
      </allow-from>
      <grant-to>
        <resource include-subpaths="true" path="/"/>
      </grant-to>
    </policy>
  </cross-domain-access>
</access-policy>

A Client Access Policy file allows Silverlight applications to 
communicate across different domains from the domain in which the Silverlight 
client is actually loaded. This file provides restrictions and rights to the Silverlight 
runtime. Silverlight supports both the Silverlight client access policy file and the 
Flash cross domain policy file.

18.	Add a using statement to the Using section of the MainPage.xaml.cs file:

using SharePointApp.ListService;

19.	 Insert the following code into the MainPage_Loaded event handler:

var service = new ListsSoapClient();
service.GetListItemsCompleted += new EventHandler<GetListItemsComp
letedEventArgs>(service_GetListItemsCompleted);
service.GetListItemsAsync("Sales Associates", null, null, null,
null, null, null);

20.	Add the following event handler to bind the list results to the 
SalesAssociates listbox: 

void service_GetListItemsCompleted(object sender, 
GetListItemsCompletedEventArgs e)
{
    var list = new List<object>();
    foreach (var node in e.Result.Elements().FirstOrDefault().
Elements())
    {
        list.Add(new { Title = node.Attribute("ows_Title").Value
});
    }
    SalesAssociates.ItemsSource = list;
}



Back Office Applications

[ 246 ]

21.	We should see our results if we build and run the Silverlight application:

22.	We can also style the listbox by adding a DataTemplate or custom style for the 
list items.

23.	Now that we have a working Silverlight application, we can copy it into a document 
library in SharePoint and utilize the Silverlight Web Part that we created earlier to 
load the Silverlight application into our SharePoint home page. Open the SharePoint 
website and go to the Shared Documents library:

24.	Choose the Upload option and upload the XAP file from the 
SharePointApp.Web/ClientBin folder and click OK:

25.	We should now have our XAP file stored in Shared Documents:



Chapter 6

[ 247 ]

26.	Return to the SharePoint home page (where we added our custom Web Part) and
click on the arrow next to the Web Part:

27.	Choose Modify Shared Web Part to enter the Web Part editing mode:

28.	Change the name of the WebPart panel, under the Appearance section, to 
Sales Associates:

29.	Set the URL to the XAP file under the Silverlight section to: 
http://spvm/Shared%20Documents/SharePointApp.xap and click OK:

30.	We should now have our Silverlight application, hosted within our SharePoint 
website and displaying information from our Sales Associates SharePoint list.



Back Office Applications

[ 24� ]

What just happened?
We created a SharePoint Web Part to host a Silverlight Application and created a Silverlight 
Application to access list data stored within SharePoint.

We also got a look at including a clientaccesspolicy.xml file in SharePoint to allow 
Silverlight to access data via a SharePoint web service.

While developing completely in SharePoint can be complex, we can see that adding some 
basic Silverlight goodness is a fairly straight forward process, and opens up SharePoint  
to the Silverlight user experience.

Summary
In this chapter, we learned how to create a WCF RIA Services project for sharing a common 
middle tier between ASP.NET and Silverlight. We also implemented Silverlight in a SharePoint 
environment. In this chapter we discussed the following:

How to create a WCF RIA Services Silverlight and ASP.NET application

How WCF RIA Services works in both Silverlight and ASP.NET

How to create a SharePoint WebPart for hosting a Silverlight application

How to consume a SharePoint web service from Silverlight

In the next chapter, we will create a customer service application utilizing the Entity 
Framework and WCF RIA Services to allow customer service representatives the ability 
to manage customer and order information through a Silverlight frontend.











7
Customer Service Application

Organizations that sell products and deal with the public most often have some 
type of customer service department. Whether it is the owner fielding calls, or 
a full blown department having an application to easily view and edit customer 
information, it can save a lot of time and money for the business.

In the previous chapters we collected information from potential customers and 
started building an internal application for viewing the customer submissions. 
We will take this a step further by providing some additional functionality 
to allow us to edit and save customer information that can later be used to 
generate various reports.

In this chapter, we shall:

Expand our customer service application to save to a database

Make use of the Entity Framework, LINQ to SQL and WCF RIA Services

Provide an easy to use interface for customer service associates

Customer data
We have collected some information from potential customers through our public Silverlight 
application that allowed the customer to draw a basic sketch of the type of cake they wanted 
and to include some information about themselves and the date of their event.









Customer Service Application

[ 250 ]

Because the cake sketch is drawn by the customer, we need to follow up with that customer 
to find out more information about the cake and the event. Before we get started with 
building the screens for customer service to be able to include this information, we need to 
work out a data model that can store this additional information. We are going to use SQL 
Server to store customer information and will make use of the Entity Framework to access 
the information.

One thing to consider when developing our model is that we already have some information 
that was submitted by the customer. We will leave this information in the XML file and once 
a customer service representative has opened and edited the information, we will remove 
the XML file and save the information to the database. This way we can keep potential 
customers out of the same pool of information as the verified customers.

We also want to keep in mind that we could have repeat customers, so we need to keep 
customer information separate from event and order information.

Time for action – creating the data model
We will create a data model that can support customers who may or may not order cakes 
for multiple events. We will also setup support for maintaining records of cakes that were 
ordered and the details of the cakes ordered, including images of the finished cakes.

1.	  Start SQL Server Management Studio or SQL Server Management Studio Express 
and connect to your local computer or development database server. (If SQL 
Server is installed, the local computer is your computer name or local; if using
SQL Server Express it will be the local computer name plus SQLEXPRESS:
computername\SQLEXPRESS).

You can also connect to a database from within Visual Studio to 
add or edit tables, stored procedures and views. To connect to a 
database from within Visual Studio you use the Server Explorer 
and create a new database connection.

2.	 Right-click on the Databases node and choose New Database...: 



Chapter 7

[ 251 ]

3.	 Name the database CakeORama and click OK:

4.	 We will create a database diagram to make it easier to setup our tables. Expand 
the CakeORama database, right-click on the Database Diagrams and choose 
New Database Diagram:

5.	 If you get a prompt asking you if you want to create the support objects choose Yes:



Customer Service Application

[ 252 ]

6.	 When the new diagram is created you are presented with the Add Table dialog, just
close this dialog as we do not have any tables yet to add:

7.	 Right-click on the surface of the diagram and choose New Table...:

8.	 Name the new table Customers and click OK:



Chapter 7

[ 253 ]

9.	 Layout the Customers table as follows, the CustomerId field is the Primary Key andPrimary Key dddaaannn  
is also an yyy   :::IIIdddeeennntititittt   cccooollluuummmnnn column:

10.	Add another table named Events and add the following columns where the EventId
column is the yyy   yyy   ddd   aaalllsssooo   aaa   IIIdddeeennn   yyyPPPrrriiimmmaaarrr  KKKeee  aaannn   nnn tititittt  cccooollluuummmnnn::::

11.	Create a foreign key relationship nnn   eeebbbeeetttwwweeeeee  ttthhh  Customers and Events table on the 
CustomerId column:



Customer Service Application

[ 254 ]

12.	Our table structure should look like the following:

13.	Be sure to save your work. If you get an error while saving, that states the Prevent
saving changes that require table re-creation option is set, you can enable saving 
changes by going to Tools|Options|Designers|Table|Database Designers and 
un-checking the Prevent saving changes that require table re-creation option:



Chapter 7

[ 255 ]

14.	Since we added CustomerSketch as XXXMMMLLL   cccooollluuummmnnn   eee   ddd   ooo   ooo   ssseee   ppp   eeeaaannn   www  nnneeeeee  ttt  aaalllsss  tttuuu  ttthhh  
indexes. Select the CustomerSketch column of the Events table and click on 
the Manage XML Indexes icon:

15.	Click the Add button on the XML Indexes dialog box and add the following 
Primary XML Index:

16.	While eee   XXXMMM   IIInnndddeee   ggg   iiisss   sss   lll   ooopppeeennn,,,   aaaddd   aaa   SSSeeeccc   eeettthhh  LLL xxxeeesss dddiiiaaalllooo   tititilll   ddd  ooonnndddaaarrryyy XXXMMMLLL IIInnndddeeexxx fffooorrr ttthhh  Path:



Customer Service Application

[ 256 ]

17.	Add another LLL   IIInnndddeeexxx   rrrXXXMMM   fffooo  Value and close the XML Indexes dialog::

For more information on XML indexes in SQL Server, what they mean 
and when and how to use them, see the following link: http://
msdn.microsoft.com/en-us/library/ms191497.aspx.

18.	Add a table called Orders to the diagram, creating an OrderId yyy   yyyPPPrrriiimmmaaarrr  KKKeeeyyy///IIIdddeeennntititittt  
column and the following additional columns:



Chapter 7

[ 257 ]

19.	Create a fffooorrreeeiiigggnnn key relationship nnnbbbeeetttwwweeeeee  ttthhheee Orders and Events table on the 
EventId column:

What just happened?
We created a simple data model in SQL Server to house our customer, event, and 
order information.

We setup the Events table to store the event information, including any special comments 
about the event and the original customer sketch. We also created a relationship to the 
Customers table, so that a customer record can have multiple events.

We set up the Orders table to store the final cake image and added an OrderDetails
column, so that our customer service representative can write out the complete cake order 
details. We also created a relationship to the Events table, so that an event could have
multiple cake orders such as a wedding where a bride and groom's cake might be created.

ADO.NET Entity Framework and WCF RIA Services
A common eeeppprrraaaccctititiccc  when developing data driven business applications is to create a set 
of classes that reflect the data stored in the database. Most often, developers will create 
classes that map to each table within a database to keep things as transparent as possible 
when dealing with large amounts of data.

Microsoft released a lightweight mapping framework called LINQ to SQL, which is basically a 
one-to-one mapping of .NET classes with database tables. The framework provides mappings 
to the database tables allowing Language Integrated Queries (LINQ) against the .NET classes,
which actually query the database and return strongly typed objects that represent the data.



Customer Service Application

[ 25� ]

The ADO.NET Entity Framework takes some queues from LINQ to SQL but provides a much 
more flexible model for mapping tables and data, allowing for multiple table mappings and 
alternate data sources.

Both LINQ to SQL and the ADO.NET Entity Framework remove a lot of the redundant coding 
required to perform the Creation, Retrieval, Updating, and Deletion (CRUD) of database
data and can speed up development of data driven applications in the process.

The WCF RIA Services framework can also take advantage of the Entity Framework classes 
and will provide a common middle tier for our ASP.NET and Silverlight application we created 
in Chapter 6.

Time for action – creating the Entity Framework
We will take advantage of the Entity Framework for our Silverlight customer service 
application and also utilize WCF RIA Services to create domain services and auto-generate 
client data classes.

We will create our Entity Framework classes from the SQL database that we created in thehe 
previous section.

1.	 Start Visual Studio and open the CakeORamaApp solution we created in the 
previous chapter.

2.	 Right-click on the CakeORamaApp.Web project and choose Add|New Item.

3.	 In the Add New Item dialog box, select the Data from the Categories pane, select
the ADO.NET Entity Data Model and click Add:



Chapter 7

[ 25� ]

4.	 Name the model CakeORama and click on the Add button.

5.	 On the screen that follows ensure that Generate from database is selected and 
click Next:

6.	 On the next screen, choose the New Connection button to setup a connection to 
our new database:

7.	 Enter the name of your local database server, select the CakeORama database and
click OK:

8.	 When the New Connection dialog closes, enter the following options on Entity Data 
Model Wizard and click Next:



Customer Service Application

[ 260 ]

9.	 On the Choose Your Database Objects screen select all of the tables we created 
in the previous section, ensure that the two checkboxes are checked, change the 
namespace to CakeORamaApp, and click the Finish button:

10.	Visual Studio will add a new connection string to our web.config file and open 
the data model displaying our entity classes:

11.	The Mapping Details and Model Browser panels that were also opened with the data 
model provide the ability to modify the entity details. ddd   eee   nnn   ooo   www   lllBBBuuuiiilll  ttthhh  sssooollluuutititiooo  ttt  aaallllllooo  VVViiisssuuuaaa  
Studio to auto generate the entity classes and associated context objects.



Chapter 7

[ 261 ]

12.	We are going to use RIA Services so we need to add a Domain Service object in orderDomain Service ttt   rrrooobbbjjjeeeccc  iiinnn ooorrrdddeee  
to query data from our Silverlight application. Right-click on the Services folder in
the CakeORamaApp.Web project and choose Add|New Item. Select Web from the
Categories pane, then choose the Domain Service Class from the Templates pane,
name the service CustomerService and click Add:

13.	On the next screen, select the following information to generate client side classes 
for the domain service; check Enable editing and Generate associated classes for 
metadata, and click OK:



Customer Service Application

[ 262 ]

14.	Visual Studio generated some basic methods for retrieving, inserting, updating and 
deleting our records.

What just happened?
We created entity classes based on our database model using the ADO.NET Entity 
Framework. Visual Studio auto generated the classes based on the tables which 
eliminated the need for us to create a bunch of redundant code.

We created a RIA Domain Service for each of our entities allowing us to perform the standard 
database CRUD operations using our entity classes for transporting data.

We can see that Visual Studio generated entity classes for each of our database tables and 
for our Domain Service that uses our entity classes. Because we used RIA Services and the 
ADO.NET Entity Framework we can focus on providing a better user experience instead of 
spending our time setting up a data layer.



Chapter 7

[ 263 ]

If we take a look at the Customer class that was generated, in the CakeORama.Designer.
cs file, we can see a bunch of attributes and other code used to relate this class to the 
Customers table in our database. Visual Studio even created a property for a collection 
of Events related to a Customer record:

[XmlIgnoreAttribute()] 
[SoapIgnoreAttribute()] 
[DataMemberAttribute()]
[EdmRelationshipNavigationPropertyAttribute("CakeORamaApp", "FK_
Events_Customers", "Events")] 
public EntityCollection<Event> Events
{
    get
    {
        return ((IEntityWithRelationships)this).RelationshipManager.
GetRelatedCollection<Event>("CakeORamaApp.FK_Events_Customers",
"Events");
    }
    set
    {
        if ((value != null))
        {
            ((IEntityWithRelationships)this).RelationshipManager.
InitializeRelatedCollection<Event>("CakeORamaApp.FK_Events_Customers",
"Events", value);
        }
    }
}

Likewise, our CustomerService Domain Service class handles our database  
CRUD operations: 

public IQueryable<Customer> GetCustomers()
{
  return this.ObjectContext.Customers;
}

public void InsertCustomer(Customer customer)
{
  if ((customer.EntityState != EntityState.Added))
  {
    if ((customer.EntityState != EntityState.Detached))
    {
this.ObjectContext.ObjectStateManager.ChangeObjectState(customer, 
EntityState.Added);
    }



Customer Service Application

[ 264 ]

    else
    {
      this.ObjectContext.AddToCustomers(customer);
    }
  }
}

public void UpdateCustomer(Customer currentCustomer)
{
  if ((currentCustomer.EntityState == EntityState.Detached))
  {
    this.ObjectContext.AttachAsModified(currentCustomer, this.
ChangeSet.GetOriginal(currentCustomer));
  }
}

public void DeleteCustomer(Customer customer)
{
  if ((customer.EntityState == EntityState.Detached))
  {
    this.ObjectContext.Attach(customer);
  }
  this.ObjectContext.DeleteObject(customer);

User experience
There is a movement in the software community user experience focused design and finding 
ways to simplify and improve the experience for users of software applications. When 
designing applications, it is important to always keep in mind the people who will be using 
the software and how we can make it as intuitive and easy to use as possible. After all, 
software should improve a process not over-complicate it.

Silverlight can greatly improve the user experience by providing great visuals for a fluid 
user interface, asynchronous background processing of web requests and the ability to use 
client memory to load and handle data. With these features we can build a customer service 
application that will give our users the best possible experience and help them do their jobs 
more effectively.

Time for action – saving customer information
In Chapter 5, we collected data from customers and created an application to view that 
customer information. We will now modify this project to allow us to save the customer 
information to our database and process orders for the customers.



Chapter 7

[ 265 ]

What we want to be able to do here is allow our customer service representative to view 
a customer's submission, call or email the customer and then have the option to save the 
customer's information and process an order.

1.	 The first thing we need to do is install the Silverlight Toolkit, which can be found at: 
http://www.codeplex.com/Silverlight. The toolkit will give us some new 
data controls which we will be used to build our customer service application.

2.	 Start Expression Blend and open the CakeORamaApp solution.

3.	 Open the Submissions.xaml page and add a www   kkk   eeennneee  ttteeexxxtttbbbllloooccc   hhh   ttthhh   ttt   ttt   eeewwwiiittt   eeexxx  vvvaaallluuu  
Comments and a xxx   dddttteeexxxtttbbbooo   ccc   lll   nnnaaammmeeeooonnntttrrrooo   Comments:

4.	 Next, we will add a ooonnn   nnnaaabbbuuutttttt  named SaveButton with a Content value Save. This 
button lll   eeennnaaabbbllleee   jjjuuusssttt   rrr   nnn   eee   :::wwwiiilll    ttthhheee cccuuussstttooommmeee  aaannnddd eeevvveeennnttt iiinnnfffooorrrmmmaaatititiooo  tttooo bbb  sssaaavvveeeddd



Customer Service Application

[ 266 ]

5.	 We will also add rrr   bbbuuuttttttoooaaannnooottthhheee  n named OrderButton with a Content value of 
Place Order. This ooonnn   wwwiiillllll   eee   sss   ttt   aaannnooottthhheee   pppaaaggg   (((wwwhhhiiiccc   www   wwwiiilll   cccrrreeeaaattt   ssshhhooorrrtttlllyyybbbuuutttttt  ooo   rrr   eee   hhh   eee   lll   eee   )))mmmooovvv  uuu          
that will allow the customer service representative to enter order information for 
the customer. Set the Width of the OrderButton to 100:

6.	 Add Click event handlers for both buttons:

7.	 Switch over to Visual Studio and open the Submissions.xaml.cs file from the 
CakeORamaApp project.

8.	 In order to process the currently selected submission we need to add a new private 
variable to the Submissions class:

private CustomerSubmission _currentSubmission;

9.	 Modify the SubmissionList_SelectionChanged event handler to set the 
_currentSubmission value before setting the labels:

private void SubmissionList_SelectionChanged(object sender,
System.Windows.Controls.SelectionChangedEventArgs e)
{
  if (e.AddedItems.Count == 0) return;

  var submission = e.AddedItems[0] as CustomerSubmission;
  if (submission == null) return;

  ___cccuuurrrrrreeennntttSSSuuubbbmmmiiissssssiiiooo   ===   sssuuubbbmmmiiissssssiiiooonnn;;;nnn  



Chapter 7

[ 267 ]

10.	Add the System.Linq namespace so that we can make use of LINQ to query our 
data objects:

using System.Linq;

11.	We are going to want our application to have access to the current Customer 
instance and CustomerContext no matter what page we navigate to, so we need 
to create a static class that can contain our current Customer instance. Add  a 
new class to the CakeORamaApp project called AppState and replace the default 
generated code with the following:

using System; 
using CakeORamaApp.Web; 
using CakeORamaApp.Web.Services;

namespace CakeORamaApp
{
  public static class AppState
  {
    public static CustomerContext CustomerContext { get; set; } 
    public static Customer Customer { get; set; }
public static Event CurrentEvent { get; set; } 
  }
}

12.	Add the CakeORamaApp.Web namespace at the top of the file:

using CakeORamaApp.Web;

13.	Replace the code in the OnNavigatedTo method of the Submissions class to  
the following:

if (AppState.CustomerContext == null)
{
  AppState.CustomerContext = new CustomerContext();
  AppState.CustomerContext.Load<Customer> 
                   (AppState.CustomerContext.GetCustomersQuery());
  AppState.CustomerContext.Load<Event> 
                   (AppState.CustomerContext.GetEventsQuery());
  AppState.CustomerContext.Load<Order> 
                   (AppState.CustomerContext.GetOrdersQuery());
} 
var context = new CustomerSubmissionContext();
context.Load<CustomerSubmission>(context.GetSubmissionsQuery());
SubmissionList.ItemsSource = context.CustomerSubmissions



Customer Service Application

[ 26� ]

14.	We will create a method to handle saving the customer information that can be 
used by both the Save and Order buttons. Add the following private method to  
the Submissions class:

private void SaveCustomer(Action<System.Windows.Ria.
SubmitOperation> callbackAction)
{
  // Check to see if a customer record already exists.
  AppState.Customer = AppState.CustomerContext.Customers.Where(c
=> c.CustomerName == _currentSubmission.CustomerName
    && c.EmailAddress == _currentSubmission.Email).
FirstOrDefault();

  if (AppState.Customer == null)
  {
    AppState.Customer = new Customer();
    AppState.CustomerContext.Customers.Add(AppState.Customer);
  }
  // Set the customer data.
  AppState.Customer.CustomerName = _currentSubmission.
CustomerName;
  AppState.Customer.EmailAddress = _currentSubmission.Email;
  AppState.Customer.PhoneNumber = _currentSubmission.PhoneNumber;

  AppState.CurrentEvent = AppState.Customer.Events.Where(ev =>
ev.EventDate.Month == _currentSubmission.EventDate.Month
    && ev.EventDate.Day == _currentSubmission.EventDate.Day
    && ev.EventDate.Year == _currentSubmission.EventDate.Year).
FirstOrDefault();
  if (AppState.CurrentEvent == null)
  {
    AppState.CurrentEvent = new Event();
    AppState.Customer.Events.Add(AppState.CurrentEvent);
  }
  AppState.CurrentEvent.EventDate = _currentSubmission.EventDate;
  AppState.CurrentEvent.CustomerSketch = _currentSubmission.
Strokes;
  AppState.CurrentEvent.Comments = Comments.Text;

  AppState.CustomerContext.SubmitChanges(callbackAction, null);
}



Chapter 7

[ 26� ]

15.	We will handle the operation for the SaveButton by adding the following code  
to the SaveButton_Click ttt   :::eeevvveeennn  hhhaaannndddllleeerrr

SaveCustomer(new Action<System.Windows.Ria.SubmitOperation>((o) =>
  {{{
    iiifff   (((ooo...HHHaaasssEEErrrrrrooorrr)))
      MMMeeessssssaaagggeeeBBBoooxxx...SSShhhooowww(((SSStttrrriiinnnggg...CCCooonnncccaaattt((("""FFFaaaiiillleeeddd   tttooo   sssaaavvveee
customer information.\nError:", o.Error.Message), "Error",
MessageBoxButton.OK);
    eeelllssseee
      MMMeeessssssaaagggeeeBBBoooxxx...SSShhhooowww((("""CCCuuussstttooommmeeerrr   iiinnnfffooorrrmmmaaatttiiiooonnn   sssaaavvveeeddd   sssuuucccccceeessssssfffuuullllllyyy...""",,, 
"Save Customer Information", MessageBoxButton.OK);
  }}}))))));;;

If you do not see the CustomerContext class you may need to 
build your solution as this causes Visual Studio to auto generate the 
Silverlight classes for the DDDooommmaaaiiinnn   SSSeeerrrvvviiiccceee...

