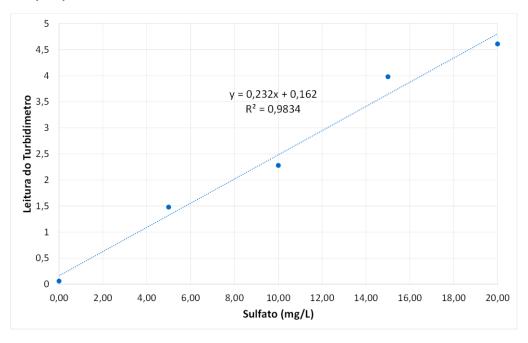
Lista de Exercícios 3 – Instrumentação Industrial


01) A concentração do íon sulfato (SO₄²⁻) em águas naturais pode ser determinada pela medida da turbidez. Um turbidímetro, instrumento usado para essa análise, foi calibrado com uma série de padrões de soluções padrão de Na₂SO₄. Os seguintes dados foram obtidos para uma curva de calibração:

SO ₄ ²⁻ (mg/L)	Leitura do Turbidímetro
0,00	0,06
5,00	1,48
10,00	2,28
15,00	3,98
20,00	4,61

- a) Construa um gráfico e trace visualmente uma linha reta entre os pontos.
- b) Calcule a equação da reta que representa a curva de calibração e coeficiente de correlação (R).
- c) Obtenha a concentração de sulfato em uma amostra que gerou uma leitura de 2,84 no turbidímetro.

RESPOSTA

a) e b)

c) Concentração de SO₄²⁻ = 11,54 mg/L

02) Os dados que seguem foram obtidos em uma calibração de um eletrodo íon-seletivo sensível a cálcio empregado para a determinação de pCa. Sabe-se que existe uma relação linear entre o potencial e pCa.

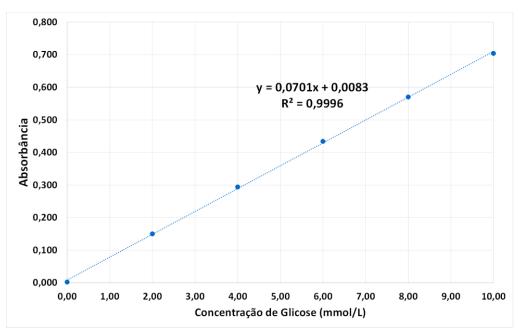
pCa = -log [Ca ²⁺]	Leitura do Eletrodo (mV)
5,00	-53,8
4,00	-27,7
3,00	2,7
2,00	31,9
1,00	65,1

- a) Construa um gráfico e trace visualmente uma linha reta entre os pontos.
- b) Calcule a equação da reta que representa a curva de calibração e coeficiente de correlação (R).
- c) Obtenha o pCa em uma amostra que gerou uma leitura do Eletrodo de 10,7 mV.

RESPOSTA

a) e b)

c)
$$pCa^{-} = 2,76$$

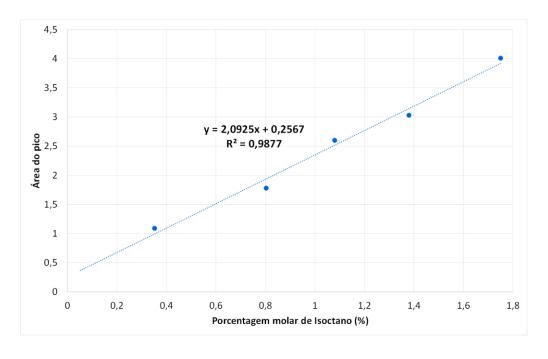

03) Os dados na tabela que segue foram obtidos durante uma determinação colorimétrica em um espectrofotômetro de glicose em soro sangüíneo.

Concentração de Glicose (mmol/L)	Absorbância
0,00	0,002
2,00	0,150
4,00	0,294
6,00	0,434
8,00	0,570
10,00	0,704

- a) Construa um gráfico e trace visualmente uma linha reta entre os pontos.
- b) Calcule a equação da reta que representa a curva de calibração e coeficiente de correlação (R).
- c) Obtenha a concentração de glicose em uma amostra de sangue que gerou uma absorbância no espectrofotômetro de 0,350.

RESPOSTA

a) e b)


c) Concentração de Glicose = 4,87 mmol/L

04) Em uma análise petroquímica, deseja-se determinar o teor de isoctano em uma mistura de hidrocarbonetos. Para isso usa-se uma coluna cromatográfica que fornece uma área de picos determinada proporcional a concentração de isoctano. Os dados que se segue foram obtidos com porcentagens molares determinadas de isoctano em uma mistura de hidrocarbonetos, e três amostras desconhecidas de uma mesma mistura desconhecida de isoctano. Determine a concentração de isoctano nessa mistura.

Porcentagem molar de Isoctano (%)	Área do pico
0,352	1,09
0,803	1,78
1,08	2,60
1,38	3,03
1,75	4,01
Amostra 1	2,89
Amostra 2	2,92
Amostra 3	2,84

RESPOSTA

Curva de Calibração

Amostra 1 = 1,26%

Amostra 2 = 1,27%

Amostra 3 = 1,23%

Concentração da mistura = 1,25% ± 0,01%