16.	Open the CustomerService.cs file in the CakeORamaApp.Web project under the 
Services folder and add the following method:

private void RemoveSubmission(Customer customer)
{
  vvvaaa   fffiiillleee   ===   DDDiiirrreeeccctttooorrryyy...GGGeeetttFFFiiillleeesss(((@@@"""CCC:::\\\PPPrrrooojjjeeeccctttsss\\\CCCaaakkkeeeOOORRRaaammmaaa\\\CCCuuussstttooommmeeerrrrrr sss  \\\
Data\", String.Concat(customer.CustomerName, ".xml"));
  fffooorrreeeaaaccchhh   (((vvvaaarrr   fffiiillleee   iiinnn   fffiiillleeesss)))
  {{{
    vvvaaarrr   cccuuussstttooommmeeerrrRRRoooooottt   ===   XXXEEEllleeemmmeeennnttt...LLLoooaaaddd(((fffiiillleee)));;;
    vvvaaarrr   eeemmmaaaiiilll   cccuuussstttooommmeeerrrRRRoooooottt...AAAttttttrrriiibbbuuuttteee((("""eeemmmaaaiiilll""")))...VVVaaallluuueee;;;=== 

    iiifff   (((eeemmmaaaiiilll   ======   cccuuussstttooommmeeerrr...EEEmmmaaaiiilllAAAddddddrrreeessssss)))
    {{{
      FFFiiillleee...DDDeeellleeettteee(((fffiiillleee)));;;
      bbbrrreeeaaakkk;;;
    }}}
  }}}
}

17.	Modify the InsertCustomer method to remove the original customer submission 
XML file, once this customer record is saved:

public void InsertCustomer(Customer customer)
{
  if ((customer.EntityState != EntityState.Added))
  {
    if ((customer.EntityState != EntityState.Detached))



Customer Service Application

[ 270 ]

    {
      this.ObjectContext.ObjectStateManager.ChangeObjectState 
                         (customer, EntityState.Added);
    }
    else
    {
      this.ObjectContext.AddToCustomers(customer);
    }
    RemoveSubmission(customer);
  }
}

18. Build and run the solution, then select a customer record, enter some comments, 
and click the Save button:



Chapter 7

[ 271 ]

19.	 If we look in our CakeORama database we should see our saved data, with the 
proper relationship created between the Events, Customers, and Orders tables:

20.	We can also see that the customer submission XML file was removed if we use 
Windows Explorer to look in the C:\Projects\CakeORama\Customer\Data
directory.

RIA Services/Entity errors

To catch any errors thrown by the RIA Services or Entity Framework while 
debugging, we can go to Debug|Exceptions... in Visual Studio and put check
marks in the Thrown column for both the Common Language Runtime 
Exceptions and the Managed Debugging Assistants check boxes.

21.	We need to add a new page to our project to handle accepting orders. In Visual 
Studio, add a new page to the Views folder of the CakeORamaApp project named
SubmitOrder.xaml.

22.	Switch over to Expression Blend and open the SubmitOrder.xaml page.

23.	Click the Assets button on the toolbar:

24.	 In the search field, enter dataform and then select the DataForm control:



Customer Service Application

[ 272 ]

25.	Double-click on the DataForm icon in the toolbox to add a new instance to the 
SubmitOrder.xaml page and name it OrderDataForm:

26.	Set the dataform to occupy all of the available space by changing  the
HorizontalAlignment and VerticalAlignment properties:

27.	Ensure that the AutoGenerateFields and the AutoCommit sssccchhheeeccckkkbbboooxxxeee  aaarrreee 
unchecked under the Miscellaneous category:

28.	On the OrderDataForm breadcrumb, select Edit Additional Templates|Edit 
EditTemplate|Create Empty...:



Chapter 7

[ 273 ]

29.	Name the template OrderEditTemplate, ensure that the This document option is 
selected and click OK:

30.	Right-click on the Grid, choose Change Layout Type and then StackPanel from the
menu to change the default Grid panel in the template to a StackPanel:

31.	Click the Assets button on the toolbar, type datafield in the search box and select
the DataField control:



Customer Service Application

[ 274 ]

32.	Select the StackPanel control in the Objects and Timeline panel and then 
double-click the DataField toolbar icon to add a new instance of the ddddddaaatttaaafififieeelll   
to the stackpanel.

33.	Click the Assets button again, and then search for and select a DatePicker control:

34.	Select the newly added DataField from the Objects and Timeline panel and 
then double-click the DatePicker icon on the toolbar to add a new instance 
to the DataField.

35.	Click on the Advanced property options of the SelectedDate property of 
the DatePicker:

36.	Choose Data Binding... from the options, set the following values on the 
Create Data Binding dialog box and click OK:



Chapter 7

[ 275 ]

37.	On the toolbar, left-click and hold the left mouse button on the DatePicker icon 
to re-select the DateField:

38.	Select the StackPanel from the Objects and Timeline panel and double-click the
DataField icon on the toolbar to add another DataField instance.

39.	With the newly added DataField selected in the Objects and Timeline panel, 
left-click and hold the Grid icon on the toolbar and select the ScrollViewer control:

40.	Set the Height of the ScrollViewer to 200.

41.	Double-click the TextBox icon on the toolbar to add a new textbox to 
the ScrollViewer:



Customer Service Application

[ 276 ]

42.	 In the following screenshot, we Create Data Binding of the TextBox:

43.	Add a DataField to the StackPanel, add a TextBlock to the DataField and 
create a aaa   ggg   pppaaa   hhhDDDaaattt  BBBiiinnndddiiinnn  ttt   nnn   tttoooeeexxxppprrreeessssssiiiooo   Cost.

44.	Add another DataField to the StackPanel then click on the Button icon on the
toolbar, hold the left mouse button down and select the CheckBox control:



Chapter 7

[ 277 ]

45.	Double-click the CheckBox icon to add a new checkbox to the DataField and then
create a Data Binding on the IsChecked property with a path expression of IsPaid.

46.	We now have a custom data form:

47.	We need to customize the label text of our DataFields and although the Label
property is visible in Blend, we cannot edit the value from the Properties panel. To
edit the labels we will have to switch to XAML mode and hand edit them. Click on 
the XAML mode icon at the top right of the art board:

48.	Add the Label property the first DataField, setting the value of the property 
to Order Details:

<dataFormToolkit:DataField Label="Order Date">



Customer Service Application

[ 27� ]

49.	Set the other Label values as follows:

<dataFormToolkit:DataField Label="Order Details">
<dataFormToolkit:DataField Label="Cost">
<dataFormToolkit:DataField Label="Is Paid">

50.	Now our data form looks a little better:

This code creates a template for the Edit mode of the DataForm 
and by customizing the template we can remove unneeded fields 
such as the EventId and OrderId properties.

51.	Add an event handler to the EditEnded event of the OrderDataForm:

52.	Save your work and switch back over to Visual Studio. Open the  
Submissions.xaml.cs file and add the following code to the  
OrderButton_Click event handler:

SaveCustomer(new Action<System.Windows.Ria.SubmitOperation>((o) =>
{
  iiifff   (((ooo...HHHaaasssEEErrrrrrooorrr)))



Chapter 7

[ 27� ]

    MMMeeessssssaaagggeeeBBBoooxxx...SSShhhooowww(((SSStttrrriiinnnggg...CCCooonnncccaaattt((("""FFFaaaiiillleeeddd   ttt   sssaaavvv   cccuuussstttooommmeeerrrooo eee  
information.\nError:", o.Error.Message), "Error",
MessageBoxButton.OK);
  eeelllssseee
    ttthhhiiisss...NNNaaavvviiigggaaatttiiiooonnnSSSeeerrrvvviiiccceee...NNNaaavvviiigggaaattteee(((nnneeewww   UUUrrriii((("""///SSSuuubbbmmmiiitttOOOrrrdddeeerrr...xxxaaammmlll""",,,
UriKind.Relative));
}));

53.	This code will navigate us to the SubmitOrder.xaml page aaasss   lllooonnnggg   aaasss   ttthhheeerrreee   eeewwweeerrr   
no errors while saving the customer information.

54.	Add a new file to the CakeORamaApp project called OrderStatus.cs and replace 
the auto generated code with the following:

namespace CakeORamaApp
{
  pppuuubbbllliiiccc   eeennnuuummm   OOOrrrdddeeerrrSSStttaaatttuuusss
  {{{
    NNNeeewww,,,
    PPPeeennndddiiinnnggg,,,
    CCCaaannnccceeelllllleeeddd,,,
    CCCooommmpppllleeettteee,,,
  }}}
}

55.	Open the SubmitOrder.xml.cs file and add the following using statements  
to the top of the file:

using CakeORamaApp.Web; 
using CakeORamaApp.Web.Services;

56.	 Insert the following code into the OnNavigatedTo method:

if (AppState.Customer == null || AppState.CurrentEvent == null)
{
  ttthhhiiisss...NNNaaavvviiigggaaatttiiiooonnnSSSeeerrrvvviiiccceee...NNNaaavvviiigggaaattteee(((nnneeewww   UUUrrriii((("""///SSSuuubbbmmmiiissssssiiiooonnnsss""",,,   UUUrrriiiKKKiiinnnddd...
Relative));
  rrreeetttuuurrrnnn;;;   
} 
var order = new Order
{
  EEEvvveeennntttIIIddd   AAAppppppSSStttaaattteee...CCCuuurrrrrreeennntttEEEvvveeennnttt...EEEvvveeennntttIIIddd,,,=== 
  OOOrrrdddeeerrrDDDaaattteee   ===   DDDaaattteeeTTTiiimmmeee...NNNooowww,,,
  SSStttaaatttuuusss   ===   (((iiinnnttt)))OOOrrrdddeeerrrSSStttaaatttuuusss...NNNeeewww   
};
AppState.CurrentEvent.Orders.Add(order);

OrderDataForm.ItemsSource = AppState.CurrentEvent.Orders;



Customer Service Application

[ 2�0 ]

57.	 In the OrderDataForm_EditEnded event handler, insert the following code that 
will save the current changes and take our users back to the Submissions.xaml 
page, so they can process the next submission:

AppState.CustomerContext.SubmitChanges();
this.NavigationService.Navigate(new Uri("/Submissions", UriKind.
Relative));

58.	Build and run the solution, navigate to the Submissions page, select one of the 
submissions, and click on the Place Order button. On the SubmitOrder page,  
enter some details about the Order and click on the OK button:

59.	 If we check our database we can see the order details for this customer:

What just happened?
We modified our existing submissions page to handle saving customer information to the 
database and processing an order for the customer. We made use of the DataForm class  
to simplify the data entry process and took advantage of RIA Services to persist our data  
to the server.



Chapter 7

[ 2�1 ]

We also customized the DataForm EditTemplate to only display the fields that were 
relevant to our order entry.

Customer service
To provide the best possible customer service, our representatives should be able to look 
up customer information by name, phone, or email and be able to find customer details, 
including events and orders.

We will provide an interface that makes it easy for the customer service representative to 
quickly locate a customer and sort through their associated events and orders, checking 
the status of the orders and adding additional comments or corrections.

Using the ADO.NET Entity Framework allows us to load the entities into memory and then 
as changes are made to them they track their own modification state. Since the entities are 
tracking their own state, we can do TwoWay binding to control elements so that updates
persist back to the entities and one save button can handle all of our entity changes.

Time for action – creating a customer lookup form
We saved customer information in the previous section through the submissions interface. 
However, for our customer service representatives to lookup customer information, we will 
need to provide a lookup feature and the ability to make changes to existing orders for the 
current customer.

We will make use of a variety of controls from DatePicker to ListBox to Expander, and
perform TwoWay data binding of our Customer entity. Because of the relationship between 
Customer and Event entities and the relationship between Event and Order entities, we 
can make a drill down type of form using listboxes that implement custom ItemTemplates.
To do this, we will need to complete the following steps:

1.	 Start Visual Studio, open the CakeORamaApp solution, right-click on the 
CakeORamaApp project and select Add|New Item and choose a Silverlight Page
named CustomerSearch.xaml:



Customer Service Application

[ 2�2 ]

2.	 Drag the CustomerSearch.xaml file into the Views folder.

3.	 Open the MainPage.xaml file and add the following code just after the 
submissions n vvviiigggaaatititiooo   llliiinnnkkk:::aaa   nnn 

<Rectangle x:Name="Divider3" Style="{StaticResource
DividerStyle}"/>

<HyperlinkButton x:Name="Link4" Style="{StaticResource LinkStyle}" 
             NavigateUri="/CustomerSearch" TargetName="ContentFram
e" Content="find customers"/>

4.	 Open the CustomerSearch.xaml file for editing in Visual Studio and replace the 
contents of the file with the following XAML:

<navigation:Page x:Class="CakeORamaApp.CustomerSearch" 
           xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation" 
           xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
           xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
           xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
           mc:Ignorable="d"
           xmlns:navigation="clr-namespace:System.Windows.
Controls;assembly=System.Windows.Controls.Navigation"
           d:DesignWidth="640" d:DesignHeight="480"
           Title="CustomerSearch Page">
  <<<nnnaaavvviiigggaaatttiiiooonnn:::PPPaaagggeee...RRReeesssooouuurrrccceeesss>>>
    <<<DDDaaatttaaaTTTeeemmmppplllaaattteee   xxx:::KKKeeeyyy==="""CCCuuussstttooommmeeerrrLLLiiissstttIIIttteeemmmTTTeeemmmppplllaaattteee""">>>
      <<<GGGrrriiiddd>>>
        <<<TTTeeexxxtttBBBllloooccckkk   TTTeeexxxttt==="""{{{BBBiiinnndddiiinnnggg   CCCuuussstttooommmeeerrrNNNaaammmeee,,,   MMMooodddeee===OOOnnneeeWWWaaayyy}}}"""
TextWrapping="Wrap" d:LayoutOverrides="Width, Height"/>
      <<<///GGGrrriiiddd>>>
    <<<///DDDaaatttaaaTTTeeemmmppplllaaattteee>>>
  <<<///nnnaaavvviiigggaaatttiiiooonnn:::PPPaaagggeee...RRReeesssooouuurrrccceeesss>>>
    <Grid x:Name="LayoutRoot">
    <<<TTTeeexxxtttBBBllloooccc   HHHooorrriiizzzooonnntttaaalllAAAllliiigggnnnmmmeeennnttt==="""LLLeeefffttt  kkk   """
VerticalAlignment="Top" Text="Find Customers" FontSize="21.333"
TextWrapping="Wrap" Foreground="#FF4583CD" FontWeight="Bold"/>
    <<<TTTeeexxxtttBBBllloooccc   xxx:::NNNaaammmeee==="""AAAllleeerrrtttLLLaaabbbeeelll   VVVeeerrrtttiiicccaaalllAAAllliiigggnnnmmmeeennnttt==="""TTToooppp  kkk   """   """
TextWrapping="Wrap" Margin="0,35,304,0" Foreground="#FFD81A1A"
FontWeight="Bold" FontSize="16"/>
    <<<TTTeeexxxtttBBBllloooccc   HHHooorrriiizzzooonnntttaaalllAAAllliiigggnnnmmmeeennnttt==="""LLLeeefffttt  kkk   """
VerticalAlignment="Top" Text="Customer Name:" TextWrapping="Wrap"
Margin="0,64,0,0"/>
    <<<TTTeeexxxtttBBBllloooccc   HHHooorrriiizzzooonnntttaaalllAAAllliiigggnnnmmmeeennnttt==="""LLLeeefffttt   MMMaaarrrgggiiinnn==="""111111,,,999222,,,000,,,000  kkk   """   """ 
VerticalAlignment="Top" Text="Email Address:"
TextWrapping="Wrap"/>



Chapter 7

[ 2�3 ]

    <<<TTTeeexxxtttBBBllloooccc   HHHooorrriiizzzooonnntttaaalllAAAllliiigggnnnmmmeeennnttt==="""LLLeeefffttt   MMMaaarrrgggiiinnn==="""777,,,111222000,,,000,,,000  kkk   """   """
VerticalAlignment="Top" Text="Phone Number:" TextWrapping="Wrap"/>
    <<<TTTeeexxxtttBBBooo   xxx:::NNNaaammmeee==="""CCCuuussstttooommmeeerrrNNNaaammmeee   VVVeeerrrtttiiicccaaalllAAAllliiigggnnnmmmeeennnttt==="""TTToooppp  xxx   """   """
TextWrapping="Wrap" Margin="98,64,304,0" Width="238"/>
    <<<TTTeeexxxtttBBBooo   xxx:::NNNaaammmeee==="""EEEmmmaaaiiilllAAAddddddrrreeessssss   MMMaaarrrgggiiinnn==="""999888,,,999222,,,333000444,,,000  xxx   """   """
VerticalAlignment="Top" TextWrapping="Wrap" Width="238"/>
    <<<TTTeeexxxtttBBBooo   xxx:::NNNaaammmeee==="""PPPhhhooonnneeeNNNuuummmbbbeeerrr   MMMaaarrrgggiiinnn==="""999888,,,111222000,,,333000444,,,000  xxx   """   """
VerticalAlignment="Top" TextWrapping="Wrap" Width="238"/>
    <<<BBBuuuttttttooo   xxx:::NNNaaammmeee==="""SSSeeeaaarrrccchhhBBBuuuttttttooonnn   VVVeeerrrtttiiicccaaalllAAAllliiigggnnnmmmeeennnttt==="""TTToooppp  nnn   """   """
Content="Search" Margin="261,160,304,0" Click="SearchButton_Click"
Width="75"/>
    <<<BBBooorrrdddeee   BBBooorrrdddeeerrrBBBrrruuussshhh==="""BBBlllaaaccckkk   BBBooorrrdddeeerrrTTThhhiiiccckkknnneeessssss==="""111  rrr   """   """ 
Margin="0,186,304,0" CornerRadius="4">
    <<<LLLiiissstttBBBooo   xxx:::NNNaaammmeee==="""CCCuuussstttooommmeeerrrLLLiiisssttt   BBBaaaccckkkgggrrrooouuunnnddd==="""{{{xxx:::NNNuuullllll}}}    xxx   """   """
BorderBrush="{x:Null}" FontSize="14.667" ItemTemplate="{StaticRes
ource CustomerListItemTemplate}" SelectionChanged="CustomerList_
SelectionChanged"/>
    <<<///BBBooorrrdddeeerrr  >>>

    </Grid>
</navigation:Page>

5.	 Open the CustomerSearch.xaml.cs file and replace the contents with the 
following code:

using System; 
using System.Linq; 
using System.Windows.Controls;
using System.Windows.Navigation;
using CakeORamaApp.Web;

namespace CakeORamaApp
{
  pppuuubbbllliiiccc   pppaaarrrtttiiiaaalll   ccclllaaassssss   CCCuuussstttooommmeeerrrSSSeeeaaarrrccchhh   :::   PPPaaagggeee
  {{{
    pppuuubbbllliiiccc   CCCuuussstttooommmeeerrrSSSeeeaaarrrccchhh((()))
    {{{
      IIInnniiitttiiiaaallliiizzzeeeCCCooommmpppooonnneeennnttt((()));;;
    }}}

    //////   EEExxxeeecccuuuttteeesss   wwwhhheeennn   ttthhheee   uuussseee   nnnaaavvviiigggaaattteee   tttooo   ttthhhiiisss   pppaaagggeee...rrr sss   
    ppprrrooottteeecccttteeeddd   ooovvveeerrrrrriiidddeee   vvvoooiii   OOOnnnNNNaaavvviiigggaaattteeedddTTTooo(((NNNaaavvviiigggaaatttiiiooonnnEEEvvveeennntttAAArrrgggsss   eeeddd  )))
    {{{
      iiifff   (((AAAppppppSSStttaaattteee...CCCuuussstttooommmeeerrrCCCooonnnttteeexxxttt   ======   nnnuuullllll)))
      {{{
        AAAppppppSSStttaaattteee...CCCuuussstttooommmeeerrrCCCooonnnttteeexxxttt   ===   nnneeewww   CCCuuussstttooommmeeerrrCCCooonnnttteeexxxttt((()));;;
        AAAppppppSSStttaaattteee...CCCuuussstttooommmeeerrrCCCooonnnttteeexxxttt...LLLoooaaaddd<<<CCCuuussstttooommmeeerrr>>>(((AAAppppppSSStttaaattteee...
CustomerContext.GetCustomersQuery());



Customer Service Application

[ 2�4 ]

        AAAppppppSSStttaaattteee...CCCuuussstttooommmeeerrrCCCooonnnttteeexxxttt...LLLoooaaaddd<<<EEEvvveeennnttt>>>(((AAAppppppSSStttaaattteee...
CustomerContext.GetEventsQuery());
        AAAppppppSSStttaaattteee...CCCuuussstttooommmeeerrrCCCooonnnttteeexxxttt...LLLoooaaaddd<<<OOOrrrdddeeerrr>>>(((AAAppppppSSStttaaattteee...
CustomerContext.GetOrdersQuery());
      }}}
    }}}

    ppprrriiivvvaaattteee   vvvoooiiiddd   SSSeeeaaarrrccchhhBBBuuutton_Click(object sender, System.Windows.
RoutedEventArgs e)
    {{{
      vvvaaarrr   nnnaaammmeee   CCCuuussstttooommmeeerrrNNNaaammmeee...TTTeeexxxttt;;;=== 
      vvvaaarrr   eeemmmaaaiiilll   EEEmmmaaaiiilllAAAddddddrrreeessssss...TTTeeexxxttt;;;=== 
      vvvaaarrr   ppphhhooonnneee   PPPhhhooonnneeeNNNuuummmbbbeeerrr...TTTeeexxxttt;;;=== 

      vvvaaarrr   cccuuussstttooommmeeerrrsss   ===   AAAppppppSSStttaaattteee...CCCuuussstttooommmeeerrrCCCooonnnttteeexxxttt...CCCuuussstttooommmeeerrrsss...WWWhhheeerrreee(((ccc
=>

(((!!!SSStttrrriiinnnggg...IIIsssNNNuuullllllOOOrrrEEEmmmppptttyyy(((nnnaaammmeee   &&&   ccc...CCCuuussstttooommmeeerrrNNNaaammmeee...TTToooLLLooowwweeerrr((())))))   &&&   ...        
Contains(name))
        ||||||   (((!!!SSStttrrriiinnnggg...IIIsssNNNuuullllllOOOrrrEEEmmmppptttyyy(((eeemmmaaaiiilll)))   &&&   ccc...EEEmmmaaaiiilllAAAddddddrrreeessssss...&&& 
Equals(email))
        ||||||   (((!!!SSStttrrriiinnnggg...IIIsssNNNuuullllllOOOrrrEEEmmmppptttyyy(((ppphhhooonnneee)))   &&&   ccc...PPPhhhooonnneeeNNNuuummmbbbeeerrr&&& ...
Equals(phone)));
      iiifff   (((cccuuussstttooommmeeerrrsss...CCCooouuunnnttt((()))   ======   000)))
      {{{
        AAAllleeerrrtttLLLaaabbbeeelll...TTTeeexxxttt   ===   """NNNooo   cccuuussstttooommmeeerrr   rrreeecccooorrrdddsss   fffooouuunnnddd...""";;;
        rrreeetttuuurrrnnn;;;
      }}}

      CCCuuussstttooommmeeerrrLLLiiisssttt...IIIttteeemmmsssSSSooouuurrrccceee   ===   cccuuussstttooommmeeerrrsss;;;
    }}}

    ppprrriiivvvaaattteee   vvvoooiiiddd   CCCuuussstttooommmeeerrrLLLiiisssttt___SSSeeellleeeccctttiiiooonnnCCChhhaaannngggeeeddd(((ooobbbjjjeeecccttt   ssseeennndddeeerrr,,,
System.Windows.Controls.SelectionChangedEventArgs e)
    {{{
      iiifff   (((eee...AAAddddddeeedddIIIttteeemmmsss...CCCooouuunnnttt   ======   000)))
        rrreeetttuuurrrnnn;;;

      vvvaaarrr   cccuuussstttooommmeeerrr   ===   eee...AAAddddddeeedddIIIttteeemmmsss[[[000]]]   aaa   CCCuuussstttooommmeeerrrsss ;;;
      iiifff   (((cccuuussstttooommmeeerrr   ======   nnnuuullllll)))
        rrreeetttuuurrrnnn;;;

      AAAppppppSSStttaaattteee...CCCuuussstttooommmeeerrr   ===   cccuuussstttooommmeeerrr;;;

      ttthhhiiisss...NNNaaavvviiigggaaatttiiiooonnnSSSeeerrrvvviiiccceee...NNNaaavvviiigggaaattteee(((nnneeewww   UUUrrriii((("""///CCCuuussstttooommmeeerrrDDDeeetttaaaiiilllsss""",,,
UriKind.Relative));
    }}}
  }}}
}



Chapter 7

[ 2�5 ]

6.	 Build and run the solution; click on the Find Customers link and we should be 
presented with the following form:

7.	 Add a new folder to the CakeORamaApp project called Converters and then add  
a new file called StatusListConverter.cs to the folder.

8.	 Replace the body of the StatusListConverter.cs file with the following:

using System; 
using System.Collections.Generic;
using System.Reflection; 
using System.Windows.Controls;
using System.Windows.Data;

namespace CakeORamaApp.Converters
{
  public class StatusListConverter : IValueConverter
  {
    ###rrreeegggiiiooonnn   IIIVVVaaallluuueeeCCCooonnnvvveeerrrttteeerrr   MMMeeemmmbbbeeerrrsss

    pppuuubbbllliiiccc   ooobbbjjjeeecccttt   CCCooonnnvvveeerrrttt(((ooobbbjjjeeecccttt   vvvaaallluuueee,,,   TTTyyypppeee   tttaaarrrgggeeetttTTTyyypppeee,,,   ooobbbjjjeeecccttt
parameter, System.Globalization.CultureInfo culture)
    {{{
      iiifff   (((vvvaaallluuueee   ======   nnnuuullllll)))
        rrreeetttuuurrr   nnnuuullllll;;;nnn 



Customer Service Application

[ 2�6 ]

      iiinnnttt   rrreeesssuuulllttt;;;
      IIInnnttt333222...TTTrrryyyPPPaaarrrssseee(((vvvaaallluuueee...TTToooSSStttrrriiinnnggg((())),,,   ooouuuttt   rrreeesssuuulllttt)));;;

      vvvaaarrr   iiittteeemmmsss   nnneeewww   LLLiiisssttt<<<CCCooommmbbboooBBBoooxxxIIIttteeemmm>>>((()));;;===  
      vvvaaarrr   fffiiieeelllddd   ===   tttyyypppeeeooofff(((OOOrrrdddeeerrrSSStttaaatttuuusss)))...GGGeeetttFFFiiieeellldddsss(((BBBiiinnndddiiinnngggFFFlllaaagggsss...sss  
Public | BindingFlags.Static);
      fffooorrreeeaaaccchhh   (((vvvaaarrr   fffiiieeelllddd   iiinnn   fffiiieeellldddsss)))
      {{{
        iiittteeemmmsss...AAAdddddd(((nnneeewww   CCCooommmbbboooBBBoooxxxIIIttteeemmm   {{{   CCCooonnnttteeennnttt   ===   fffiiieeelllddd...NNNaaammmeee,,,
IsSelected = (result == (int)field.GetValue(null)) });
      }}}
      rrreeetttuuurrrnnn   iiittteeemmmsss;;;
    }}}

    pppuuubbbllliiiccc   ooobbbjjjeeecccttt   CCCooonnnvvveeerrrtttBBBaaaccckkk(((ooobbbjjjeeeccc   vvvaaallluuueee,,,   TTTyyypppeee   tttaaarrrgggeeetttTTTyyypppeee,,,ttt    
object parameter, System.Globalization.CultureInfo culture)
    {{{
      iiifff   (((vvvaaallluuueee   ======   nnnuuullllll)))
        rrreeetttuuurrrnnn   000;;;

      vvvaaarrr   ssstttaaatttuuu   ===   (((OOOrrrdddeeerrrSSStttaaatttuuusss)))EEEnnnuuummm...PPPaaarrrssseee(((tttyyypppeeeooofff(((OOOrrrdddeeerrrSSStttaaatttuuusss))),,,sss   
value.ToString(), true);
      rrreeetttuuurrrnnn   (((iiinnnttt)))ssstttaaatttuuusss;;;
    }}}
    ###eeennndddrrreeegggiiiooonnn
  }}}
}

We just setup a class that implemented IValueConverter, 
which provides us with a simple value to convert data bound 
values into other types.

9.	 Open the Styles.xaml file found in the Assets folder and add the following 
namespace to the top of the file:

xmlns:converters="clr-namespace:CakeORamaApp.Converters"

10.	Add the following reference at the top of the Resources section:

<converters:StatusListConverter x:Key="StatusListConverter"/>

11.	Add a new Silverlight Page called CustomerDetails.xaml to the CakeORamaApp 
project and drag the file into the Views folder.

12.	Add a reference the System.Windows.Controls.Toolkit assembly to gain 
access to some additional Silverlight controls such as the Extender control.



Chapter 7

[ 2�7 ]

13.	Replace the body of the CustomerDetails.xaml file with the following code:

<navigation:Page 
           xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation" 
           xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
           xmlns:d="http://schemas.microsoft.com/expression/
blend/2008"
           xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
           mc:Ignorable="d"
           xmlns:controls="clr-namespace:System.Windows.
Controls;assembly=System.Windows.Controls" 
       xmlns:navigation="clr-namespace:System.Windows.
Controls;assembly=System.Windows.Controls.Navigation"
           xmlns:dataFormToolkit="clr-namespace:System.
Windows.Controls;assembly=System.Windows.Controls.Data.
DataForm.Toolkit" xmlns:controlsToolkit="clr-namespace:System.
Windows.Controls;assembly=System.Windows.Controls.Toolkit" x:
Class="CakeORamaApp.CustomerDetails"
           d:DesignWidth="640" d:DesignHeight="480"
           Title="CustomerDetails Page"> 
  <navigation:Page.Resources>
    <DataTemplate x:Key="OrderItemTemplate">
      <StackPanel>
        <controlsToolkit:Expander d:LayoutOverrides="Width"
Header="{Binding OrderDate, Mode=TwoWay, UpdateSourceTrigger=Defau
lt}">
          <Grid>
            <TextBlock HorizontalAlignment="Left" Margin="0,8,0,0"
VerticalAlignment="Top" Text="Order Date:" TextWrapping="Wrap"/>
            <controls:DatePicker Height="26" Margin="70,8,0,0"
VerticalAlignment="Top" SelectedDate="{Binding OrderDate,
Mode=TwoWay, UpdateSourceTrigger=Default}" HorizontalAlignment="Le
ft" Width="124"/>
            <TextBlock HorizontalAlignment="Left"
 Margin="0,82,0,0" VerticalAlignment="Top" Text="Details:"
TextWrapping="Wrap"/>
            <ScrollViewer Margin="0,102,0,0" Height="100">
              <TextBox Text="{Binding OrderDetails, Mode=TwoWay,
UpdateSourceTrigger=Default}" TextWrapping="Wrap"/>
            </ScrollViewer>
            <TextBlock HorizontalAlignment="Left"
 Margin="0,49,0,0" VerticalAlignment="Top" Text="Status:"
TextWrapping="Wrap"/>



Customer Service Application

[ 2�� ]

            <ComboBox HorizontalAlignment="Left"
 Margin="44,49,0,0" VerticalAlignment="Top" Width="150"
ItemsSource="{Binding Status, Mode=TwoWay, UpdateSourceTrigger=Def
ault, Converter={StaticResource StatusListConverter}}"/>
            <<<CCChhheeeccckkkBBBoooxxx   MMMaaarrrgggiiinnn==="""222111333,,,444999,,,111777555,,,000"""
VerticalAlignment="Top" Content="Is Paid" IsChecked="{Binding
IsPaid, Mode=TwoWay, UpdateSourceTrigger=Default}" d:
LayoutOverrides="Width" HorizontalAlignment="Left"/>
            <<<TTTeeexxxtttBBBllloooccckkk   MMMaaarrrgggiiinnn==="""222111333,,,888,,,111555999,,,000"""
VerticalAlignment="Top" Text="Cost:" TextWrapping="Wrap" Horizonta
lAlignment="Left"/>
            <<<TTTeeexxxtttBBBoooxxx   HHHooorrriiizzzooonnntttaaalllAAAllliiigggnnnmmmeeennnttt==="""LLLeeefffttt"""   MMMaaarrrgggiiinnn==="""222555000,,,888,,,000,,,000"""
VerticalAlignment="Top" Text="{Binding Cost, Mode=TwoWay, UpdateSo
urceTrigger=Default}" TextWrapping="Wrap" Width="104"/>
          <<<///GGGrrriiiddd>>>
        <<<///cccooonnntttrrrooolllsssTTToooooolllkkkiiittt:::EEExxxpppaaannndddeeerrr>>>
      <<<///SSStttaaaccckkkPPPaaannneeelll>>>
    <<<///DDDaaatttaaaTTTeeemmmppplllaaattteee>>>
    <<<DDDaaatttaaaTTTeeemmmppplllaaattteee   xxx:::KKKeeeyyy==="""EEEvvveeennntttIIIttteeemmmTTTeeemmmppplllaaattteee""">>>
      <<<cccooonnntttrrrooolllsssTTToooooolllkkkiiittt:::EEExxxpppaaannndddeeerrr   HHHeeeaaadddeeerrr==="""{{{BBBiiinnndddiiinnnggg   EEEvvveeennntttDDDaaattteee,,,
Mode=TwoWay}" d:DesignWidth="208" d:DesignHeight="288">
        <<<SSStttaaaccckkkPPPaaannneeelll   MMMaaarrrgggiiinnn==="""000""">>>
          <<<SSStttaaaccckkkPPPaaannneeelll   OOOrrriiieeennntttaaatttiiiooonnn==="""HHHooorrriiizzzooonnntttaaalll""">>>
            <<<TTTeeexxxtttBBBllloooccckkk   HHHooorrriiizzzooonnntttaaalllAAAllliiigggnnnmmmeeennnttt==="""RRRiiiggghhhttt"""
Margin="0,0,8,0" VerticalAlignment="Top" Text="Event Date:"
TextWrapping="Wrap"/>
            <<<cccooonnntttrrrooolllsss:::DDDaaattteeePPPiiiccckkkeeerrr   HHHeeeiiiggghhhttt==="""222666"""   MMMaaarrrgggiiinnn==="""000"""
VerticalAlignment="Top" SelectedDate="{Binding EventDate,
Mode=TwoWay, UpdateSourceTrigger=Default}" HorizontalAlignment="Ri
ght" Width="206"/>
          <<<///SSStttaaaccckkkPPPaaannneeelll>>>
          <<<TTTeeexxxtttBBBllloooccckkk   HHHooorrriiizzzooonnntttaaalllAAAllliiigggnnnmmmeeennnttt==="""LLLeeefffttt"""   MMMaaarrrgggiiinnn==="""000"""
VerticalAlignment="Top" Text="Comments:" TextWrapping="Wrap"/>
          <<<SSScccrrrooollllllVVViiieeewwweeerrr   MMMaaarrrgggiiinnn==="""000   HHHeeeiiiggghhhttt==="""111000000"""   ddd:::LLLaaayyyooouuutttOOOvvveeerrr"""  
rides="VerticalAlignment, Height" HorizontalAlignment="Left"
Width="206">
            <<<TTTeeexxxtttBBBoooxxx   TTTeeexxxttt==="""{{{BBBiiinnndddiiinnnggg   CCCooommmmmmeeennntttsss,,,   MMMooodddeee===TTTwwwoooWWWaaayyy,,,   UUUpppdddaaattteeeSSS
ourceTrigger=Default}"/>
          <<<///SSScccrrrooollllllVVViiieeewwweeerrr>>>
          <<<cccooonnntttrrrooolllsssTTToooooolllkkkiiittt:::EEExxxpppaaannndddeeerrr   HHHooorrriiizzzooonnntttaaalllAAAllliiigggnnnmmmeeennnttt==="""SSStttrrreeetttccchhh"""
Header="ORDERS">
            <<<LLLiiissstttBBBoooxxx   HHHooorrriiizzzooonnntttaaalllAAAllliiigggnnnmmmeeennnttt==="""SSStttrrreeetttccchhh"""   VVVeeerrrtttiiicccaaalllAAAllliiigggnnn
ment="Stretch" ItemTemplate="{StaticResource OrderItemTemplate}"
ItemsSource="{Binding Orders}" Background="{x:Null}"
BorderBrush="{x:Null}"/>
          <<<///cccooonnntttrrrooolllsssTTToooooolllkkkiiittt:::EEExxxpppaaannndddeeerrr>>>
        <<<///SSStttaaaccckkkPPPaaannneeelll>>>



Chapter 7

[ 2�� ]

      <<<///cccooonnntttrrrooolllsssTTToooooolllkkkiiittt:::EEExxxpppaaannndddeeerrr>>>
    <<<///DDDaaatttaaaTTTeeemmmppplllaaattteee>>>
    <<<SSStttyyyllleee   xxx:::KKKeeeyyy==="""EEEvvveeennntttLLLiiissstttCCCooonnntttaaaiiinnneeerrrSSStttyyyllleee"""  
     TargetType="ListBoxItem">
      <<<SSSeeetttttteeerrr   PPPrrrooopppeeerrrtttyyy==="""PPPaaaddddddiiinnnggg"""   VVVaaallluuueee==="""333"""///>>>
      <<<SSSeeetttttteeerrr   PPPrrrooopppeeerrrtttyyy==="""HHHooorrriiizzzooonnntttaaalllCCCooonnnttteeennntttAAAllliiigggnnnmmmeeennnttt"""   VVVaaallluuueee==="""LLLeeefffttt"""///>>>
      <<<SSSeeetttttteeerrr   PPPrrrooopppeeerrrtttyyy==="""VVVeeerrrtttiiicccaaalllCCCooonnnttteeennntttAAAllliiigggnnnmmmeeennnttt"""   VVVaaallluuueee==="""TTToooppp"""///>>>
      <<<SSSeeetttttteeerrr   PPPrrrooopppeeerrrtttyyy==="""BBBaaaccckkkgggrrrooouuunnnddd"""   VVVaaallluuueee==="""TTTrrraaannnssspppaaarrreeennnttt"""///>>>
      <<<SSSeeetttttteeerrr   PPPrrrooopppeeerrrtttyyy==="""BBBooorrrdddeeerrrTTThhhiiiccckkknnneeessssss"""   VVVaaallluuueee==="""111"""///>>>
      <<<SSSeeetttttteeerrr   PPPrrrooopppeeerrrtttyyy==="""TTTaaabbbNNNaaavvviiigggaaatttiiiooonnn"""   VVVaaallluuueee==="""LLLooocccaaalll"""///>>>
      <<<SSSeeetttttteeerrr   PPPrrrooopppeeerrrtttyyy==="""TTTeeemmmppplllaaattteee""">>>
        <<<SSSeeetttttteeerrr...VVVaaallluuueee>>>
          <<<CCCooonnntttrrrooolllTTTeeemmmppplllaaattt   TTTaaarrrgggeeetttTTTyyypppeee==="""LLLiiissstttBBBoooxxxIIIttteeemmm""">>>eee 
            <<<SSScccrrrooollllllVVViiieeewwweeerrr   HHHeeeiiiggghhhttt==="""333000000""">>>
              <<<GGGrrriiiddd   BBBaaaccckkkgggrrrooouuunnnddd==="""{{{TTTeeemmmppplllaaattteeeBBBiiinnndddiiinnnggg   BBBaaaccckkkgggrrrooouuunnnddd}}}""">>>
                <<<VVViiisssuuuaaalllSSStttaaattteeeMMMaaannnaaagggeeerrr...VVViiisssuuuaaalllSSStttaaattteeeGGGrrrooouuupppsss>>>
                  <<<VVViiisssuuuaaalllSSStttaaattteeeGGGrrrooouuuppp   xxx:::NNNaaammmeee==="""CCCooommmmmmooonnnSSStttaaattteeesss""">>>
                    <<<VVViiisssuuuaaalllSSStttaaattteee   xxx:::NNNaaammmeee==="""NNNooorrrmmmaaalll"""///>>>
                    <<<VVViiisssuuuaaalllSSStttaaattteee   xxx:::NNNaaammmeee==="""MMMooouuussseeeOOOvvveeerrr""">>>
                      <<<SSStttooorrryyybbboooaaarrrddd>>>
                        <<<DDDooouuubbbllleeeAAAnnniiimmmaaatttiiiooonnnUUUsssiiinnngggKKKeeeyyyFFFrrraaammmeeesss 
                         Storyboard.TargetName="fillColor"  
                         Storyboard.TargetProperty="Opacity">
                        <<<SSSpppllliiinnneeeDDDooouuubbbllleeeKKKeeeyyyFFFrrraaammmeee   KKKeeeyyyTTTiiimmmeee==="""000"""  
                                              VVVaaallluuueee==="""...333555"""///>>>
                        <<<///DDDooouuubbbllleeeAAAnnniiimmmaaatttiiiooonnnUUUsssiiinnngggKKKeeeyyyFFFrrraaammmeeesss>>>
                      <<<///SSStttooorrryyybbboooaaarrrddd>>>
                    <<<///VVViiisssuuuaaalllSSStttaaattteee>>>
                    <<<VVViiisssuuuaaalllSSStttaaattteee   xxx:::NNNaaammmeee==="""DDDiiisssaaabbbllleeeddd""">>>
                      <<<SSStttooorrryyybbboooaaarrrddd>>>
                         <<<DDDooouuubbbllleeeAAAnnniiimmmaaatttiiiooonnnUUUsssiiinnngggKKKeeeyyyFFFrrraaammmeeesss 
                          SSStttooorrryyybbboooaaarrrddd...TTTaaarrrgggeeetttNNNaaammmeee==="""cccooonnnttteeennntttPPPrrreeessseeennnttteeerrr""" 
                          SSStttooorrryyybbboooaaarrrddd...TTTaaarrrgggeeetttPPPrrrooopppeeerrrtttyyy==="""OOOpppaaaccciiitttyyy""">>>
                        <<<SSSpppllliiinnneeeDDDooouuubbbllleeeKKKeeeyyyFFFrrraaammmeee   KKKeeeyyyTTTiiimmmeee==="""000"""  
                                              VVVaaallluuueee==="""...555555"""///>>>
                          <<<///DDDooouuubbbllleeeAAAnnniiimmmaaatttiiiooonnnUUUsssiiinnngggKKKeeeyyyFFFrrraaammmeeesss>>>
                        <<<///SSStttooorrryyybbboooaaarrrddd>>>
                      <<<///VVViiisssuuuaaalllSSStttaaattteee>>>
                    <<<///VVViiisssuuuaaalllSSStttaaattteeeGGGrrrooouuuppp>>>
                    <<<VVViiisssuuuaaalllSSStttaaattteeeGGGrrrooouuuppp   xxx:::NNNaaammmeee==="""SSSeeellleeeccctttiiiooonnnSSStttaaattteeesss""">>>
                    <<<VVViiisssuuuaaalllSSStttaaattteee   xxx:::NNNaaammmeee==="""UUUnnnssseeellleeecccttteeeddd"""///>>>
                    <<<VVViiisssuuuaaalllSSStttaaattteee   xxx:::NNNaaammmeee==="""SSSeeellleeecccttteeeddd""">>>
                        <<<SSStttooorrryyybbboooaaarrrddd>>>



Customer Service Application

[ 2�0 ]

                          <<<DDDooouuubbbllleeeAAAnnniiimmmaaatttiiiooonnnUUUsssiiinnngggKKKeeeyyyFFFrrraaammmeeesss  
                           Storyboard.TargetName="fillColor2"  
                           Storyboard.TargetProperty="Opacity">
                        <<<SSSpppllliiinnneeeDDDooouuubbbllleeeKKKeeeyyyFFFrrraaammmeee   KKKeeeyyyTTTiiimmmeee==="""000""" 
                                              Value=".75"/>
                          <<<///DDDooouuubbbllleeeAAAnnniiimmmaaatttiiiooonnnUUUsssiiinnngggKKKeeeyyyFFFrrraaammmeeesss>>>
                        <<<///SSStttooorrryyybbboooaaarrrddd>>>
                    <<<///VVViiisssuuuaaalllSSStttaaattteee>>>
                    <<<///VVViiisssuuuaaalllSSStttaaattteeeGGGrrrooouuuppp>>>
                    <<<VVViiisssuuuaaalllSSStttaaattteeeGGGrrrooouuuppp   xxx:::NNNaaammmeee==="""FFFooocccuuusssSSStttaaattteeesss""">>>
                      <<<VVViiisssuuuaaalllSSStttaaattteee   xxx:::NNNaaammmeee==="""FFFooocccuuussseeeddd""">>>
                        <<<SSStttooorrryyybbboooaaarrrddd>>>
                          <<<OOObbbjjjeeeccctttAAAnnniiimmmaaatttiiiooonnnUUUsssiiinnngggKKKeeeyyyFFFrrraaammmeeesss  
                          DDDuuurrraaatttiiiooonnn==="""000""" 
                           Storyboard.TargetName= 
                            """FFFooocccuuusssVVViiisssuuuaaalllEEEllleeemmmeeennnttt""" 
                           Storyboard.TargetProperty="Visibility">
                            <<<DDDiiissscccrrreeettteeeOOObbbjjjeeeccctttKKKeeeyyyFFFrrraaammmeee   KKKeeeyyyTTTiiimmmeee==="""000""">>>
                            <<<DDDiiissscccrrreeettteeeOOObbbjjjeeeccctttKKKeeeyyyFFFrrraaammmeee...VVVaaallluuueee>>>
                              <<<VVViiisssiiibbbiiillliiitttyyy>>>VVViiisssiiibbbllleee<<<///VVViiisssiiibbbiiillliiitttyyy>>>
                            <<<///DDDiiissscccrrreeettteeeOOObbbjjjeeeccctttKKKeeeyyyFFFrrraaammmeee...VVVaaallluuueee>>>
                            <<<///DDDiiissscccrrreeettteeeOOObbbjjjeeeccctttKKKeeeyyyFFFrrraaammmeee>>>
                          <<<///OOObbbjjjeeeccctttAAAnnniiimmmaaatttiiiooonnnUUUsssiiinnngggKKKeeeyyyFFFrrraaammmeeesss>>>
                        <<<///SSStttooorrryyybbboooaaarrrddd>>>
                      <<<///VVViiisssuuuaaalllSSStttaaattteee>>>
                      <<<VVViiisssuuuaaalllSSStttaaattteee   xxx:::NNNaaammmeee==="""UUUnnnfffooocccuuussseeeddd"""///>>>
                      <<<///VVViiisssuuuaaalllSSStttaaattteeeGGGrrrooouuuppp>>>
                      <<<///VVViiisssuuuaaalllSSStttaaattteeeMMMaaannnaaagggeeerrr...VVViiisssuuuaaalllSSStttaaattteeeGGGrrrooouuupppsss>>>
                      <<<RRReeeccctttaaannngggllleee   xxx:::NNNaaammmeee==="""fffiiillllllCCCooolllooorrr"""  
                       FFFiiillllll==="""###FFFFFFBBBAAADDDDDDEEE999"""  
                       RadiusX="1" RadiusY="1"  
                       IsHitTestVisible="False" Opacity="0"/>
                      <<<RRReeeccctttaaannngggllleee   xxx:::NNNaaammmeee==="""fffiiillllllCCCooolllooorrr222"""  
                          FFFiiillllll==="""###FFFFFFBBBAAADDDDDDEEE999""" 
                       RadiusX="1" RadiusY="1"  
                       IsHitTestVisible="False" Opacity="0"/>
                      <<<CCCooonnnttteeennntttPPPrrreeessseeennnttteeerrr   xxx:::NNNaaammmeee==="""cccooonnnttteeennntttPPPrrreeessseeennnttteeerrr"""  
                       HorizontalAlignment="{TemplateBinding  
                       HorizontalContentAlignment}"  
                       Margin="{TemplateBinding Padding}"  
                       Content="{TemplateBinding Content}"  
                       ContentTemplate="{TemplateBinding  
                       ContentTemplate}"/>
                      <<<RRReeeccctttaaannngggllleee   xxx:::NNNaaammmeee==="""FFFooocccuuusssVVViiisssuuuaaalllEEEllleeemmmeeennnttt"""  
                       Stroke="#FF6DBDD1" StrokeThickness="1"  
                       RadiusX="1" RadiusY="1"  
                       Visibility="Collapsed"/>



Chapter 7

[ 2�1 ]

              </Grid>
            </ScrollViewer>
          </ControlTemplate>
        </Setter.Value>
      </Setter>
    </Style>
  </navigation:Page.Resources>
  <Grid>
    <TextBlock HorizontalAlignment="Left" Text="Customer Details"
TextWrapping="Wrap" Foreground="#FF4583CD" FontWeight="Bold"
FontSize="18" VerticalAlignment="Top" d:LayoutOverrides="Horizonta
lAlignment"/>
    <TextBlock HorizontalAlignment="Left" Margin="0,30,0,0"
VerticalAlignment="Top" Text="Customer Name:"
TextWrapping="Wrap"/>
    <TextBlock HorizontalAlignment="Left" Margin="7,58,0,0"
VerticalAlignment="Top" Text="Phone Number:" TextWrapping="Wrap"/>
    <TextBlock HorizontalAlignment="Left" Margin="11,86,0,0"
VerticalAlignment="Top" Text="Email Address:"
TextWrapping="Wrap"/>
    <TextBox HorizontalAlignment="Left" Margin="98,30,0,0"
VerticalAlignment="Top" Width="222" Text="{Binding CustomerName,
Mode=TwoWay, UpdateSourceTrigger=Default}" TextWrapping="Wrap"/>
    <TextBox HorizontalAlignment="Left" Margin="98,58,0,0"
VerticalAlignment="Top" Width="222" Text="{Binding PhoneNumber,
Mode=TwoWay, UpdateSourceTrigger=Default}" TextWrapping="Wrap"/>
    <TextBox HorizontalAlignment="Left" Margin="98,86,0,0"
VerticalAlignment="Top" Width="222" Text="{Binding EmailAddress,
Mode=TwoWay, UpdateSourceTrigger=Default}" TextWrapping="Wrap"/>
    <ListBox x:Name="EventsList" Background="{x: 
Null}" Margin="0,149,0,8" ItemTemplate="{StaticResource
EventItemTemplate}" ItemsSource="{Binding Events, Mode=OneWay,
UpdateSourceTrigger=Default}" ItemContainerStyle="{StaticResource
EventListContainerStyle}"/>
    <TextBlock HorizontalAlignment="Left" Margin="0,128,0,0"
VerticalAlignment="Top" Text="EVENTS" TextWrapping="Wrap"
FontWeight="Bold" FontSize="12"/>
    <Button Margin="350,86,0,0" x:Name="SaveButton" Content="Save
Customer Details" Click="SaveButton_Click" HorizontalAlignment="Le
ft" VerticalAlignment="Top" Width="140" Height="28"/>
  </Grid>
</navigation:Page>



Customer Service Application

[ 2�2 ]

14.	Replace the code in the CustomerDetails.xaml.cs file with the following  
code to bind the currently selected Customer instance and handle saving the 
modified entities:

using System; 
using System.Windows; 
using System.Windows.Controls;
using System.Windows.Navigation;
using CakeORamaApp.Web; 
using CakeORamaApp.Web.Services;

namespace CakeORamaApp
{
  public partial class CustomerDetails : Page
  {
    public CustomerDetails()
    {
      InitializeComponent();
    }

    // Executes when the user navigates to this page.
    protected override void OnNavigatedTo(NavigationEventArgs e)
    {
      if (AppState.CustomerContext == null)
      {
      AppState.CustomerContext = new CustomerContext();
        AppState.CustomerContext.Load<Customer>(AppState. 
        CustomerContext.GetCustomersQuery());
        AppState.CustomerContext.Load<Event>(AppState. 
        CustomerContext.GetEventsQuery());
        AppState.CustomerContext.Load<Order>(AppState. 
        CustomerContext.GetOrdersQuery());
      }

      this.DataContext = AppState.Customer;
    }

    private void SaveButton_Click(object sender,  
    RoutedEventArgs e)
    {
      AppState.CustomerContext.SubmitChanges(new Action<System. 
       Windows.Ria.SubmitOperation>((o) =>
        {
          if (o.HasError)



Chapter 7

[ 2�3 ]

            MessageBox.Show(String.Concat("Failed to save
customer information.\nError:", o.Error.Message), "Error",
MessageBoxButton.OK);
          else
            MessageBox.Show("Customer information saved
successfully.", "Save Customer Information", MessageBoxButton.OK);
        }), null);
    }
  }
}

15.	 If we build and run the solution, we can make changes to our customer information 
that will be persisted to the database. Try performing a search for one of our existing 
customers and make a change to the phone number of the customer. Click on the
Save Customer Details button when you are finished:



Customer Service Application

[ 2�4 ]

16.	 If we go back to the Find Customers page and perform the search again, we can see 
that our entity record has persisted to the database:

What just happened?
We created a complex form containing several listbox controls with custom ItemTemplate
definitions that made use of Expander controls to present the information to the user  
in a way that allowed them to view segments of the information at a time, reducing 
screen clutter.

We used TwoWay data binding to ensure that information that was changed on screen would 
persist to our entity classes. We created a custom IValueConverter class to convert the
Status integer value of the Order class to a list of the OrderStatus values.

Along the way we made good use of the ADO.NET Entity Framework and RIA Services to 
utilize a common middle tier that retrieves and persists data to a SQL Server database.

Have a go hero – adding data validation to our customer details form
Now that we have created a form for entering and saving customer details, we should 
provide some validation of the data utilizing some of the methods we learned in Chapter 5.

We will make use of the Validation attributes and the metadata class created with our 
RIA Services Domain Service to provide basic data validation for our objects now.

1. Start Visual Studio and open the CakeORamaApp solution. In the CakeORamaApp.
Web project, open the CustomerService.metadata.cs file under the 
Services folder.

2. Modify the Customer class to include the following attributes:

[MetadataTypeAttribute(typeof(Customer.CustomerMetadata))]
public partial class Customer
{
  internal sealed class CustomerMetadata
  {
    // Metadata classes are not meant to be instantiated.
    private CustomerMetadata()



Chapter 7

[ 2�5 ]

    {
    }

    public int CustomerId;

     [Required(ErrorMessage="Customer name is required.")]
    public string CustomerName;

     [Required(ErrorMessage = "Email address is required.")]
     [RegularExpression(@"^([\w\-\.]+)@((\[([0-9]{1,3}\.){3}[0-
9]{1,3}\])|(([\w\-]+\.)+)([a-zA-Z]{2,4}))$",
      ErrorMessage = "A valid email address must be in the format
user@domain.com.")]
    public string EmailAddress;

    public EntityState EntityState;

    public EntityCollection<Event> Events;

    [Required(ErrorMessage = "Phone number is required.")]
     [RegularExpression(@"((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}",
      ErrorMessage = "A valid phone number must be in the format 
(XXX) XXX-XXXX or XXX-XXX-XXXX.")]
    public string PhoneNumber;
  }
}

These attributes are used by the Validation Engine
to validate the values of the properties.

3. Open the CustomerDetails.xaml file and modify the Customer field XAML as 
follows (adding x:Name values to each control and adding the NotifyOnValidati
onError=True and ValidatesOnExceptions=True to the binding):

<TextBox x:Name="CustomerNameTextBox" HorizontalAlignment="L 
eft" Margin="98,30,0,0" VerticalAlignment="Top" Width="222"
Text="{Binding CustomerName, Mode=TwoWay, UpdateSourceTrigger=Def
ault, NotifyOnValidationError=True, ValidatesOnExceptions=True }"
TextWrapping="Wrap"/>
<TextBox x:Name="PhoneNumberTextBox" HorizontalAlignment="L 
eft" Margin="98,58,0,0" VerticalAlignment="Top" Width="222"
Text="{Binding PhoneNumber, Mode=TwoWay, UpdateSourceTrigger=Defa
ult, NotifyOnValidationError=True, ValidatesOnExceptions=True }"
TextWrapping="Wrap"/>



Customer Service Application

[ 2�6 ]

<TextBox x:Name="EmailAddressTextBox" HorizontalAlignment="L 
eft" Margin="98,86,0,0" VerticalAlignment="Top" Width="222"
Text="{Binding EmailAddress, Mode=TwoWay, UpdateSourceTrigger=Def
ault, NotifyOnValidationError=True, ValidatesOnExceptions=True }"
TextWrapping="Wrap"/>

4. Modify the SaveButton_Click method of the CustomerDetails.xaml.cs file 
as follows to perform a validation check before submitting the values: 

private void SaveButton_Click(object sender, RoutedEventArgs e)
{
  if (Validation.GetHasError(CustomerNameTextBox)
    || Validation.GetHasError(PhoneNumberTextBox)
    || Validation.GetHasError(EmailAddressTextBox))
  {
    // Do not submit changes...
    return;
  }
 AppState.CustomerContext.SubmitChanges(new Action<System.
Windows.Ria.Data.SubmitOperation>((o) =>
    {
      if (o.HasError)
        MessageBox.Show(String.Concat("Failed to save
customer information.\nError:", o.Error.Message), "Error",
MessageBoxButton.OK);
      else
        MessageBox.Show("Customer information saved
successfully.", "Save Customer Information", MessageBoxButton.OK);
  }), null);
}

5. Run the solution without debugging (Ctrl + F5); otherwise Visual Studio will break 
on the validation exceptions. On the home page, choose Find Customers and enter
information regarding one of the customers that we have already added. Click the 
Search button to find the customer details and click on the customer in the list to 
load the details:



Chapter 7

[ 2�7 ]

6. Remove two of the digits from the phone number and click on the Save Customer 
Details button. We can see that Silverlight has highlighted the invalid control. As
with all Silverlight controls, the validation messages are completely customizable 
using styles. If we hover the mouse over the control, Silverlight displays a Tooltip 
containing the validation message corresponding to the Validation attribute that 
failed during the validation of the PhoneNumber property of the Customer class:

Silverlight also provides a ValidationSummary control that works much 
like the ASP.NET ValidationSummary in that error messages are displayed
in one place, rather than next to each control. This can be easier for users to
understand in some scenarios as all of the errors are grouped into one place and
the controls that caused the errors are highlighted.

Summary
In this chapter we looked at taking a customer service application from data modelling 
through to user interface design. We looked at how we can make use of the ADO.NET Entity 
Framework and RIA Services to create common data objects that can be persisted to a data 
store. We delved into more complex user interfaces, utilizing custom DataTemplates, and
performing wwwoooWWWaaayyy   dddaaattt   bbbiiinnndddiiinnnggg   III   ttthhhiii   ccchhhaaapppttteee   ssspppeeeccciiififificccaaallllll   dddiiissscccuuusssssseee   ttthhh   fffooollllllooowwwiiinnngggTTT  nnn   sss   ddd   eeeaaa ...   rrr wwweee yyy   :::

How to create a basic database model

How to create an ADO.NET Entity Framework model

How to create a Domain Service form and Entity model

How to utilize WCF RIA Services with our Entity model

How to use the DataForm control

How to build a more complex business application

How to use custom DataTemplates to define a custom look to listbox controls

In the next chapter, we will make use of data visualizations to create a management 
dashboard complete with graphs containing metrics about our customers and orders.



















�
Executive Dashboard Application

Executives and other business decision makers rely on collected data to drive 
their business forward. In Silverlight, we can provide visualizations of data 
to make the decision makers jobs a bit easier. After all, looking at data on a 
graph can provide a better understanding of the information than just plain 
spreadsheets or grid data.

By providing data in an intuitive way, we can better serve the needs of the 
business. And by providing an application to allow executives to visualize 
collected data, we can better assist the growth and success of the business.

In this chapter, we shall:

Add data visualization to our existing application

Create an executive dashboard to view collected data

Make use of the Silverlight Toolkit for data visualization

Data visualization
The Silverlight Toolkit provides controls for data visualization, namely Chart and DataGrid
controls. With these controls, we can display data in a variety of ways, providing views of the 
data that make sense to decision makers.

We will make use of these data visualization controls to display information about our 
customers and their orders. This information can help the sales staff determine what 
types of cakes are selling and what time of year they sell the most.









Executive Dashboard Application

[ 300 ]

Time for action – creating the Executive Dashboard
We will create our dashboard as a page in the customer service application that we created 
in Chapter 7. By doing this, we can take advantage of the data classes that we already built, 
and thereby reduce the amount of code required to get our dashboard up and running.

1.	 Download and install the Silverlight Toolkit from CodePlex: 
http://www.codeplex.com/Silverlight.

2.	 Start Visual Studio and open the CakeORamaApp solution.

3.	 Right click on the Views folder of the CakeORamaApp project, choose Add New
Item, and add a new Silverlight Page named Dashboard.xaml:

4.	 Open the MainPage.xaml file and insert the following code right after the Find
Customers link in the navigation: 

<Rectangle 

    x:Name="Divider4" 

    Style="{StaticResource DividerStyle}"/>

<HyperlinkButton 



Chapter 8

[ 301 ]

    x:Name="Link5" 

    Style="{StaticResource LinkStyle}" 

    NavigateUri="/Dashboard" 

    TargetName="ContentFrame" 

    Content="dashboard"/>

5.	 Switch over to Expression Blend and open the Dashboard.xaml file.

6.	 Add a TextBlock to the top of the page to serve as our heading. Set the Text
property to Executive Dashboard and the FontSize to 16pt:

7.	 Position the TextBlock at the top-left corner of the page:

8.	 Click on the Assets icon in the toolbox:

9.	 In the search field, type chart and then select the Chart control:



Executive Dashboard Application

[ 302 ]

10.	Double-click the Chart icon to add a new chart  control to the page:

11.	Position the chart just under the page title:

12.	Name the chart SalesDataChart and set the following chart properties:



Chapter 8

[ 303 ]

13.	Expand the SalesDataChart in the Objects and Timeline panel and select the
[ColumnSeries] node:

14.	Change the Title of the series to Sales:

We can see that the ItemsSource is highlighted by a yellow 
border, indicating that it has a data binding. The default chart 
implementation includes a binding to a collection of points in 
order to provide a visual of the chart at design time. We can 
ignore this for now as we are going to change this later on.



Executive Dashboard Application

[ 304 ]

15.	Change the DependentValuePath and IndependentValuePath to the following as 
we are going to create a custom class for binding to the chart:

16.	Save your work, close the Dashboard.xaml file, and switch back over to 
Visual Studio.

17.	Open the Dashboard.xaml file and remove the following XAML from the 
DataContext of the chart. Having this data defined in the XAML will interfere 
with the binding of our sales information:

<chartingToolkit:Chart.DataContext>

      <PointCollection>

        <Point>1,10</Point>

        <Point>2,20</Point>

        <Point>3,30</Point>

        <Point>4,40</Point>

      </PointCollection>

</chartingToolkit:Chart.DataContext>

18.	Open the Dashboard.xaml.cs file and replace the OnNavigatedTo method
handler with the following code: 

protected override void OnNavigatedTo(NavigationEventArgs e)

{

  if (AppState.CustomerContext == null)

  {

    AppState.CustomerContext = new CustomerContext();

  AppState.CustomerContext.Load<Customer>(AppState.
CustomerContext.GetCustomersQuery());

  AppState.CustomerContext.Load<Event>(AppState.CustomerContext.
GetEventsQuery());

  AppState.CustomerContext.Load<Order>(AppState.CustomerContext.
GetOrdersQuery(), 

      new Action<System.Windows.Ria.LoadOperation<Order>>((op) =>



Chapter 8

[ 305 ]

      {

        this.Dispatcher.BeginInvoke(() =>

          {

            // Orders finished loading, bind to the sales data  
            //chart control.

            var orders = op.Entities.Where 
            (o => o.OrderDate.Year == DateTime.Now.Year);

            var salesData = new Dictionary<string, double>();

            for (int i = 1; i <= 12; i++)

            {

              salesData.Add(CultureInfo.CurrentUICulture. 
              DateTimeFormat.GetAbbreviatedMonthName(i),

                 (double)orders.Where 
                 (o => o.OrderDate.Month == i).Sum(o => o.Cost));

            }

            SalesDataChart.DataContext = salesData;

          });

      }), null);

  }

}

The salesData dictionary which we created above represents the 
IndependentValuePath (months) and DependentValuePath
(cost) of the columns in the chart.

19.	Build and run the solution, then choose the dashboard link and we should see the 
following screen (or similar depending on the amount of data in the Orders table):



Executive Dashboard Application

[ 306 ]

20.	Switch back to Blend and open the Dashboard.xaml file.

21.	Add another chart next to the Sales Information chart and name it SalesPieChart:

22.	Set the Properties of the SalesPieChart to the following:



Chapter 8

[ 307 ]

23.	Click on the Advanced property options button next to the DataContext property:

24.	Choose the Reset option to clear the DataContext for this chart since we will be 
binding a custom object:

25.	Click on the button next to the Series (Collection) labeled Edit items in 
this collection:



Executive Dashboard Application

[ 30� ]

26.	When the ISeries Collection Editor dialog opens, delete the current entry:

27.	From the Add another item dropdown list, select the PieSeries:

28.	Set the DependentValuePath and the IndependentValuePath to the following and 
click the OK button to close the ISeries Collection Editor dialog:



Chapter 8

[ 30� ]

29.	Switch to XAML view:

30.	Edit the XAML for the SalesPieChart to set the binding for our PieSeries: 

<chartingToolkit:PieSeries ItemsSource="{Binding}" DependentValueP
ath="Value" IndependentValuePath="Key"/>

Using {Binding} without any arguments will cause the series 
to bind to the default DataContext value of the chart.

31.	Save and close the Dashboard.xaml file, build the solution from within Blend and 
switch back over to Visual Studio.

32.	Open the Dashboard.xaml.cs file and change the code in the OnNavigatedTo
method to bind to the pie chart, as well as the column chart:

SalesDataChart.DataContext = salesData;

SalesPieChart.DataContext = salesData;

33.	Build and run the application to see both our column and pie charts in action:

What just happened?
We added charting controls to display sales data to help our sales staff view the months of 
the year in which they have the most sales. We got to work with two charts, one displaying 
columns and the other displaying a pie chart. We learned how easy it was to bind our 
existing data to these charts using some basic LINQ queries to organize and group the data.



Executive Dashboard Application

[ 310 ]

Have a go hero – adding more sales data
We can make our SalesDataChart more informative by adding an additional year of sales 
information. By doing this, we can allow the sales staff to compare the previous year to the 
current year, to ensure that sales are increasing.

1. Start Visual Studio, open the CakeORamaApp solution and then open the 
Dashboard.xaml file.

2. Modify the SalesChartData control XAML to the following to add an additional 
ColumnSeries:

<chartingToolkit:Chart x:Name="SalesDataChart" Title="Sales
Information" Margin="0,31,0,0" HorizontalAlignment="Left"
VerticalAlignment="Top" Width="400" Height="200">

  <chartingToolkit:ColumnSeries ItemsSource="{Binding [0]}" Dep
endentValuePath="Value" IndependentValuePath="Key" Title="Last
Year"/>

  <chartingToolkit:ColumnSeries ItemsSource="{Binding [1]}" Depe
ndentValuePath="Value" IndependentValuePath="Key" Title="Current
Year"/>

</chartingToolkit:Chart>

Notice that we changed the Binding of the ColumnSeries
controls to be index values. We will be binding an array to this 
chart and Silverlight's binding is smart enough to treat these as 
indexer values on the DataContext object.

3. Save the Dashboard.xaml file and then open the Dashboard.xaml.cs file.

4. In the OnNavigatedTo method, modify the code to the following to allow for the 
prior year's sales data: 

protected override void OnNavigatedTo(NavigationEventArgs e)

{

  if (AppState.CustomerContext == null)

  {

    AppState.CustomerContext = new CustomerContext();

    AppState.CustomerContext.Load<Customer> 
     (AppState.CustomerContext.GetCustomersQuery());

  AppState.CustomerContext.Load<Event> 
     (AppState.CustomerContext.GetEventsQuery());

  AppState.CustomerContext.Load<Order> 
     (AppState.CustomerContext.GetOrdersQuery(),

      new Action<System.Windows.Ria.LoadOperation<Order>>((op) =>

      {



Chapter 8

[ 311 ]

        this.Dispatcher.BeginInvoke(() =>

        {

          var currentYear = DateTime.Now.Year;

          var pastYear = DateTime.Now.AddYears(-1).Year;

          // Orders finished loading, bind to the sales data chart
control.

          var orders = op.Entities.Where(o => o.OrderDate.Year ==
currentYear

            || o.OrderDate.Year == pastYear);

          var salesDataCurrentYear = new Dictionary<string,
double>();

          var salesDataPastYear = new Dictionary<string,
double>();

          for (int i = 1; i <= 12; i++)

          {

  salesDataCurrentYear.Add(CultureInfo.CurrentUICulture. 
                       DateTimeFormat.GetAbbreviatedMonthName(i),

              (double)orders.Where(o => o.OrderDate.Month == i && 
o.OrderDate.Year == currentYear).Sum(o => o.Cost));

  salesDataPastYear.
Add(CultureInfo.CurrentUICulture.DateTimeFormat.GetAbbreviatedMont
hName(i),

              (double)orders.Where(o => o.OrderDate.Month == i && 
o.OrderDate.Year == pastYear).Sum(o => o.Cost));

          }

          SalesDataChart.DataContext = new List<Dictionary<string,
double>>

          {

            salesDataPastYear,

            salesDataCurrentYear

          };

          SalesPieChart.DataContext = salesDataCurrentYear;

        });

      }), null);

  }

}



Executive Dashboard Application

[ 312 ]

5. Build and run the solution to see our past and current year's sales information:

Spreadsheet data
While data visualization is more visually appealing, sometimes having access to the raw data 
is required in the decision making process. Silverlight includes a DataGrid control that allows 
us to present grid data in a format to which spreadsheet users are accustomed.

Spreadsheets, (while not the best looking applications) do provide value to end users as the 
data is laid out in rows and is easily comparable and organized.

Time for action – extending the Executive Dashboard
We will add grid functionality to our dashboard and present all of the collected data to our
end users. To do this we will make use of the Silverlight Toolkit DataGrid.

1.	 Start Expression Blend and open the CakeORamaApp solution.

2.	 Open the Dashboard.xaml file in the art board.

3.	 Click on the Assets icon in the toolbox, type data into the search field, and select 
the DataGrid control:



Chapter 8

[ 313 ]

4.	 Name the DataGrid OrdersGrid and set the following Properties:

5.	 Save and close the Dashboard.xaml file in Blend. Switch over to Visual Studio and 
open the Dashboard.xaml.cs file.

6.	 Modify the code in the OnNavigatedTo method to the following:

SalesPieChart.DataContext = salesDataCurrentYear;

OrdersGrid.ItemsSource = orders.OrderByDescending(o => 
o.OrderDate);

7.	 Build and run the solution to see our grid being filled with Order data:

The Silverlight DataGrid provides the ability to filter, group, and sort the results. 
To accomplish this we have to bind it to an instance of ICollectionView,
which defines the methods for these operations.

8.	 We can also edit the values of the DataGrid by default, but to ensure that the edits
are committed correctly we need to implement the IEditableObject interface 
on the bound data objects.

9.	 To add paging support, our data source simply needs to implement the
IPagedCollectionView interface and we can even use a DataPager 
control to aid in the visuals of paging data.

10.	We can customize our grid by editing the templates and columns of the grid. Switch 
over to Visual Studio, right click on the CakeORamaApp, add a new folder called 
Converters then add a new class named DateConverter.cs to it.



Executive Dashboard Application

[ 314 ]

11.	Replace the contents of the DateConverter.cs file with the following code:

using System;

using System.Windows.Data;

namespace CakeORamaApp.Converters

{

  public class DateConverter : IValueConverter

  {

    #region IValueConverter Members

    public object Convert(object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)

    {

      if (value != null)

      {

        DateTime dt;

        if (DateTime.TryParse(value.ToString(), out dt))

        {

          if (parameter == null)

            return dt.ToShortDateString();

          else

            return dt.ToString(parameter.ToString());

        }

      }

      return null;

    }

    public object ConvertBack(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)

    {

      return null;

    }

    #endregion

  }

}

We will use the ConverterParameter in the DateConverter to provide
the format string for the date conversion. The ConverterParameter is a
value that we can bind to in XAML to provide additional conversion information 
in our value converters.



Chapter 8

[ 315 ]

12.	Add another class to the Converters folder called CurrencyConverter.cs and
replace the contents of the file with the following code: 

using System;
using System.Globalization;
using System.Windows.Data;

namespace CakeORamaApp.Converters
{
  public class CurrencyConverter : IValueConverter
  {
    #region IValueConverter Members
    public object Convert(object value, Type targetType, object
parameter, System.Globalization.CultureInfo culture)
    {
      if (value == null) return null;
      double result;
      if (Double.TryParse(value.ToString(), NumberStyles.Currency,
null, out result))
      {
        return result.ToString("C");
      }
      return null;
    }
    public object ConvertBack(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)
    {
      return null;
    }
    #endregion
  }
}

13.	Build the solution and switch back over to Blend.



Executive Dashboard Application

[ 316 ]

14.	Open the Dashboard.xaml file and click on the OrdersGrid in the Objects and 
Timeline panel:

15.	Uncheck the AutoGenerateColumns checkbox, we will add the columns that we 
want manually:

16.	Click the Edit items in this collection button for the Columns:

17.	 In the DataGridColumn Collection Editor dialog, click the Add another item button:

18.	 In the Select Object dialog box that is opened, select DataGridTextColumn and 
click OK:



Chapter 8

[ 317 ]

19.	 In the Column Properties, set the following values:

20.	Click on the Advanced property options for the Binding property:

21.	Select Data Binding... from the options presented:



Executive Dashboard Application

[ 31� ]

22.	 In the Create Data Binding dialog, select the Explicit Data Context tab, check the
Use a custom path expression checkbox and enter OrderDate as the value:

23.	Click on the Show advanced properties arrow to expand the dialog:

24.	Click on the button next to the Value converter drop down as displayed:

25.	 In the Add Value Converter dialog box that opens, select the DateConverter and
click OK:



Chapter 8

[ 31� ]

26.	Enter D into the Converter parameter field and click OK. This is the date format that
we will use to format our date value:

27.	Add another DataGridTextColumn, set the Header to Cost and configure the 
binding to make use of the CurrencyConverter class:

28.	Add another column, this time choose the DataGridCheckBoxColumn:



Executive Dashboard Application

[ 320 ]

29.	Enter Paid for the Header and set the binding path expression to IsPaid:

30.	Add one more DataGridTextColumn with a Header value of Details and set the
binding path expression to OrderDetails:

31.	Build and run the solution to see our custom columns and how the value converters 
we created have altered the way the data is displayed:

We can copy and paste the grid data into Excel or use the sample provided by Brad Abrams 
at: http://blogs.msdn.com/brada/archive/2009/07/14/business-apps-
example-for-silverlight-3-rtm-and-net-ria-services-july-update-part-
4-seo-export-to-excel-and-out-of-browser.aspx.

What just happened?
We extended the Executive Dashboard by adding a DataGrid from the Silverlight Toolkit. We 
also created two value converter classes that implement the IValueConverter interface
and provide a way to alter bound data during the binding process to provide formatting or 
other actions to the data.

We customized the DataGrid by adding our own custom columns to just show the relevant 
data, rather than including key properties and such.



Chapter 8

[ 321 ]

Have a go hero – adding paging to our grid
In most business scenarios, we will be dealing with large amounts of data and having the 
ability to view that data several rows at a time, rather than all at once can be beneficial to 
the user.

We are going to add paging to our grid using the DataPager control. When a DataPager
control is bound to the same data source as the DataGrid, the DataPager will be paged 
as we page through the data in the DataPager control.

1. Start Expression Blend and open the CakeORamaApp solution.

2. We need to add some additional test data, so that we have data to page through. 
We can either do that through some SQL scripts or use our application to  
add orders.

3. Open the Dashboard.xaml file, click on the Assets icon in the toolbox, add a
DataPager control, name the control OrdersPager, set the PageSize to 10, 
and position it below the grid as follows:

4. Build the solution, switch over to Visual Studio, and open the Dashboard.xaml.cs
file. We will bind the DataPager in code, since that is where we handled the binding 
of the DataGrid.

5. Add a reference to the System.Windows.Data assembly, which can be found in 
the C:\Program Files\Microsoft SDKs\Silverlight\v4.0\Libraries\
Client folder.

6. Add the following using statement to the top of the file:

using System.Windows.Data;



Executive Dashboard Application

[ 322 ]

7. Modify the OnNavigatedTo method, where the OrdersGrid is bound, to  
the following: 

var view = new PagedCollectionView(orders.OrderByDescending(o => 
o.OrderDate));

OrdersPager.Source = view;

OrdersGrid.ItemsSource = view;

8. Build and run the solution to see paging in action:

Summary
In this chapter we covered building a dashboard application to provide sales information 
to our sales staff and company executives. We made use of the data visualization 
components to add charts and spreadsheet grids to our application. We specifically 
discussed the following:

How to add different charting controls to our application

How to bind data to charting controls

How to make use of LINQ to provide custom queries for data binding

How to implement IValueConverter to provide custom formatting of bound data

How to implement a DataGrid with custom columns and paging

In the next chapter, we will explore building an application for delivery personnel; making 
use of live mapping.













�
Delivery Application

The rise of mobile devices with built-in cellular internet connections means 
that your applications can go places too. The new craze in laptop computers 
has been the 'netbook' form factor. Netbooks are small, inexpensive, and very 
often include an 'air card', which connects the computer to the internet using 
a mobile phone network. Some telecom providers give netbooks away in 
exchange for signing a service contract.

Cake-O-Rama needs to deliver their cakes to the right places on time and track 
where the cakes are being delivered. They would also like to capture signatures, 
just like many parcel delivery services.

As in any delivery service, time lost getting directions or stuck in traffic is money 
lost. In this chapter, we're going to imagine that Cake-O-Rama has outfitted its 
delivery staff with netbook computers to be more productive. To these ends, 
we are going to create a signature capture control and a complete  
mapping solution.

In this chapter, we shall:

Create a custom control

Create a custom map

Add GPS unit style driving route calculation function to our map

Incorporate traffic data and route around traffic











Delivery Application

[ 324 ]

Creating a signature capture control
Cake-O-Rama would like to go paperless. This includes delivery sign off sheets, where the 
customer signs off on receipt of the cake. The inspiration for this idea comes from the 
electronic signature devices at many retails stores. You have most certainly seen them. They
have an area that accepts a signature and buttons to clear the signature field and to accept 
the signature. If you play with them enough, you'll notice that the accept button doesn't 
work if there is no signature. We're going to build a similar mechanism for Cake-O-Rama and 
learn about creating a "lookless" custom control in the process.

You may have heard the term "lookless" when Silverlight controls are talked about. Certainly, 
these controls have a look, so what could this term mean. The term "lookless" refers to 
the fact that while the control has a default look, the control's properties, events and logic 
are not tied to the control's appearance. For example, all three of the following radically 
different looking items are all Button controls.

If you look at the XAML for the buttons, you'll see that the only real difference between 
them is the Style resource that they use:

<Button Height="64" HorizontalAlignment="Left" Margin="126,47,0,0"
VerticalAlignment="Top" Width="183" Content="Button"/>

<Button Height="61" Margin="186,124,251,0" Style="{StaticResource
PinkButtonStyle}" VerticalAlignment="Top" Content="Button"/>

<Button Margin="287,189,128,135" Style="{StaticResource
WackyButtonStyle}" Content="Button"/>

The first button does not have a Style attribute. The second and third buttons refer to 
Style resources that change the way the control looks. This should remind you of the work 
we did in Chapter 2, when we created the navigation control for the website. You may be 



Chapter 9

[ 325 ]

wondering: if the first button doesn't define a Style attribute, then how does it know what 
to look like? The answer lies in how the control was designed. The control has a default style 
definition that the Silverlight runtime applies in the absence of any Style attribute entries.

Creating our own lookless control
In order to create a lookless control that can be completely customized like the Button
control, we'll need to create a custom control. We have explored creating composite controls 
before. In a composite control, however, the control's look is fixed and cannot be overridden 
with a Style attribute.

Time for action – creating a custom control
The best way to create a custom control is to create a Silverlight Class Library project type.
Although we can add a custom control to any Silverlight project, this approach affords us 
extra flexibility. A Silverlight Class Library project compiles of a DLL file, which we 
can re-use across different solutions. Let's create our control now.

1.	 Create a new Silverlight application in Visual Studio and name it SignatureControl.
Be sure to use the Silverlight Application template that we've been using throughout 
most of this book.



Delivery Application

[ 326 ]

2.	 In Solution Explorer, you'll see the usual two projects: one for the Silverlight 
application and a web project named SignatureControl.web that hosts the
SignatureControl Silverlight application.

3.	 From Visual Studio's menu bar, choose Add|New Project from the File menu:

4.	 In the dialog box that comes up, choose the Silverlight Class Library project
template and in the Name textbox type CakeORamaControlLibrary:



Chapter 9

[ 327 ]

5.	 Click OK. You now have three projects in your solution.



Delivery Application

[ 32� ]

6.	 Right-click on the CakeOramaControlLibrary and choose Add|New Item… from the
context menu:

7.	 Choose Silverlight Templated Control and enter SignatureControl.cs in the
Name textbox and then click Add.



Chapter 9

[ 32� ]

8.	 You'll notice now that there is a new folder named Themes in your project along
with a file called Generic.xaml:

9.	 If you open up the Generic.xaml file, you'll see that it is a resource dictionary 
and that the template had already filled a Style with a TargetType of 
local:SignatureControl. 

10.	 If you look in the SignatureControl.cs file, you'll see the following line of code 
inside the constructor method. It loads a default style for the control type.

this.DefaultStyleKey = typeof(SignatureControl);

What just happened? 
We just created a lookless control. Granted, it doesn't do anything at the moment as we've 
not added any custom code. However, this is a good time to point out a few things about 
how custom controls work. First of all, you'll notice that the SignatureControl has no
XAML file. Unlike composite controls, which contain both a XAML file and a code-behind file, 
custom controls only consist of a code behind file. The default look for the control is defined 
in the Generic.xaml file, which is defined automatically as:

<Style TargetType="local:SignatureControl">
  <Setter Property="Template">
    <Setter.Value>
      <ControlTemplate TargetType="local: SignatureControl">
         <Border Background="{TemplateBinding Background}"
            BorderBrush="{TemplateBinding BorderBrush}"
            BorderThickness="{TemplateBinding BorderThickness}">
         </Border>
      </ControlTemplate>
    </Setter.Value>
  </Setter>
</Style>



Delivery Application

[ 330 ]

This is simply what the template in Visual Studio put in for us. We'll improve upon it in 
the next section. The important thing to note is that both Style and TargetType of
ControlTemplate are set to point to SignatureControl.

The link between the code behind file and the template defined in the Generic.xaml
resource dictionary is here in our control's default constructor:

public SignatureControl()
{
  this.DefaultStyleKey = typeof(SignatureControl);
}

The highlighted line of code above tells the Silverlight runtime to look for a Style definition 
that should apply to our control. This is where the look for the lookless control gets defined. 
Remember, our control really only consists of a code behind file. It has no look, but the 
control does know how to find a way to draw itself in the absence of any other Style or 
ControlTemplate directives.

Improving the default template
To create a signature control that actually can take in a signature, we'll need to add some 
code and refine our default template to include an InkPresenter control. Additionally, 
we'll also add some code to make the InkPresenter interactive.

Time for action – putting the control together
We have the basis for creating our first lookless control, but we need to add an 
InkPresenter control and wire up the events like we did in Chapter 4. Let's do that 
now by completing the following steps:

1.	 Replace the Style definition in the Generic.xaml file that Visual Studio created 
for us, with the following code: 

<Style TargetType="local:SignatureControl" >
  <Setter Property="Template">
    <Setter.Value>
      <ControlTemplate TargetType="local:SignatureControl">
        <Grid>
          <InkPresenter x:Name="inkPresenter" 
                        Strokes="{TemplateBinding Strokes}"
                        Background="{TemplateBinding  
                                             Background}"/>
        </Grid>



Chapter 9

[ 331 ]

      </ControlTemplate>
    </Setter.Value>
  </Setter>
</Style>

2.	 Add a reference to the System.Windows.Ink namespace by adding this line to the
top of the SignatureControl.cs file:

using System.Windows.Ink;

3.	 Add the following code to the SignatureControl.cs file. Don't worry if it doesn't 
all make sense yet. We're going to pick it apart in a moment.

private InkPresenter _inkPresenter = null;
private Stroke _stroke;

public event EventHandler MinimumStrokeCountReached;

public StrokeCollection Strokes
{
    get
    { 
return GetValue(StrokesProperty) as StrokeCollection;
    }
    set
    {
SetValue(StrokesProperty, value);
    }
}

public static readonly DependencyProperty StrokesProperty =
      DependencyProperty.Register("Strokes", typeof(StrokeCollecti
on), typeof(SignatureControl), 
new PropertyMetadata(new StrokeCollection(), new PropertyChangedCa
llback((o, a) =>
{
      SignatureControl source = (SignatureControl)o;
      source.UpdateStrokes();
}
       )));

public static readonly DependencyProperty
DrawingAttributesProperty =



Delivery Application

[ 332 ]

    DependencyProperty.Register("DrawingAttributes", typeof(Drawin
gAttributes), typeof(SignatureControl),
    new PropertyMetadata(new DrawingAttributes(), new PropertyChan
gedCallback((o, a) =>
{
    SignatureControl source = (SignatureControl)o;
    source.UpdateDrawingAttributes();
} 
)));

public DrawingAttributes DrawingAttributes
{
    get
    { 
return GetValue(DrawingAttributesProperty) as DrawingAttributes;
    }
    set
    {
SetValue(DrawingAttributesProperty, value);
    }
}

public static readonly DependencyProperty StrokeMinimumProperty =
    DependencyProperty.Register("StrokeMinimum", typeof(int), type
of(SignatureControl),
    new PropertyMetadata(0, new PropertyChangedCallback((o,a) =>
{
    SignatureControl source = (SignatureControl)o;
} 
)));
       

public int StrokeMinimum
{
    get
    { 
return (int)GetValue(StrokeMinimumProperty);
    }
    set
    {



Chapter 9

[ 333 ]

SetValue(StrokeMinimumProperty, value);
    }
}

public override void OnApplyTemplate()
{
    FindInkPresenterControl();

    InitializeInkPresenter();

    UpdateStrokes();

    base.OnApplyTemplate();
}

private void FindInkPresenterControl()
{
    _inkPresenter = this.GetTemplateChild("inkPresenter") as
InkPresenter;
}

protected void UpdateStrokes()
{
    if (_inkPresenter != null)
    { 
_inkPresenter.Strokes = Strokes;
    }
}

private void UpdateDrawingAttributes()
{

}

private void InitializeInkPresenter()
{
    if (this._inkPresenter != null)
    {
this._inkPresenter.MouseLeftButtonDown += new 
MouseButtonEventHandler(_inkPresenter_MouseLeftButtonDown);



Delivery Application

[ 334 ]

this._inkPresenter.MouseMove += new MouseEventHandler(_
inkPresenter_MouseMove);
this._inkPresenter.MouseLeftButtonUp += new
MouseButtonEventHandler(_inkPresenter_MouseLeftButtonUp);

    }
}

private void _inkPresenter_MouseLeftButtonUp(object sender,
MouseButtonEventArgs e)
{

    if (this._stroke != null)
    {
this._stroke.StylusPoints.Add(e.StylusDevice.
GetStylusPoints(this._inkPresenter));
    }

    this._inkPresenter.ReleaseMouseCapture();

    CheckStrokeCount();

    this._stroke = null;
}

private void _inkPresenter_MouseMove(object sender, MouseEventArgs 
e)
{

    if (this._stroke != null)
    {
this._stroke.StylusPoints.Add(e.StylusDevice.
GetStylusPoints(this._inkPresenter));
    }

}

private void _inkPresenter_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)
{



Chapter 9

[ 335 ]

    this._stroke = new Stroke();
    this._inkPresenter.Strokes.Add(this._stroke);

    this._inkPresenter.CaptureMouse();

    this._stroke.DrawingAttributes = this.DrawingAttributes;

}

private void CheckStrokeCount()
{
    if (this._inkPresenter.Strokes.Count >= this.StrokeMinimum)
    { 
if (MinimumStrokeCountReached != null)
{
    // Raise event
    MinimumStrokeCountReached(this, new EventArgs());
}
    }
}

4.	 Now build the solution by choosing Build Solution from the Build menu or by
pressing Ctrl + Shift + B.

5.	 Next, we'll add a reference to the CakeORamaControlLibrary project.. Right 
click on the References folder in the SignatureControl project and click 
on Add Reference...



Delivery Application

[ 336 ]

6.	 In the Add References dialog box, click on the Projects tab and select
CakeORamaControlLibrary and click OK.

7.	 Go to the MainPage.xaml file in the SignatureControl Silverlight application 
project and add an XML namespace reference to the file:

xmlns:cakeorama="clr-namespace:CakeORamaControlLibrary;assembly=Ca 
keORamaControlLibrary"

8.	 Inside the Grid element, add  the following XAML to insert a SignatureControl:

<cakeorama:SignatureControl Background="LightBlue" 
StrokeMinimum="2" Height="109" Width="384" />

9.	 Now your screen should look like the following:



Chapter 9

[ 337 ]

10.	Run the solution now by choosing Start Debugging from the Debug menu or
pressing F5. When the application loads, draw in the light blue box. You could 
even sign your name:

11.	Close the browser window to end the debugging session.

What just happened?
There was a lot of code we just typed and a few concepts thrown all in the same mix. So let's 
go through them one by one.

Dependency properties
The most alarming bits of code were the ones that registered dependency properties. It's 
something unique to Silverlight and WPF, so unless you've worked with these technologies 
already, the code to register a dependency property can look a little daunting.

public static readonly DependencyProperty StrokeMinimumProperty =
    DependencyProperty.Register("StrokeMinimum", typeof(int), typeof(S
ignatureControl),
    new PropertyMetadata(0, new PropertyChangedCallback((o,a) =>
{
    SignatureControl source = (SignatureControl)o;
} 
)));

You'll see that with the help of Intellisense, the purpose of each parameter of the 
DependencyProperty.Register method.



Delivery Application

[ 33� ]

The DependencyProperty.Register method takes in a series of meta data about this
DependencyProperty: its name, the type the property contains, the type of control to
which it belongs, and any additional metadata, including defining a method for when the 
property changes.

By convention, the dependency property always ends in Property. Also, the name value
assigned to the dependency property is always the same as the property it acts as the 
representative for. For example, StrokeMinimumProperty has a name registered to it of
StrokeMinimum and the regular property for the class is also StrokeMinimum. The regular
property acts as a wrapper for its related dependency property as follows:

public int StrokeMinimum
{
    get
    { 
return (int)GetValue(StrokeMinimumProperty);
    }
    set
    {
SetValue(StrokeMinimumProperty, value);
    }
}

The more you use it, the more it will make sense. Trust me.

The OnApplyTemplate method
The real magic of lookless controls happens here in the OnApplyTemplate method.
This method gets called when a template is applied. A template is applied when a 
ControlTemplate is applied to the control:

public override void OnApplyTemplate()
{
    FindInkPresenterControl();

    InitializeInkPresenter();

    UpdateStrokes();

    base.OnApplyTemplate();
}



Chapter 9

[ 33� ]

The OnApplyTemplate method is where you'll want to put any kind of initialization logic. 
We did just that by making calls to several methods. The FindInkPresenterControl
method, which looks for a child item in the template named InkPresenter and assigns a
reference to the _inkPresenter member. The _inkPresenter member has class wide 
scope and this is what we used throughout the control.

private void FindInkPresenterControl()
{
    _inkPresenter = this.GetTemplateChild("inkPresenter") as
InkPresenter;
}

Using _inkPresenter  as a reference to the InkPresenter control, we attached event 
handlers to respond to the user's actions and collect ink. Much of this code should look 
familiar as it is very similar to the sketching application that we made in Chapter 2.

private void InitializeInkPresenter()
{
    if (this._inkPresenter != null)
    {
this._inkPresenter.MouseLeftButtonDown += new 
MouseButtonEventHandler(_inkPresenter_MouseLeftButtonDown);
this._inkPresenter.MouseMove += new MouseEventHandler(_inkPresenter_
MouseMove); 
this._inkPresenter.MouseLeftButtonUp += new MouseButtonEventHandler(_
inkPresenter_MouseLeftButtonUp);
    }
}

TemplateBinding
Sharp-eyed readers may have noticed a new binding syntax keyword: TemplateBinding in
the Style inside the Generic.xaml file:

<InkPresenter 
  x:Name="inkPresenter" 
  Strokes="{TemplateBinding Strokes}"
  Background="{TemplateBinding Background}">
</InkPresenter>

The XAML above binds property values in the control template to exposed properties of 
the SignatureControl class. This means we can link properties of the control class to 
the presentation layer. If you remember that we assigned the color LightBlue to the
background of the SignatureControl in the XAML file:

<cakeorama:SignatureControl Background="LightBlue" StrokeMinimum="2" 
Height="109" Width="384" />



Delivery Application

[ 340 ]

The TemplateBinding markup extension makes the connection between properties in 
the control template to the value of an exposed property on the control. In case you're 
wondering, we never defined the Background property explicitly. We inherited it from 
the Control base class.

You may be thinking that this is an awful lot of trouble to do something that would be really 
easy with a composite control. You're right, but there's a considerable upside. Let's see what 
that is.

Implementing the custom control
Now that we have a custom lookless control, let's see how flexible its visual appearance can 
be. We'll use Blend to edit a copy of our control's template.

Time for action – putting our lookless control to the test
Let's open up our control solution in Blend to see how flexible our control really is.

1.	 Open up the SignatureControl solution in Expression Blend.

2.	 Open up the MainPage.xaml file and right-click on the SignatureControl.

3.	 Choose Edit Template|Edit a Copy.



Chapter 9

[ 341 ]

4.	 Change the Background property to a green gradient (or whatever you like). This is 
what my control looks like:

5.	 Run the solution and write a signature in the box and you'll see the control has the
same function but a different look.

6.	 Close the browser window to end the debugging session.

What just happened?
We used Blend's control template editing capabilities to really show off the flexibility that 
our lookless control provides. Just like the Button controls we saw at the beginning of the 
chapter, we can create radically different looking styles for the same control just like we 
did with the Button control.



Delivery Application

[ 342 ]

The XAML mark up only differs in which style we reference:

<cakeorama:SignatureControl Height="109" Width="384"
Margin="183,0,73,50" VerticalAlignment="Bottom" />
<cakeorama: SignatureControl Height="109" Width="384"
Margin="42,51,214,0" VerticalAlignment="Top"
Style="{StaticResource RedOvalStyle}" > 
<cakeorama: SignatureControl Margin="102,186,73,193" 
Style="{StaticResource YellowStyle}"/>

We're not quite done yet. Let's finish this control so that it behaves like the signature capture 
devices at stores.

Time for action – finishing the control
Like most signature capture devices you'd find in stores, they won't let you accept a 
signature unless you've written something in the space provided. We already have 
the functionality to do this in the control, but we've not used it yet. Let's wire up the 
MinimumStrokeCountReached event now. The MinimumStrokeCountReached method
fires when the number of strokes on the InkPresenter meets or exceeds the number
defined in the StrokeMinimum property.

1.	 Open the SignatureControl solution in Visual Studio.

2.	 In the MainPage.xaml file, insert the following XAML:

<Grid x:Name="LayoutRoot" Background="LightBlue">
<cakes:SignatureControl
x:Name="signature" 
      StrokeMinimum="2"
MinimumStrokeCountReached="signature_MinimumStrokeCountReached"
      Margin="10,85,10,98">
<cakes:SignatureControl.Background>
    <LinearGradientBrush EndPoint="0.5,1" StartPoint="0.5,0">
      <GradientStop Color="#FFFDE7E4" Offset="1"/>
      <GradientStop Color="#FFFBCCC6" Offset="0.741"/>
      <GradientStop Color="#FFF88679"/>
    </LinearGradientBrush>
  </cakes:SignatureControl.Background>
</cakes:SignatureControl> 
<Button x:Name="btnClear" Click="btnClear_Click" 
Content="Clear" Width="100" Height="55" HorizontalAlignmen
t="Right" Margin="0,0,8,28" VerticalAlignment="Bottom" d:
LayoutOverrides="Width, Height" />
<TextBlock HorizontalAlignment="Left" VerticalAlignment="Top"
Text="Please Sign Below:" TextWrapping="Wrap" FontSize="32" 



Chapter 9

[ 343 ]

Margin="8,34,0,0"/> 
<Button x:Name="btnOK" Click="btnClear_Click" 
Content="Accept" Width="100" Height="55" HorizontalAlignme
nt="Left" Margin="10,0,0,28" VerticalAlignment="Bottom" d:
LayoutOverrides="Width, Height" IsEnabled="False" />
</Grid>

3.	 In the MainPage.xaml.cs file, add the following code:

private void btnClear_Click(object sender, System.Windows.
RoutedEventArgs e)
{
    signature.Strokes.Clear();

    btnOK.IsEnabled = false;

} 
private void btnOK_Click(object sender, System.Windows.
RoutedEventArgs e)
{
    // Accept Signature 
} 
private void signature_MinimumStrokeCountReached(object sender, 
EventArgs e)
{
    this.btnOK.IsEnabled = true;
}

4.	 Run the solution by choosing Start Debugging from the Debug menu or by 
pressing F5.

5.	 You'll notice that the Accept button is not enabled until there are at least two 
strokes in the signature box. With one stroke, you should see the following:



Delivery Application

[ 344 ]

6.	 And with the second stroke, the Accept button is enabled.

7.	 Close the browser window to stop debugging.

What just happened?
Not only did we create a custom control that's lookless, but we created a smart signature 
control that fires an event when the user draws enough strokes to make a signature  
(or at least a plausible signature). Best of all, we made the minimum number of strokes  
a property. That means the control can be used in more places and more situations.

The goal to strive for in control development is maximum reusability, whether you plan 
to sell controls or re-use them across multiple projects.

Mapping application
Many businesses deal with location-based data, whether store locations, regional sales data, 
or routing deliveries. Time is money and time lost in traffic is money lost. It would be helpful 
to find delivery locations, get traffic directions, and, if possible, avoid as many traffic jams  
as possible.

We explored latitude and longitude coordinates briefly in Chapter 2 when we built the store 
location map. However, in that application, we simply provided the latitude and longitude 
(also known as latlong) coordinates for each of Cake-o-Rama's locations.  In the real world, 
it is not plausible to have someone go to each location with a GPS device or use mapping 
software to determine the latlong coordinates of a particular address.  Therefore, we  
need a method to convert street addresses to latitude and longitude. That process is 
called Geocoding.

Geocoding
Geocoding is the process of converting an address, place name, or postal code to a set of 
latitude and longitude coordinates. Manually geocoding an address would require a lot of 
effort in creating a catalog of latitude and longitude coordinates and how they relate to 
postal addresses. Fortunately for us, there exists a plethora of geocoding services on the
internet. All we have to do is to connect to them.



Chapter 9

[ 345 ]

All geocoding services use latitude and longitude coordinates. It really doesn't matter which 
service we use. In the samples in this chapter, we're going to use the Bing Maps API. The
Bing Maps API provides a series of geocoding services and we're going to use that API to 
really enhance our delivery application. In Chapter 4, we created an application key to 
interact with the Bing Maps Silverlight control, which we'll use now to interact with the 
Bing Maps API.

Time for action – Geocoding addresses to work
As mentioned previously, hardly anyone will know their latlong offhand. In order to work 
with the map control, we'll need a way to convert street addresses to latitude and longitude 
coordinates. The Bing Maps API provides a geocoding service for just this purpose. However, 
to access the geocoding API, we'll need to authenticate the geocoding service with the 
credentials we just created.

1.	 Open up Visual Studio and create a new Silverlight project and name it 
DeliveryApplication.



Delivery Application

[ 346 ]

2.	 In order to use the Bing Silverlight Maps control, we'll need to add references to 
appropriate DLLs, just as we did in chapter 4. To do this, right click on the references 
folder in the DeliveryApplication project and choose Add Reference...

3.	 In the Add Reference dialog box, click on the Browse tab and browse to the 
directory where you installed the Bing Maps Silverlight control. Select both the 
Microsoft.Maps.MapControl.dll and Microsoft.Maps.MapControl.
Common.dll files. Click OK.

4.	 Next, we need to add the reference to the Bing Maps API web services. To do this, 
right-click on the References folder once again. This time however, click on 
Add Service Reference...



Chapter 9

[ 347 ]

5.	 In the Add Service Reference dialog box, enter: http://dev.virtualearth.
net/webservices/v1/geocodeservice/GeocodeService.svc into the
Address textbox and click the Go button. Type PlatformServices into the 
Namespace textbox and click OK.

6.	 Next, we'll need to add our Bing Maps Account key as an application wide resource 
in the App.xaml file. Modify the App.xaml file to the following. Make sure you 
replace [Bing Maps Account Key] with your individual key:

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
             xmlns:x="http://schemas.microsoft.com/winfx/2006/
xaml" 
             x:Class="DeliveryApplication.App"
             xmlns:sys="clr-namespace:System;assembly=mscorlib"
             >
    <Application.Resources>



Delivery Application

[ 34� ]

        <sys:String x:Key="MyCredentials">[Bing Maps Account
Key]</sys:String>
    </Application.Resources>
</Application>

7.	 Edit the MainPage.xaml file, so that it contains the following XAML. Note how we 
reference the Bing Maps API key stored as a resource in the App.xaml file.

<UserControl x:Class="DeliveryApplication.MainPage"
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
    xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
    mc:Ignorable="d"
    xmlns:m="clr-namespace:Microsoft.Maps.MapControl;assembly=Micr
osoft.Maps.MapControl"
    d:DesignHeight="300" d:DesignWidth="400">

    <Grid x:Name="LayoutRoot" Background="White">
        <Grid.ColumnDefinitions>
            <ColumnDefinition Width="271*" />
            <ColumnDefinition Width="100*" />
        </Grid.ColumnDefinitions>
        <Grid.RowDefinitions>
            <RowDefinition Height="255*" />
            <RowDefinition Height="45*" />
        </Grid.RowDefinitions>
        <m:Map x:Name="map" 
               Center="39.04801,-76.84817"
               ZoomLevel="10"
               Grid.Row="0" 
               Grid.ColumnSpan="2" 
               >
            <m:Map.CredentialsProvider>
                <m:ApplicationIdCredentialsProvider 
                    ApplicationId="{StaticResource MyCredentials}"
/>
            </m:Map.CredentialsProvider>
        </m:Map>
        <TextBox x:Name="txbAddress" 
                 Grid.Row="1" 
                 Grid.Column="0" 
                 Margin="10" />
        <Button x:Name="btnGeoCode" 



Chapter 9

[ 34� ]

                Content="GeoCode"
                Grid.Row="1" 
                Grid.Column="1" 
                Margin="5" 
                Click="btnGeoCode_Click" />

    </Grid>
</UserControl>

8.	 Next, we'll need to add some code in the MainPage.xaml.cs file. First, we'll add 
the click event handler for the btnGeoCode button. Note how we once again use 
the Bing Maps key stored in the App.xaml as our credentials to access the Bing 
API services.

private void btnGeoCode_Click(object sender, RoutedEventArgs e)
{

    PlatformServices.GeocodeServiceClient geocodeClient =
new PlatformServices.GeocodeServiceClient("CustomBinding_
IGeocodeService");

    PlatformServices.GeocodeRequest request = new
PlatformServices.GeocodeRequest();
    request.Query = txbAddress.Text;

    request.Credentials = new Credentials();
    request.Credentials.ApplicationId = App.Current.Resources["MyC
redentials"] as string;

    geocodeClient.GeocodeCompleted += new EventHandler<PlatformSer
vices.GeocodeCompletedEventArgs>(client_GeocodeCompleted);
    geocodeClient.GeocodeAsync(request);
}

9.	 In the above code, we make an asynchronous call to the Geocode service and assign 
an event handler for the GeocodeCompleted event. Let's add the following code:

private void client_GeocodeCompleted(object sender,
PlatformServices.GeocodeCompletedEventArgs e)
{
    PlatformServices.GeocodeResponse response = e.Result;
    if (response.Results.Count > 0)
    {
        PlatformServices.GeocodeResult result = response.Results.
First();
        if (result.Locations.Count > 0)
        {



Delivery Application

[ 350 ]

            Pushpin pushpin = new Pushpin();

            Location location = new Location(result.Locations.
First().Latitude, result.Locations.First().Longitude);

            pushpin.Location = location;

            map.Children.Add(pushpin);

            map.SetView(result.BestView);

        }
    }
}

10.	Run the solution by choosing Start Debugging from the Debug menu or by 
pressing F5.

11.	Enter 12012 Sunset Hills Rd. Reston, VA 20191 into the textbox and click GeoCode
and you'll see a pushpin marking the address.



Chapter 9

[ 351 ]

12.	Now, enter Washington Monument into the textbox and click Geocode, then click
on Aerial to switch to aerial view. You'll see the Washington Monument in the 
map control.

13.	Have fun and experiment. The geocoding API will find zip codes, town names and 
landmarks from around the world. When you're done, close the browser window 
to end the debugging session.

What just happened?
We just created a Silverlight application that uses the Bing API geocoding service to place 
pushpins on the map in the corresponding location. You may have noticed that some 
addresses are a little off. This isn't an error in our code. If you've ever used a GPS navigation 
system and noticed that some addresses are slightly off the mark, then you'll be aware that 
geocoding is not an exact science. Some of the information linking addresses to latlongs has 
a degree of inaccuracy, so keep this in mind. 



Delivery Application

[ 352 ]

Let's take a closer look at the call to the Bing API web service. We start off the process in 
the btnGeoCode_Click method, where we create a GeocodeServiceClient object to
communicate with the geocoding service. The geocode service requires a GeocodeRequest
object.  We set the Query property to the contents of the txbAddress textbox.  We then 
add our Bing Maps key to the request's Credentials.ApplicationId property to  
gain access to the service. Once that's all done, we pass the request object to the 
GeocodeAsync method. 

PlatformServices.GeocodeServiceClient geocodeClient = new
PlatformServices.GeocodeServiceClient("CustomBinding_
IGeocodeService");

PlatformServices.GeocodeRequest request = new PlatformServices.
GeocodeRequest();

request.Query = txbAddress.Text;

request.Credentials = new Credentials();

request.Credentials.ApplicationId = App.Current.Resources["MyCredentia
ls"] as string;

geocodeClient.GeocodeCompleted += new EventHandler<PlatformServices.
GeocodeCompletedEventArgs>(client_GeocodeCompleted);

geocodeClient.GeocodeAsync(request);
}

Like any service request in Silverlight, this request runs asynchronously. When the request 
comes back, the client_GeocodeCompleted event fires. That's where we take the first 
element in the GeocodeResponse.Results array and assign it to the result variable.

PlatformServices.GeocodeResult result = response.Results.First();

GeocodeResult contains an array of Location objects. Most of the time, we are only 
interested in the top result which is the first element of the array. Using LINQ, we get the 
latitude and longitude of the first result and create a new Location object. We take that 
location and assign it to a Pushpin object. Here is that code:

Location location = new Location(result.Locations.First().Latitude,
result.Locations.First().Longitude);

pushpin.Location = location;



Chapter 9

[ 353 ]

Naturally, we'll need to add the Pushpin to the map control's Children collection in order 
for it to appear on our map: 

map.Children.Add(pushpin);

Once that's done, we'll set the view of the map so that it focuses in on the geocoded 
location. GeocodeResult has a property which represents the best view for a given 
geocoded result. It's essentially a rectangle defined by a series of latitude and longitudes. 
The Bing Maps Silverlight control will automatically center and zoom in on that rectangle. 
The code to make that happen is one line:

map.SetView(result.BestView);

Wasn't that simple? The best part is that we get all the intelligence behind converting place 
names to a location included with the geocoding service. We didn't have to add any code to 
make that work. Now that we can convert addresses, place names and zip codes and then 
place markers onto the map that correspond with their latitude and longitude coordinates, 
we will want to go one more step by including route planning into our application.

Route planning
Those of you familiar with a GPS navigation system may already have some experience with 
route planning. You enter a starting point, then a destination, and the device calculates 
a route that connects the two points. Some GPS units even allow you to set preferences, 
such as avoiding toll roads or routing around traffic. Fortunately for us, the Bing Maps API 
provides services that rival any commercially available GPS unit. That means our applications 
can be as smart as those devices. We just have to code it.



Delivery Application

[ 354 ]

Time for action – adding routing to our application
In order to add route planning to our application, we'll need to connect to Bing's route 
service. Bing's route service uses the same authentication scheme as the geocoding service. 
To support routing, we'll need to track the locations that we geocode. We'll also need to add 
UI elements to support multiple waypoints and route calculation. At the end of this exercise, 
we'll end up with something like this:

To get started, you will need to complete the following steps:

1.	 Open up the DeliveryApplication solution in Visual Studio.

2.	 Let's start off by connecting to the route service to our project. Right-click on the 
DeliveryApplication Silverlight project and choose Add Service Reference…

3.	 In the Add Service Reference dialog, enter: http://dev.virtualearth.net/
webservices/v1/routeservice/routeservice.svc into the Address textbox
and click Go. Type RouteService into the Namespace textbox and click OK.



Chapter 9

[ 355 ]

4.	 Next, we'll want to create a class to store delivery locations. Let's add a class file 
named DeliveryLocation. Right-click on the DeliveryApplication project in 
the Solution Explorer tab. Choose Add|New Item… from the context menu.



Delivery Application

[ 356 ]

5.	 In the Add New Item dialog box, choose Class. Enter DeliveryLocation.cs in
the Name textbox. Click OK to add the class.

6.	 Edit the contents of the DeliveryApplication.cs file so that it contains the 
following code: 

using Microsoft.Maps.MapControl;

namespace DeliveryApplication
{
    public class DeliveryLocation
    {
        public Location Location { get; set; }

        public string Address { get; set; }
    }
}



Chapter 9

[ 357 ]

7.	 Now, let's update the UI. Edit the MainPage.xaml file so that it contains the 
following code: 

<UserControl x:Class="DeliveryApplication.MainPage"
    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
    xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
    xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
    mc:Ignorable="d"
    xmlns:m="clr-namespace:Microsoft.Maps.MapControl;assembly=Micr
osoft.Maps.MapControl"
    Loaded="UserControl_Loaded"
    d:DesignHeight="768" d:DesignWidth="1024" >
    <Grid x:Name="LayoutRoot" Background="White">
        <Grid.ColumnDefinitions>
            <ColumnDefinition Width="271*" />
            <ColumnDefinition Width="100*" />
        </Grid.ColumnDefinitions>
        <Grid.RowDefinitions>
            <RowDefinition Height="188*" />
            <RowDefinition Height="67*" />
            <RowDefinition Height="45*" />
        </Grid.RowDefinitions>
        <m:Map x:Name="map" 
               Center="39.04801,-76.84817"
               ZoomLevel="10" Grid.RowSpan="2">
            <m:Map.CredentialsProvider>
                <m:ApplicationIdCredentialsProvider 
                   ApplicationId="{StaticResource MyCredentials}"
/>
            </m:Map.CredentialsProvider>
            <m:MapLayer x:Name="routeLayer" />
        </m:Map>
        <TextBox x:Name="txbAddress" 
                 Grid.Row="2" Margin="10,10,10,68" />
        <Button x:Name="btnGeoCode" 
                Content="GeoCode"
                Grid.Row="2" 
                Grid.Column="1" 
                Margin="5" 
                Click="btnGeoCode_Click" />
        <TextBlock HorizontalAlignment="Left" 
                   VerticalAlignment="Top" 



Delivery Application

[ 35� ]

                   Text="Deliveries:" 
                   TextWrapping="Wrap" 
                   Grid.Column="1"/>
        <ListBox x:Name="lbxDestinations" 
                 Margin="5,20,8,7" 
                 Grid.Column="1" 
                 Grid.RowSpan="1">
            <ListBox.ItemTemplate>
                <DataTemplate>
                    <StackPanel>
                        <TextBlock Text="{Binding Address}"
TextWrapping="Wrap"></TextBlock>
                        <StackPanel Orientation="Horizontal">
                            <Button Content="Up" 
                                    Tag="{Binding}" 
                                    Click="UpButton_Click" />
                            <Button Content="Down" 
                                    Tag="{Binding}" 
                                    Click="DownButton_Click" />
                            <Button Content="Remove" 
                                    Tag="{Binding}" 
                                    Click="RemoveButton_Click" />
                        </StackPanel>
                    </StackPanel>
                </DataTemplate>
            </ListBox.ItemTemplate>
        </ListBox>
        <StackPanel Grid.Column="1" 
                    Grid.Row="1" 
                    Orientation="Vertical" 
                    d:LayoutOverrides="Height">
            <CheckBox x:Name="cbxTraffic" 
      Content="Avoid Traffic" />
            <Button x:Name="btnCalculateRoute" 
            Click="btnCalculateRoute_Click"
            Height="22" 
            Content="Calculate" Margin="5,5,5,0"
                />
            <TextBlock x:Name="txbTotalTime" 
                       Text="Total Time"
                       Margin="5,15,5,0" 
                       TextWrapping="Wrap" 
                       FontSize="13.333" 
                       HorizontalAlignment="Center" 



Chapter 9

[ 35� ]

                       Width="70"/>
            <Button x:Name="btnUseRoute" 
                    Click="btnUseRoute_Click"
                    Content="Use This Route" 
                    Margin="5,0"/>
        </StackPanel>
    </Grid>
</UserControl>

8.	 Next, let's modify the code-behind file MainPage.xaml.cs. First, add the following 
using statements.

using Microsoft.Maps.MapControl;
using System.Collections.ObjectModel;

9.	 Add the two following private members to the class:

private ObservableCollection<DeliveryLocation> _locations = new
ObservableCollection<DeliveryLocation>();
private RouteService.RouteResponse _currentRoute;

10.	Let's add some code to perform some geocoding. Let's add the event handler for the 
GeoCode button and the completed event handler for the web service call.

private void btnGeoCode_Click(object sender, RoutedEventArgs e)
{
    routeLayer.Children.Clear();

    PlatformServices.GeocodeServiceClient geocodeClient =
new PlatformServices.GeocodeServiceClient("CustomBinding_
IGeocodeService");

    PlatformServices.GeocodeRequest request = new
PlatformServices.GeocodeRequest();
    request.Culture = map.Culture;
    request.Query = txbAddress.Text;

    request.Credentials = new Credentials();
    request.Credentials.ApplicationId = App.Current.Resources["MyC
redentials"] as string;

    geocodeClient.GeocodeCompleted += new EventHandler<PlatformSer
vices.GeocodeCompletedEventArgs>(client_GeocodeCompleted);
    geocodeClient.GeocodeAsync(request);
}



Delivery Application

[ 360 ]

private void client_GeocodeCompleted(object sender,
PlatformServices.GeocodeCompletedEventArgs e)
{
    PlatformServices.GeocodeResponse response = e.Result;
    if (response.Results.Count > 0)
    {
       PlatformServices.GeocodeResult result = response.Results.
First();
       if (result.Locations.Count > 0)
       {
           Pushpin pushpin = new Pushpin();

           Location location = new Location(result.Locations.
First().Latitude, result.Locations.First().Longitude);

           pushpin.Location = location;
           map.Children.Add(pushpin);
           map.SetView(result.BestView);

           DeliveryLocation dl = new DeliveryLocation() { Address
= this.txbAddress.Text, Location = location };

           pushpin.Tag = dl;
           this._locations.Add(dl);
        }
    }
}

11.	Now let's add the event handlers for the Up, Down, and Remove buttons.

private void UpButton_Click(object sender, RoutedEventArgs e)
{
    Button btnSender = sender as Button;
    DeliveryLocation dl = btnSender.Tag as DeliveryLocation;

    MoveLocationUp(dl); 
} 
private void DownButton_Click(object sender, RoutedEventArgs e)
{
    Button btnSender = sender as Button;
    DeliveryLocation dl = btnSender.Tag as DeliveryLocation;

    MoveLocationDown(dl); 
} 
private void RemoveButton_Click(object sender, RoutedEventArgs e)
{



Chapter 9

[ 361 ]

    Button btnSender = sender as Button;
    DeliveryLocation dl = btnSender.Tag as DeliveryLocation;

    ClearRoute();

    // Remove from collection
    this._locations.Remove(dl);

    // Find the marker
    var pushpinsToDelete = map.Children.OfType<Pushpin>().Where(x
=> x.Location == dl.Location);

    // Delete the marker
    pushpinsToDelete.ToList().ForEach(x => map.Children.
Remove(x));
}

12.	Now, we'll add the supporting code for the above event handlers.

private void MoveLocationUp(DeliveryLocation dl)
{
    MoveLocation(dl, -1);
}

private void MoveLocationDown(DeliveryLocation dl)
{
    MoveLocation(dl, 1); 
} 
private void MoveLocation(DeliveryLocation dl, int direction)
{
    ClearRoute();

    if (this._locations.Count > 1)
    {
         int origIndex = this._locations.IndexOf(dl);
         this._locations.Remove(dl);
         this._locations.Insert(origIndex + direction, dl);
    } 
} 
private void ClearRoute()
{
    this._currentRoute = null;
    routeLayer.Children.Clear();
    this.txbTotalTime.Text = "";
}



Delivery Application

[ 362 ]

13.	Then we'll add the event handler for the Calculate Route button and the code 
responsible for making the call to the Route service and drawing the route on 
the map.

private void btnCalculateRoute_Click(object sender,
RoutedEventArgs e)
{
    routeLayer.Children.Clear();

    RouteService.RouteServiceClient routeServiceClient = new
RouteService.RouteServiceClient("CustomBinding_IRouteService");

    routeServiceClient.CalculateRouteCompleted += new EventHandler
<RouteService.CalculateRouteCompletedEventArgs>(routeServiceClient
_CalculateRouteCompleted);

    RouteService.RouteRequest routeRequest = new RouteService.
RouteRequest();
    routeRequest.Culture = map.Culture;
    routeRequest.Credentials = new Credentials();
    routeRequest.Credentials.ApplicationId = App.Current.Resources
["MyCredentials"] as string;

    routeRequest.Options = new RouteService.RouteOptions();
    routeRequest.Options.RoutePathType = RouteService.
RoutePathType.Points;

    routeRequest.ExecutionOptions = new RouteService.
ExecutionOptions();
    routeRequest.ExecutionOptions.SuppressFaults = true;

    if (this.cbxTraffic.IsChecked.Value)
    {
        routeRequest.Options.TrafficUsage = RouteService.
TrafficUsage.TrafficBasedRouteAndTime;
    }
    else
    {
        routeRequest.Options.TrafficUsage = RouteService.
TrafficUsage.None;
    }

    // Set the waypoints of the route to be calculated using the
Geocode Service results stored in the geocodeResults variable.
    routeRequest.Waypoints = new System.Collections.ObjectModel.
ObservableCollection<RouteService.Waypoint>();



Chapter 9

[ 363 ]

    this._locations.ToList().ForEach(x => routeRequest.Waypoints.
Add(GeocodeResultToWaypoint(x)));

    // Make the CalculateRoute asnychronous request.
    routeServiceClient.CalculateRouteAsync(routeRequest); 
} 
private void routeServiceClient_CalculateRouteCompleted(object 
sender, RouteService.CalculateRouteCompletedEventArgs e)
{
     if (e.Error == null)
     {
        long timeInSeconds = e.Result.Result.Summary.
TimeInSeconds;

        TimeSpan t = new TimeSpan(0, 0, int.Parse(timeInSeconds.
ToString()));

        this.txbTotalTime.Text = string.Format("Driving Time:
{0}", t.ToString());

        DrawRoute(e);

        this._currentRoute = e.Result;
     }
}

private RouteService.Waypoint GeocodeResultToWaypoint(DeliveryLoca
tion deliveryLocation)
{
     RouteService.Waypoint waypoint = new RouteService.Waypoint();
     waypoint.Description = deliveryLocation.Address;
     waypoint.Location = new Location();
     waypoint.Location.Latitude = deliveryLocation.Location.
Latitude;
     waypoint.Location.Longitude = deliveryLocation.Location.
Longitude;
     return waypoint; 
} 
private void DrawRoute(DeliveryApplication.RouteService.
CalculateRouteCompletedEventArgs e)
{
     if (e.Result.Result.Legs.Count > 0)
     {
        // Set properties of the route line you want to draw.
        Color routeColor = Colors.Blue;



Delivery Application

[ 364 ]

        SolidColorBrush routeBrush = new SolidColorBrush(routeColo
r);
        MapPolyline routeLine = new MapPolyline();
        routeLine.Locations = new LocationCollection();
        routeLine.Stroke = routeBrush;
        routeLine.Opacity = 0.65;
        routeLine.StrokeThickness = 5.0;

        double distance = e.Result.Result.Summary.Distance;
        long seconds = e.Result.Result.Summary.TimeInSeconds;

        TimeSpan time = new TimeSpan(0, 0, int.Parse(seconds.
ToString()));

        // Retrieve the route points that define the shape of the
route.
        foreach (Location p in e.Result.Result.RoutePath.Points)
        {
           routeLine.Locations.Add(new Location(p.Latitude, 
p.Longitude));
        }

        //routeLayer.AddChild(routeLine);

        routeLayer.Children.Add(routeLine);

        // Figure the rectangle which encompasses the route. This
is used later to set the map view.
        LocationRect rect = new LocationRect(routeLine.
Locations[0], routeLine.Locations[routeLine.Locations.Count - 1]);

        map.SetView(rect);
     }
}

14.	 In the UserControl_Loaded event handler, set the ItemsSource of the 
lbxDestinations listbox control to _locations: 

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
  this.lbxDestinations.ItemsSource = this._locations;
}

15.	Run the solution by choosing Start Debugging from the Debug menu or by 
pressing F5.



Chapter 9

[ 365 ]

16.	 In the textbox type Rockville, MD and click the GeoCode button.

17.	Once the marker for Rockville has been added, type in Tysons Corner, VA 
and click the GeoCode button so that you'll have two markers on the map.

18.	Click on Calculate to calculate the route and you'll see the following:

19.	Notice that the Driving Time textbox displays the estimated time it would take 
to drive the route.

20.	Check the Avoid Traffic checkbox and click Get Route once again.



Delivery Application

[ 366 ]

21.	Depending on when you get the route and the traffic conditions between Rockville, 
MD and Tysons Corner, VA, the route will change. Here's a sample of what the route 
looks like when there's a severe traffic incident on the connector road between 
I-270 South and I-495 West.

22.	For fun, let's add another location that's really far away from the DC area. The folks
on the Silverlight team in Redmond deserve a cake. Let's type in 1 Microsoft Way, 
Redmond, WA , click GeoCode, and then click Get Route. Immediately, you'll notice 
that it will take considerably longer to get the result back.



Chapter 9

[ 367 ]

23.	Go ahead, have fun and play with the routing service by adding different way points. 
Add as many delivery stops as you like and use the Up, Down, and Remove buttons 
to change the delivery route.

24.	Try running the same route with the Avoid Traffic option checked and then cleared. 
Note the differences which are most obvious during peak traffic times.

25.	When you have finished, close the browser window to end the debugging session.

What just happened?
We connected to a route calculation service provided by the Bing Maps API. This routing 
service returns a custom driving route based on the parameters we send to it. Let's take a 
closer look at the code we added, particularly the modification we made to the map control.

<m:MapLayer x:Name="routeLayer" />

That line of XAML adds a MapLayer named routeLayer to the map control. Maps can
have any number of layers. In previous work with adding elements to the map control, we 
simply added to the control's Children collection. Using layers gives us an extra level of 
control over how to display data on a map. The visibility of MapLayer can be turned on and
off independent of other MapLayer elements or other elements in the Children collection 
of a map. In fact, the line of code below, the first line of code in the btnGetRoute_Click
method, clears all the elements in the Children collection of the routeLayer.

routeLayer.Children.Clear();

When the user adds additional delivery stops or turns traffic avoidance on or off and then 
clicks on Get Route, the route is re-drawn. We can clear the layer so as not to confuse the 
user with the new route being drawn on top of the old one. Since the location markers are 
not part of the routeLayer, they are not touched.

The routing service's CalculateRoute method accepts one parameter: a RouteRequest
object. The line of code below creates a RouteRequest object named routeRequest:

RouteService.RouteRequest routeRequest = new RouteService.
RouteRequest();

As before, we assign the credentials to our request object:

routeRequest.Credentials = new Credentials();
routeRequest.Credentials.ApplicationId =  App.Current.Resources["MyCre 
dentials"] as string;



Delivery Application

[ 36� ]

The routing service supports a number of configuration options. These options are 
represented by the RouteOptions object set, the Options property of the RouteRequest
object to a new instance of a RouteOptions object. We then set RoutePathType  
to Points:

routeRequest.Options = new RouteService.RouteOptions();
routeRequest.Options.RoutePathType = RouteService.RoutePathType.
Points;

The user interface has the option to avoid traffic when we calculate a route. The following 
code uses the cbxTraffic checkbox's IsChecked property to set the TrafficUsage
property to the appropriate value:

if (this.cbxTraffic.IsChecked.Value)
{
  routeRequest.Options.TrafficUsage = RouteService.TrafficUsage.
TrafficBasedRouteAndTime;
} 
else 
{ 
routeRequest.Options.TrafficUsage = RouteService.TrafficUsage.None;
}

Now that all the options in our RouteRequest object have been set, it's time to add 
the waypoints we have selected. The code below sets the Waypoints property to an
ObservableCollection of WayPoints and uses LINQ to parse through all the elements 
in the _deliveryStops and pass it to the GeocodeResultToWaypoint method.

    routeRequest.Waypoints = new System.Collections.ObjectModel.Observ
ableCollection<RouteService.Waypoint>();

    this._deliveryStops.ToList().ForEach(x => routeRequest.Waypoints.
Add(GeocodeResultToWaypoint(x)));

The GeocodeResultToWaypoint method below converts a DeliveryStop object to a
Waypoint object that the routing service uses:

private RouteService.Waypoint GeocodeResultToWaypoint(DeliveryStop
deliveryStop)
{
    RouteService.Waypoint waypoint = new RouteService.Waypoint();
    waypoint.Description = deliveryStop.Address;
    waypoint.Location = new RouteService.Location();
    waypoint.Location.Latitude = deliveryStop.Location.Latitude;
    waypoint.Location.Longitude = deliveryStop.Location.Longitude;
    return waypoint;
}



Chapter 9

[ 36� ]

With the all the options set, it's time to call the routing service's CalculateRoute method
and pass the RouteRequest object we just set up:

    client.CalculateRouteAsync(routeRequest);

When the web service returns, first we get the estimated time it will take to drive the route. 
This information is stored as seconds. The following code takes the result, converts it into 
something more meaningful and shows it on the user interface.

long timeInSeconds = e.Result.Result.Summary.TimeInSeconds;
TimeSpan t = new TimeSpan(0, 0, int.Parse(timeInSeconds.ToString()));
this.txbTime.Text = string.Format("Driving Time: {0}", t.ToString());

Next, there is the call to the DrawRoute method. This is the method where we will actually 
draw onto the MapLayer:

DrawRoute(e);

The DrawRoute method creates a MapPolyline object named routeLine and sets its
display properties as follows:

MapPolyline routeLine = new MapPolyline();
routeLine.Locations = new LocationCollection();
routeLine.Stroke = routeBrush;
routeLine.Opacity = 0.65;
routeLine.StrokeThickness = 5.0;

The MapPolyLine takes a series of latlong points and renders them on the map as a line.
The code below iterates through the results from the routing service and adds them to 
the MapPolyline:

foreach (RouteService.Location p in e.Result.Result.RoutePath.Points)
{
    routeLine.Locations.Add(new Location(p.Latitude, p.Longitude));
}

Once complete, the following code adds the routeLine to the routeLayer:

routeLayer.AddChild(routeLine);

You may have noticed that the map automatically centers on the route. The code below gets 
the bounding rectangle of the routeLine and sets the map's View property accordingly.

LocationRect rect = new LocationRect(routeLine.Locations[0],
routeLine.Locations[routeLine.Locations.Count - 1]);

// Set the map view using the rectangle which bounds the rendered //
route.
map.View = map.GetViewFromBoundingRectangle(rect);



Delivery Application

[ 370 ]

The routing service returns a great deal of information. The best way to see everything is to 
use Visual Studio's debugging tools. If you place a breakpoint in the DrawRoute method, use
the QuickWatch feature of Visual Studio to examine the results more closely by examining
the e.Result.Result object.

QuickWatch is a debugging tool in Visual Studio that lets you examine objects in
memory more closely.

To activate QuickWatch and get a closer look at the result set, set a breakpoint at the 
DrawRoute method and right-click on e.Result.Result. Choose Expression: 'e.Result.
Result'|QuickWatch... from the context menu as shown in the following screenshot:



Chapter 9

[ 371 ]

The QuickWatch dialog box will display a tree view of all the values in e.Result.Result. Feel
free to explore all the data it contains to see just how rich the Bing Maps API is.

Bing Maps API has rich functionality which can be explored and examined further by 
referring to the following links:

http://www.viawindowslive.com/VirtualEarth.aspx

http://msdn.microsoft.com/en-us/library/dd877956.aspx







Delivery Application

[ 372 ]

Summary
In this chapter, we explored two elements that would be useful to delivery personnel: 
signature capture and route planning. When building the signature capture control, we 
used a custom control rather than a user control. Custom controls can be a template and
formatted in any number of ways. Finally, we took the map control to the next level of 
utility by connecting it to a power API exposed by a service.

 In this chapter we specifically discussed the following:

How to create a custom, lookless control

How to create our own DependencyProperties

How to use the TemplateBinding syntax

How to sign up for Bing Maps API developer account

How to retrieve an authentication token from the Bing Maps API servers

How to use Geocode locations using the Bing Maps API

How to get a driving route from the Bing Maps API

How to draw a line on the map that corresponds to a driving route

In the next chapter, we will discuss how to architect loosely coupled Silverlight applications 
so that they are more scalable and extensible.



















10
Where to Go From Here

Throughout this book, we have learned a lot about Silverlight development. 
From the basics of XAML to building a location aware application, we have 
covered a lot of ground. Now at this point in our journey, let's take a look ahead 
to see where we can go from here.

In this chapter, we shall:

Taking Silverlight out of the browser

Going offline with Silverlight

Understanding Windows Presentation Foundation

Examining the future of Silverlight

More Silverlight features
Making a Silverlight application mobile involves more than just installing it on a mobile 
computer. There are several factors to consider when making an application mobile. While 
your code will run on a netbook just as it would on a standard laptop or desktop computer, 
creating a well crafted mobile solution requires special planning.

First and foremost is network availability. Even the best implemented mobile telephone 
network has holes in its coverage areas. Realistically speaking, a connected application is 
actually an occasionally connected application. This especially applies to your application 
once it is taken outside of the confines of an office environment. Therefore, any well 
conceived solution must take into account offline use.











Where to Go From Here

[ 374 ]

Checking network connectivity
Most web based applications would fail if the user lost network connectivity. Most HTML 
based solutions require interaction between the server and the client to process data or 
maintain their state.  Since Silverlight runs entirely on the local machine, it can continue 
to operate and use local resources even if the network is unavailable.

However, you probably would want to know if the network was unreachable before making 
any calls to a network-based resource. Sure, we could make the call and wait for a timeout 
error and handle the error accordingly. However, that approach forces the user to wait for 
a response that will never come and the resulting error message may not be relevant—a 
timeout error only proves that a given resource could not be reached in a certain amount of 
time. Ideally, we should check if there is a network connection before attempting to use a 
network resource. If we had that information, we could design the interface to prevent the 
user from making network calls while the connection was unavailable.

Fortunately, checking network availability can be accomplished with just one line of code. 
The NetworkInterface class in the System.Net.NetworkInformation namespace
has a method that returns true if the network is available and false if it is not. To test
network availability, the code is as simple as:

bool networkAvail = NetworkInterface.GetIsNetworkAvailable();

You can check for network availability at startup or prior to making a web service call. 
However, a more useful approach would be subscribing to the NetworkAddressChanged
event. This event fires when the network address changes and when you lose and regain 
network connectivity. To subscribe to this event, just add this line of code to your application:

NetworkChange.NetworkAddressChanged += new NetworkAddressChangedEventH
andler(NetworkChange_NetworkAddressChanged);

The GetIsNetworkAvailable method only tells you if you have a
connection to a network, not if you can reach a particular URL or web service.

Checking for a network connection makes your Silverlight application more robust and more 
able to work in occasionally connected scenarios. Let's see how to put together a Silverlight 
application that knows when it's connected to the network and when it's not.



Chapter 10

[ 375 ]

Time for action – detecting network connectivity
Let's see how to use the GetIsNetworkAvailable method and the
NetworkAddressChanged event together in making a more connection savvy solution.

1.	 Create a new Silverlight application in Visual Studio and name it OfflineTestApp.

2.	 Add the following XAML code to the Grid named LayoutRoot in the 
MainPage.xaml file: 

<Ellipse  x:Name="ellipseIndicator" 
 Height="82" 
 HorizontalAlignment="Center" 
 Stroke="Black" 
 Fill="Gray"
 StrokeThickness="1" 
 VerticalAlignment="Top" 
 Width="86" />

3.	 In the MainPage.xaml.cs file, add this line of code to the MainPage constructor
method, right after the InitializeComponent method call:

NetworkChange.NetworkAddressChanged += new NetworkAddressChangedEv
entHandler(NetworkChange_NetworkAddressChanged);

4.	 Add the following event handler method to the MainPage.xaml file: 

private void NetworkChange_NetworkAddressChanged(object sender, 
EventArgs e)
{
    if (NetworkInterface.GetIsNetworkAvailable())
    { 
this.ellipseIndicator.Fill = new SolidColorBrush(Colors.Green);
    }
    else
    { 
this.ellipseIndicator.Fill = new SolidColorBrush(Colors.Red);
    }
}

5.	 Run the solution by pressing F5 or choosing Start Debugging from the Debug menu.
We will see a gray circle:



Where to Go From Here

[ 376 ]

6.	 Here's the fun part; disconnect from the network by either removing the Ethernet 
cable or disabling your wireless adapter. The circle turned red:

7.	 Reconnect to the network by either plugging the Ethernet cable back in or 
re-enabling the wireless adapter. The circle will turn green:

8.	 Close the browser window to stop debugging the application.

What just happened?
We just created a simple network connectivity tester by clubbing the 
GetIsNetworkAvailable method and the NetworkAddressChanged event. The
NetworkChange_NetworkAddressChanged event handler changes the fill color of the 
ellipse named ellipseIndicator whenever the network address changes as it does when 
it loses connectivity. Based on the value returned by the GetIsNetworkAvailable, we 
turn the ellipse red or green.

So why was the ellipse gray when the application first started? Simple, the 
NetworkAddressChanged event hadn't fired yet and we didn't change the ellipse's 
color from the default defined in the XAML. This is an important point to make: the 
NetworkAddressChanged event only fires when the address changes. If we rely only 
on code called by this method to set our initial state, we could be in for a rude surprise. 
We can fix that by refactoring the code a little bit.



Chapter 10

[ 377 ]

Have a go hero – refactoring the code
Let's go back to the OfflineTestApp solution we just created and modify the code so it is 
a little more scalable.

1. Add the following method to the MainPage.xaml.cs file:

private void UpdateIndicator()
{

    if (NetworkInterface.GetIsNetworkAvailable())

    { 

this.ellipseIndicator.Fill = new SolidColorBrush(Colors.Green);

    }

    else

    { 

this.ellipseIndicator.Fill = new SolidColorBrush(Colors.Red);

    }

}

2. Replace all the code in the NetworkChange_NetworkAddressChanged event
handler with the following line:

UpdateIndicator();

3. Add the same line to the constructor method:

UpdateIndicator();

4. For reference, the MainPage.xaml.cs file should look like this:

public MainPage() 

{

    InitializeComponent();

    NetworkChange.NetworkAddressChanged += new NetworkAddressChang
edEventHandler(NetworkChange_NetworkAddressChanged);

    UpdateIndicator(); 

} 

private void NetworkChange_NetworkAddressChanged(object sender, 
EventArgs e)

{

    UpdateIndicator(); 

} 

private void UpdateIndicator()

{

    if (NetworkInterface.GetIsNetworkAvailable())



Where to Go From Here

[ 37� ]

    { 

this.ellipseIndicator.Fill = new SolidColorBrush(Colors.Green);

    }

    else

    { 

this.ellipseIndicator.Fill = new SolidColorBrush(Colors.Red);

    }

}

5. Run the solution, and depending on your network connection, you will either see 
a green circle or a red circle.

Executing outside the browser
Making a Silverlight application more sensitive to changes in network connectivity is only the 
first step to creating a more robust solution. If a Silverlight application is hosted in a browser 
window and the user refreshes the page, one of two things will happen. Either the page will 
be cached locally and your application's state will reset or the user will see an error screen 
such as the next one:

Neither one of these scenarios is appealing; either way, the data that your user was working 
with could be lost. While a smart application developer would preserve the state and handle 
an accidental refresh gracefully, there could still be further complications. The better solution 
for applications designed to be used on the go would be to take the browser entirely out of 
the equation. Yes, you read that right.

We want to remove a web-based application from the confines of the browser. Silverlight 
supports the notion of running out-of-the-browser, where end users can choose to detach a 
Silverlight application from its hosting page and install it on the local desktop machine. Once 
on the desktop, end users can start the application regardless of their network connection 
status. End users will even have the option to create shortcuts to the application on the 
desktop and, if they are running Windows, add a shortcut in the Start menu as well.



Chapter 10

[ 37� ]

Enabling out of browser support
In order for a Silverlight application to run locally, you must enable out of browser support 
in your Silverlight project. In the Silverlight project properties window, you will need to 
make sure the checkbox for Enable running application out of the browser is checked. The 
Out-of-Browser Settings… button opens up a settings window that lets us further customize 
our application's installation.

Let's explore building an out-of-browser solution.

Time for action – creating an out-of-browser solution
Adding out-of-browser support to a Silverlight application is quite easy, as shown below:

1.	 Create a new Silverlight application in Visual Studio and name it 
OutOfBrowserTestApp.

2.	 Add the following XAML code to the Grid named LayoutRoot in the 
MainPage.xaml file: 

<Button x:Name="btnInstallLocally" 

Content="Install Locally"

    Click="btnInstallLocally_Click"



Where to Go From Here

[ 3�0 ]

    Height="23"

    Width="109" 

    HorizontalAlignment="Left" 

    Margin="12,30,0,0" 

    VerticalAlignment="Top"

/>

3.	 In the MainPage.xaml.cs file, add the following code:

private void btnInstallLocally_Click(object sender,
RoutedEventArgs e)

{

    Application.Current.Install();

}

4.	 Your MainPage.xaml should look like this in design view:

5.	 Next, we will enable out of browser support in the project settings. To do this, right 
mouse click on the Silverlight project in Solution Explorer:



Chapter 10

[ 3�1 ]

6.	 This brings up the project settings window. Click on the Silverlight tab to edit the
Silverlight specific settings for this project:

7.	 Make sure that the checkbox for Enable running application out of browser 
is checked:

8.	 Click on the Out-of-Browser Settings button:



Where to Go From Here

[ 3�2 ]

9.	 Customize the text in the Window Title, Shortcut Name, and Application
Description fields:

10.	Click the OK button.

11.	Run the solution by pressing F5 or choosing Start Debugging from the Debug menu.



Chapter 10

[ 3�3 ]

12.	Click on the Install Locally button and we can see the install dialog appear:

13.	Check the checkbox next to Desktop and click on OK.

14.	The application now appears in a separate window detached from the browser:

15.	Notice that the application hosted in the browser is still running in a background 
window. Click on that window to activate it.

16.	Click on the Install Locally button once again.



Where to Go From Here

[ 3�4 ]

17.	You will see Visual Studio reporting that an exception has been thrown with an error
message of Application is already installed.

18.	Choose Stop Debugging from the Debug menu to stop the debugger.

What just happened?
We modified the Silverlight application to support running out of the browser and customized 
our install experience. We changed the name of our application, some of its metadata and 
provided a UI-based method of installing the application. Remember, not all users will be tech 
savvy enough to right-click click on your application to look for the install context menu. Giving 
them a choice to install the application through the interface is a good habit.

When we tried to install an already installed application, we saw that the Silverlight 
runtime will throw an exception. This is important to note that we cannot install the 
same application twice. To avoid throwing an exception at run time, we can check the 
Application.Current.InstallState property to see if our application is already 
installed. In fact, let's do that now.

Time for action – checking the InstallState property
We are going to check to see if our application is already installed before installing it. If it is, 
we will alert the user by showing a messagebox. Otherwise, we will install it.

1.	 Open the OutOfBrowserTestApp solution we just created in Visual Studio.

2.	 Open up the MainPage.xaml.cs file and modify the btnInstallLocally_
Click method, so that it contains the following code: 

private void btnInstallLocally_Click(object sender, 
RoutedEventArgs e)

{



Chapter 10

[ 3�5 ]

    if (Application.Current.InstallState == InstallState.
Installed)

    { 

MessageBox.Show("Application already installed");

    }

    else

    {

Application.Current.Install();

    }

}

3.	 Run the solution by pressing F5 or choosing Debug Solution from the Debug menu.

4.	 Click on the Install Locally button. We will see a dialog box telling us that the 
application is already installed:

5.	 Close the browser window to stop debugging the solution.

What just happened?
We added some logic to our Silverlight application to see if it has already been installed by 
looking at the Application.Current.InstallState property. The Application.
Current.InstallState property is an enumeration of InstallState, which defines 
four states: NotInstalled, Installed, Installing, and InstallFailed.

When the Application.Current.InstallState property changes, the 
Application.Current.InstallStateChanged event is fired.

The ability to run Silverlight outside of a browser radically changes the landscape of client 
application development technologies. However, there are very good reasons to use 
Windows Presentation Foundation (WPF), the big brother of Silverlight.



Where to Go From Here

[ 3�6 ]

Installing a Silverlight application locally
Installing a Silverlight application locally is easy: you simply right click on the Silverlight
application and choose Install [application name] Application onto this computer… from
the context menu as follows:

This brings up the Install application dialog, which on Windows looks like the following:

Clicking OK installs the program locally (even if the user does not have administrator rights).

Alternatively, we can write code to install the application within our own user interface. For 
example, we could add an Install Locally button. The Click event handler for that button 
would only have to contain the following line of code:

Application.Current.Install();

Deployment concerns
Allowing end users (even ones without administrative rights) to install their own applications 
may sound like a nightmare scenario to many network administrators. However, these fears 
are unfounded. Silverlight applications running out-of-browser are subject to the same 
security restrictions as those running inside of a browser. Updating an installed Silverlight 
application is easy as well. Your application can either provide a Check for Updates button or 
perform the update check automatically and notify the user that an update is available. The 
following code demonstrates checking for updates to the Silverlight XAP:

App.Current.CheckAndDownloadUpdateCompleted += new CheckAndDownloadUpd
ateCompletedEventHandler(App_CheckAndDownloadUpdateCompleted);
App.Current.CheckAndDownloadUpdateAsync();



Chapter 10

[ 3�7 ]

The CheckAndDownloadUpdateAsync method causes Silverlight to check the original
XAP URI using an HTTP GET to see if it has been updated from the current version. If an 
update does exist, the HTTP response from the update check contains the updated bits. The 
CheckAndDownloadUpdateCompleted event is raised once the response is received and
the code in the event handler notifies the user of the update:

void App_CheckAndDownloadUpdateCompleted(object sender,
CheckAndDownloadUpdateCompletedEventArgs e) 
{
  if (e.UpdateAvailable)
  {
    MessageBox.Show("An application update has been downloaded. " +
      "Restart the application to run the new version.");
  }
  else if (e.Error != null &&
    e.Error is PlatformNotSupportedException)
  {
    MessageBox.Show("An application update is available, " +
      "but it requires a new version of Silverlight. " +
      "Visit the application home page to upgrade.");
  }
  else
  {
    MessageBox.Show("There is no update available.");
  }
}

Uninstalling a Silverlight application
To uninstall a Silverlight application, you can right-click on the application and choose 
Remove this application… from the context menu.

On the following dialog box, users are asked to confirm whether or not to permanently 
remove the application. To cancel the uninstall process, click No. To confirm the remove 
operation, click Yes.



Where to Go From Here

[ 3�� ]

Beyond Silverlight
As fully featured and robust as Silverlight is, it still has its limitations.  Remember that 
Silverlight is web-centric and cross-platform. That means that all your code will run in a 
sandboxed environment with limited privileges. Even in elevated trust, Silverlight still does 
NOT have full access to a user's file system, which may be required of an intranet business 
application. Silverlight out of browser applications that run with elevated trust can only 
access the MY folders of a user's computer on Windows and equivalent folders on a Mac. 
However, Silverlight applications deployed to Windows can make use of COM Interop, which 
can provide additional access to resources on the client computer. For scenarios requiring 
direct access to the resources on a user's machine, WPF provides an excellent choice for 
Windows development.

Windows Presentation Foundation (WPF)
Silverlight has its origins in WPF, due to which many of the same concepts apply to WPF 
as well. A quick glance at the features of WPF will reveal some familiar names: XAML, 
Storyboards and Dependency Properties. Developers familiar with Silverlight already 
have a working knowledge of WPF.

Silverlight and WPF do have some differences, however. Most of these differences stem 
from WPF having been designed for Windows desktop application development. As a 
desktop application, a WPF solution will have more access to the local resources on a 
user's computer.

Some features that WPF has that are missing from Silverlight, (apart from full local resource 
access) are attached events, which work in much the same way as attached properties. 
Triggers which can be used to execute code or change states based on events and the
IMultiValueConverter interface which allows for multiple data bound value conversions 
where the IValueConverter interface only allows for one value conversion.

When to use WPF
WPF has access to the whole .NET Framework and all the resources on a user's machine. 
However, due to security concerns, Silverlight runs in a 'sandbox' mode, meaning that the 
Silverlight runtime has certain security restrictions.

Some scenarios where WPF might win over Silverlight would be an application that must 
read and write files to the local user's hard drive in locations other than the folders available 
under the profile (My Documents, My Pictures, and so on) or an application that must 
interface with hardware such as scanners, cameras, or industrial hardware. If the application 
needs to be platform independent or available to users outside of the company network, 
then Silverlight is the obvious choice with a service oriented approach utilizing WCF and 
RIA services.



Chapter 10

[ 3�� ]

Time for action – creating a WPF application
Let's take a look at a WPF application and see how it compares to Silverlight. Most of what 
we will see in WPF will be familiar after what we have learned with Silverlight.

1.	 Start Visual Studio and create a new WPF Application called WPFTest:

2.	 Open the Window1.xaml file and we can see that the root node of the XAML 
document is a window, rather than a usercontrol or a page: 

<Window x:Class="WPFTest.Window1"

    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"

    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

    Title="Window1" Height="300" Width="300">

    <Grid>

    </Grid>

</Window>

3.	 Other than the root node, the rest of the XAML is familiar; in fact, if we add a button 
we can see that the code looks exactly the same: 

<Button x:Name="myButton" Width="75" Height="24" Content="My 
Button"/>

4.	 Build and run the solution and we can see that WPF starts in a regular window 
rather than requiring a browser for initial launch:



Where to Go From Here

[ 3�0 ]

Some things to note are that while the XAML is similar, WPF has full access to 
the entire .NET Framework, rather than the subset provided by Silverlight and 
that WPF is Windows centric and will not run on the Mac OS.

Future of Silverlight
As Rich Internet Applications mature, expect to see more and more desktop-like features 
being added; we can already see this happening with the addition of printing support in 
Silverlight, out-of-browser support for disconnected applications, and extended local storage 
access for trusted applications. With the addition of COM support in Silverlight 4 the step  
is even closer in a Windows development environment. The rise of cloud computing and 
cloud-based services will change the landscape of desktop applications as well.

As we move into the future of Silverlight, we will most likely see the merging of Silverlight 
and WPF into one platform. The ability to share our Silverlight and regular .NET libraries is 
already a step in that direction.

Summary
In this chapter, we learned how to enable out-of-browser support in Silverlight and how to 
check for network connectivity to allow our application to be network aware. We created a 
WPF application and compared Silverlight to WPF. We examined some scenarios where WPF 
might be more appropriate than Silverlight for business intranet development and took a
glimpse into the future of Silverlight and Rich Internet Applications in general.

Through the course of this book we have learned the basics required to build business 
applications using Silverlight and while every business solution differs, they all deal with 
data; collecting it, presenting it, and reporting on it in some fashion. We have learned the 
basic skills to start implementing our next project in Silverlight. We have also gained enough 
knowledge to be able to present Silverlight as a viable and useful development option to 
decision makers during the planning of the next project.



Index
Symbols
[DataContract] attribute  176
[DataMember] attribute  176
_inkPresenter member  339

A
ADO.NET Entity Framework

and WCF RIA Services  257, 258
creating  258-262

animation
about  60-64 
options, exploring  68-70

anonymous style
about  34
overriding  34

APIs  122
Application.Current.InstallState  

property  384, 385
Application_Startup method  119
ApplicationinkPresenter_MouseLeftButtonUp 

method  148 
application programming interfaces. See  APIs
ASP.NET application

business object, creating  174-176
ASP.NET developers  8
AspNetCompatibilityRequirements  

attribute   181

B
Background property  340
basicHttpBinding  181
biggerTextStyle Style resource  34
binaryHttpBinding  181 
Binding class  203

Binding Expression  203 
Bing Maps API  345 
Bing Maps Silverlight Control SDK  123
Bing Maps Silverlight Map Control

Aerial mode  135 
Bing Maps key, adding to XML  131, 132
controlling  133-135 
credentials, adding  131, 132 
Deep Dive on Bing Maps Silverlight Control  

session , URL  145
downloading  122 
interactive SDK  124 
Latitude  132 
LatLong  132 
Longitude  132 
map, changing  136, 137 
map, showing  125-128 
Path Mini-Language  144
pushpin, re-styling  141-144
pushpin markers, adding  138-140
setup  124 
store locations, adding  138-140
using  125

border container  29 
btnClear_Click method  165
btnDeleteLastStroke_Click method  165
btnGeoCode_Click method  352
btnGetRoute_Click method  367
business object

creating  174

C
CakeoRama Logo project  80
CakeService.svc.cs class  177
CalculateRoute method  367, 369



[ �9� ]

canvas container  29 
Cascading Style Sheets (CSS)  32
CheckAndDownloadUpdateAsync method  387
CheckAndDownloadUpdateCompleted  

event  387
ClickOnce  8 
Codec  101 
code snippets  201
containers, Silverlight 4

border  29
canvas  29 
grid  29
InkPresenter  29
ScrollViewer  29
StackPanel  29
Viewbox  29
WrapPanel  29

Control base class  340
controls

LogicalTree  46 
skinning  47-50 
visual cues adding to control template, Visual 

State Manager used  52-54
VisualTree  46

ConvertStrokesToStrokeInfoArray method  212
ConvertStrokesToXaml method  166
Creation, Retrieval, Updating and Deletion 

(CRUD)  258
Credentials.ApplicationId property  352
customBinding  181 
custom control

creating  324-329
implementing  340, 341

CustomerCakeIdea business object  214
Customer class  294
CustomerContext class  269 
customer data

about  249 
database diagram, creating  251 
data model, creating  250-257 
foreign key relationship, creating  253, 257
new table, selecting  252 
table, adding  253, 256

CustomerInfo class  204, 207
CustomerInfo object  203
customer service

customer lookup form, creating  281-294

data validation, adding to customer details form  
294-297

Find Customers link  285 
new Silverlight Page, adding  286

D
DAL  220
data

applications  173 
collection  186 
collection, form creating  186-197
submitting, to server  212-216
validating  198 
Visual State Machine  198

data access layer . See  DAL
data binding, data validation

data object, binding to controls  203-207
DataForm class  280 
DataGrid control  312 
data object, data validation

binding, to controls  203-207
code snippets  201, 202
creating  198-201

DataPager control
used, for adding paging to grid  321, 322

data validation
data, binding  203 
data input, validating  208-211 
data object, binding to controls  203-207
data object, creating  198, 200, 201

data visualization
about  299 
sales data, adding  310

Deep Zoom
about  107, 108 
dzc_output_images directory  121 
example  109, 110 
image tiles, exploring  120-122
MultiScaleImage control  110, 121 
photo montage creating, Deep Zoom Composer 

used  111-118 
Deep Zoom Composer  16 
DeliveryStop object  368
DependencyProperty  203, 338
DependencyProperty.Register method  337, 338
discrete, key frame  60



[ �9� ]

Document Object Model (DOM)  59
DrawRoute method  369

E
e.Result.Result object  370
easing, key frame  60
embedding files

versus referencing files  83-87
event handlers

adding  56
coding  57, 58

executive dashboard
creating  300-309
extending  312-320

Expression Blend  15, 16
about  37 
art board  39-41 
crash course  37 
styles, modifying  41-43
Visual Studio  38

Expression Design  18, 19
Expression Encoder  19, 20
Expression Media Encoder

about  99, 100 
other templates  105
video, encoding  101-105

eXtensible Application Markup Language. See  
XAML

Extension Method  156

F
FindInkPresenterControl method  339
Flash/FLEX developers  9 
FontSize attribute  32 
FontSize property  33

G
GeocodeAsync method  352
GeocodeRequest object  352
GeocodeResultToWaypoint method  368
GeocodeServiceClient object  352
Geocoding

about  344 
addresses  345-351
Bing Maps API used  345

Geographic Information Systems. See  GIS
GetIsNetworkAvailable method  374, 375
GIS  172
grid

paging adding, DataPager control 
used  321, 322

grid container  29

H
HitTest method  156
HTML Bridge  59

I
IEditableObject interface  313 
IIS7 Smooth Streaming  101
IMultiValueConverter interface  388
Ink control  186 
InkPresenter container

about  29
InkPresenter control

about  146, 187 
appearance, controlling  152-156
creating  146 
PressureFactor  150 
stroke  146 
strokes, capturing  146 
strokes, deleting  156 
StylusPoint  150 
used, for sketching application  147-150

InkPresenter controls  187
InkScape

about  20 
Silverlight project, creating  20-26

INotifyPropertyChanged interface  198, 212
InsertCustomer method  269 
InstallState property

checking  384, 385 
Intellisense  37 
interactive SDK  124
IPagedCollectionView interface  313
IsChecked property  277, 368
isolated storage

location  167, 168
strokes, storing in  161-166

IValueConverter interface  320, 388



[ �9� ]

J
JavaScript Object Notation (JSON)  176
JsonDataContractSerializer  176

K
Key frames, Silverlight

discrete  60
easing  60
linear  60
spline  60

L
Label property  277 
Language Integrated Queries (LINQ)  257 
Last method  156 
Latitude  132 
layout containers. See  containers, Silverlight 4
layout panels. See  also containers, Silverlight 4
layout panels  29 
linear, key frame  60 
Location object  352 
LogicalTree  46 
Longitude  132 
lookless control

controls, merging  330-336
creating  325

M
markup extension  34
meButterfly control  94
media

adding, to Silverlight project  80 
embedding files versus referencing files  83-87

MediaElement control  81 
MediaEnded event  86 
Microsoft Office SharePoint. See  SharePoint
MinimumStrokeCountReached method  342
minRuntimeVersion parameter  73
MouseEnter event  97, 98 
MSDN website

URL  176, 177

N
navigation control

building  29 
NetDataContractSerializer  176 
netTcpBinding  181 
NetworkAddressChanged event  374-376
NetworkChange_NetworkAddressChanged event 

handler  376
NetworkInterface class  374

O
object tag  73 
OnApplyTemplate method  338
OnNavigatedTo method  267, 279, 310
OnPropertyChanged method  201
Options property  368 
Order class  294

P
paging

adding in grid, DataPager control used  321, 322
param tags  73 
Path Mini-Language

URL  144 
PersistInk method  166
PhoneNumber property  297
plain old CLR objects. See  POCO
PlaySoundAction behavior  97
POCO  220 
Pushpin object  352

Q
Query property  352
Quicktime

URL  101

R
Raw AV pipeline  101
resource  33 
Resource Dictionary  33
ResponseActive method  170
RIA  219



[ �9� ]

Rich Internet Application. See  RIA 
Rich Internet Application (RIA) platform  29
RouteOptions object  368
route planning

about  353 
adding, to application  354-367
class file, adding  355 
code, adding  359, 360 
event handlers, adding  360-364
UI, updating  357

RouteRequest object  367, 369

S
SaveButton_Click method  296
ScrollViewer container  29
search engine optimization  28
SelectedDate property  274
SendData method  170
ServiceObjects class  175 
set accessor method  207
SharePoint

about  238 
Silverlight application, hosting  238-248

signature control
controls, merging  330-336
creating  330

SignatureControl class  339
Silverlight

animation  60 
anonymous style, overriding  34
application, installing  386 
application, mapping  344 
application, uninstalling  387
asynchronous calls  169
basicHttpBinding  181
binaryHttpBinding  181 
Cake-O-Rama, example  145 
concepts  9 
controls  46 
controls, embedding into web page  71-76
controls, skinning  47-50
customBinding  181 
custom control, creating  325-329
custom control, implementing  340
DataGrid control  312 
data object, binding  203-207

Deep Zoom  107, 108 
default template, improving  330
dependency properties  11, 337-339
development concerns  386 
drawing attributes, changing  151, 152
erase feature, adding  157-160
Expression Media Encoder  99, 100
future  390 
Geocoding  344 
hosting, in SharePoint  238-248 
Ink appearance, controlling  152-155
InkPresenter control  146 
InkPresenter control, creating  146
InkPresenter control used, for sketching  

application  147-150 
InstallState property, checking  384, 385
lookless control, creating  325
navigation buttons, building  30-32
navigation buttons building, StackPanel  

used  30-32 
netTcpBinding  181 
out-of-browser, executing  378
out-of-browser solution, creating  379-384
out of browser support, enabling  379
pizzazz, adding  28 
presentation and logic, separating  9 
project, creating  20-26 
RIA Services, role  220 
route planning  353 
route planning, adding to application  354-367
sketches, uploading to server  169-172 
snags  11, 12 
strokes, deleting  156 
styles  32-34 
styles, adding  35, 36 
StylusPoint  150 
template binding  339, 340 
tools, prerequisites  13 
troubleshooting  11-13 
used, for adding pizzazz  28 
used, for enhancing websites  27 
validation error, scenarios  207 
XAML  10

Silverlight, concepts
dependency properties  11
presentation and logic, separating  9
XAML  10, 11



[ �96 ]

Silverlight, features
application, installing  386 
application, uninstalling  387 
code, refactoring  377, 378 
InstallState property, checking  384, 385
network connectivity, checking  374
network connectivity, detecting  375, 376
out-of-browser, executing  378
out-of-browser solution, creating  379-384
out of browser support, enabling  379

Silverlight, skills required
about  7, 8 
ASP.NET developers, special note  8
Flash/FLEX developers, special note  9
Windows Forms developers, special note  8
WPF developers, special note  8

Silverlight-enabled WCF service
creating  177-185

Silverlight 4
containers  29

Silverlight project
background music, adding  80-82
embedding files versus referencing files  83-87
media, adding  80 
video, adding  87-90 
video, using as brush  91-95

Silverlight Spy  17
Silverlight Toolkit

data visualization  299 
downloading  300 
executive dashboard, creating  301-309
executive dashboard, extending  312-320
installing  300 
sales data, adding  310-312 
setting up  300 
spreadsheet data  312

Silverlight toolkit  15
site navigation project

interactive sounds, adding  95-98
skinning  45 
SourceName property  95 
source parameter  73 
Source property  82 
spline, key frame  60 
StackPanel

used, for building navigation buttons  30-32

StackPanel container  29
StoryBoard

about  60 
Key frame elements  60

StrokeInfo[] array  214
StrokeInfo objects  212
StrokeMinimum property  342
strokes

about  146 
capturing  146 
deleting  156 
DrawingAttribute property  151, 152
storing, in isolated storage  161-166

Style attribute  324
styles

about  32-34 
adding  35, 36 
anonymous style, overriding  34

submitButton_Click method  214
SubmitCakeIdeaCompleted event  215
System.Net.NetworkInformation  

namespace   374
System.Windows namespace  59

T
TemplateBinding  339
tools, prerequisites

Deep Zoom composer  16
Expression blend  15, 16
Expression Design  18, 19
Expression Encoder  19
InkScape  20 
Silverlight runtime  14
Silverlight Spy  17
Silverlight toolkit  15
Visual Studio 2008  14
Visual Studio 2010  14

TrafficUsage property  368
troubleshooting, Silverlight  11-13

U
user experience

button, adding  265, 266 
customer information, saving  264-280
DataField, adding  276



[ �97 ]

DataFields, label text customizing  277
event handler, adding  278
InsertCustomer method, modifying  269
Label property, adding  277 
method, creating  268, 269 
page, adding  271 
RIA Services/Entity errors  271
Silverlight Toolkit, installing  265
System.Linq namespace, adding  267

V
Validation attributes  294
video

adding, to Silverlight project  87-90
encoding  101

VideoBrush
creating  91
using  91

video formats  101
Viewbox container  29
Visibility property  95
Visual State Manager

used, to add visual cues  52-54
VisualTree  46 
Volume property  98

W
Waypoint object  368
Waypoints property  368
WCF

Silverlight-enabled service, creating  177-185
wsHttpBinding  181

WCF RIA Services
about  219 
and ADO.NET Entity Framework  257-236
installing  221 
listbox, styling  236, 237 
role in Silverlight  220

WCF Rich Internet Application Services. See  
WCF RIA Services

WebGet attribute  176
website

enhancing, Silverlight used  27 
Windows Communication Foundation. See  WCF
Windows Forms developers  8 
Windows Presentation Foundation. See  WPF
WPF  8

about  388 
application, creating  389, 390
uses  388

WPF developers  8
WrapPanel container  29
wsHttpBinding  181

X
XAML  10, 11, 46, 50



Thank you for buying  
Microsoft iii���������   iiiggghhhttt   ���   nnn���   sss���   rrr���   ���uuusssiii   sss  
App�ication D����opm�nt: ��ginn�rs Guid�

About Packt Pub�ishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For 
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals 
should be sent to author@packtpub.com. If your book idea is still at an early stage and you 
would like to discuss it first before writing a formal book proposal, contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Microsoft �i���r�ight � Data and
��r�ic�s Cookbook 
ISBN: 978-1-847199-84-3             Paperback: 385 pages

Over 85 practical recipes for creating rich, data-driven 
business applications in Silverlight

1. Design and develop rich data-driven business 
applications in Silverlight

2. Rapidly interact with and handle multiple 
sources of data and services within Silverlight 
business applications

3. Understand sophisticated data access 
techniques in your Silverlight business 
applications by binding data to Silverlight 
controls, validating data in Silverlight, getting 
data from services into Silverlight applications 
and much more!

Pap�r�ision�D Ess�ntia�s 
ISBN: 978-1-847195-72-2            Paperback: 428 pages

Create interactive Papervision 3D applications with 
stunning effects and powerful animations

1. Build stunning, interactive Papervision3D 
applications from scratch

2. Export and import 3D models from 
Autodesk 3ds Max, SketchUp and Blender to 
Papervision3D

3. In-depth coverage of important 3D concepts 
with demo applications, screenshots and
example code.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Skills needed
	A special note for ASP.NET developers
	A special note for Windows Forms developers
	A special note for WPF developers
	A special note for Flash/FLEX developers

	New concepts of Silverlight
	Separation of presentation and Logic
	XAML: Relax it's just XML
	Dependency properties
	Bumps along the road to Silverlight bliss
	GIF files need not apply
	Visibility != Boolean
	It's Button.Content, not Button.Text


	Tools needed
	Visual Studio 2008 or Visual Studio 2010
	Silverlight runtime
	Silverlight toolkit
	Expression Blend

	Other useful tools
	Deep Zoom Composer
	Silverlight Spy
	Expression Design
	Expression Encoder
	InkScape

	Time for action – creating a Silverlight project	
	Summary

	Chapter 2: Enhancing a Website with Silverlight
	Retrofitting a website
	Adding pizzazz with Silverlight
	A few words on search engine optimization

	Building a navigation control from the ground up
	Picking the right kind of container
	Stack it up: Using the StackPanel

	Time for action – building navigation buttons in Silverlight
	Adding a little style with Styles
	Styles


	Time for action – adding the style
	Creating applications in Expression Blend
	A crash course in Expression Blend
	An artsy Visual Studio?


	Time for action – styles revisited in Blend
	Skinning a control
	Time for action – Skinning a control
	States of mind

	Time for action – learning the Visual State Manager
	Adding event handlers
	Time for action – back to coding
	Where are we really?

	Animation in Silverlight
	Time for action – animation time
	Getting on the same page
	Time for action – getting Silverlight onto a web page
	Summary

	Chapter 3: Adding Rich Media
	Adding media to a Silverlight project
	Time for action – adding background music
	Embedding files versus referencing files

	Adding video to a Silverlight project
	Time for action – adding video
	Using video as a brush
	Time for action – creating and using a VideoBrush
	Enriching an application with audio cues
	Time for action – adding interactive sounds
	Coding videos with Expression Media Encoder
	A tour of the workspace
	Encoding video
	A quick word on video formats

	Time for action – let's encode a video!
	Summary

	Chapter 4: Taking the RIA Experience Further with Silverlight
	Deep Zoom
	Deep Zoom in action

	Time for action – creating a Deep Zoom photo montage
	Using the Bing Maps Silverlight Control
	Using the Map Control

	Time for action – getting started with mapping
	Getting credentials

	Time for action – adding our credentials
	Taking control of the Map control

	Time for action – taking control of the Map control
	Adding store locations to the map

	Time for action – adding store locations
	Drawing out ideas
	The InkPresenter control
	Capturing strokes

	Time for action – building a basic sketching application
	Changing drawing attributes

	Time for action – controlling the appearance of Ink
	Erasing Strokes

	Time for action – adding an erase feature
	Storing Strokes in Isolated Storage
	Isolated Storage


	Time for action– adding persistence
	Uploading sketches
	Asynchronous calls


	Time for action – submitting sketches
	Summary

	Chapter 5: Handling Data
	Data applications
	Time for action – creating a business object
	Windows Communication Foundation (WCF)
	Time for action – creating a Silverlight-enabled WCF service
	Collecting data
	Time for action – creating a form to collect data
	Validating data
	Data object

	Time for action – creating a data object
	Data binding

	Time for action – binding our data object to our controls
	Validation

	Time for action – validating data input
	Data submission
	Time for action – submitting data to the server
	Summary

	Chapter 6: Back Office Applications
	WCF Rich Internet Application (RIA) Services
	Time for action – creating a RIA Services application
	SharePoint
	Time for action – hosting a Silverlight application in SharePoint
	Summary

	Chapter 7: Customer Service Application
	Customer data
	Time for action – creating the data model
	ADO.NET Entity Framework and WCF RIA Services
	Time for action – creating the Entity Framework
	User experience
	Time for action – saving customer information
	Customer service
	Time for action – creating a customer lookup form
	Summary

	Chapter 8: Executive Dashboard Application
	Data visualization
	Time for action – creating the Executive Dashboard
	Spreadsheet data
	Time for action – extending the Executive Dashboard
	Summary

	Chapter 9: Delivery Application
	Creating a signature capture control
	Creating our own lookless control

	Time for action – creating a custom control
	Improving the default template

	Time for action – putting the control together
	Dependency properties
	The OnApplyTemplate method
	TemplateBinding
	Implementing the custom control

	Time for action – putting our lookless control to the test
	Time for action – finishing the control
	Mapping application
	Geocoding

	Time for action – Geocoding addresses to work
	Route planning

	Time for action – adding routing to our application
	Summary

	Chapter 10: Where to Go From Here
	More Silverlight features
	Checking network connectivity

	Time for action – detecting network connectivity
	Executing outside the browser
	Enabling out of browser support


	Time for action – creating an out-of-browser solution
	Time for action – checking the InstallState property
	Installing a Silverlight application locally
	Deployment concerns
	Uninstalling a Silverlight application

	Beyond Silverlight
	Windows Presentation Foundation (WPF)
	When to use WPF


	Time for action – creating a WPF application
	Future of Silverlight
	Summary

	Index



