

Fundamentos de redes

A5: Fibra Óptica

Fibra óptica - características

Sinal: luz

Adequada para:

altas taxas de transmissão (atéTbps)
ambientes de alto nível de ruído eletromagnético
interligação de prédios (ou andares de um prédio)

Configuração usual:

única fibra de vidro com cobertura protetora cabo multifibras

Necessita conversores elétrico / ópticos

transmissor - usa LED ou laser

receptor - usa fotodiodo ou fototransistor

Vantagens das fibras ópticas

Boa relação custo / benefício

Possibilita crescimento na rede

Fácil de testar

Grande durabilidade

Baixa atenuação / Maior largura de banda

Possibilita maiores distâncias

Maior capacidade de transmitir informação

Imunidade a EMI

Independe do tipo de aplicação

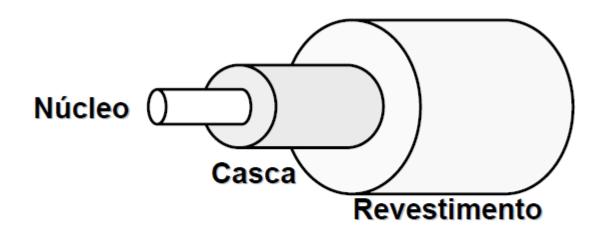
Dados, voz e vídeo

Controle de processos, etc ...

Limitações da fibra óptica:

preço "alto"

mecanicamente fraco (cuidados na instalação)

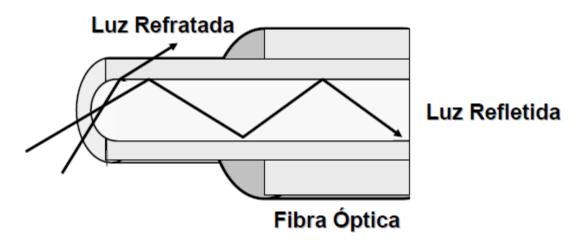

altas perdas de acoplamento

Tipos de fibra:

monomodo,

multimodo

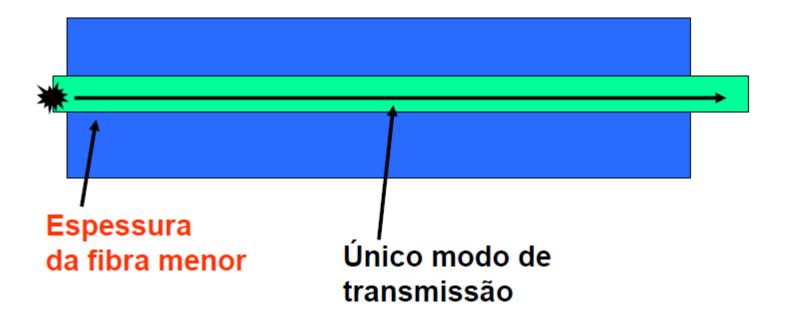
Composição de uma fibra óptica


Núcleo: Região guia de luz (vidro sólido e claro)

Casca: Mantém a luz dentro do núcleo (vidro sólido e claro)

Revestimento: protege o vidro do manuseio (acrilato)

Luz na fibra multimodo


Conceitos de Refração e Reflexão

Abertura numérica

Abertura que garante que qualquer raio de luz que entre na fibra seja transmitido

Fibra monomodo

Interconexão em fibras ópticas

Emenda

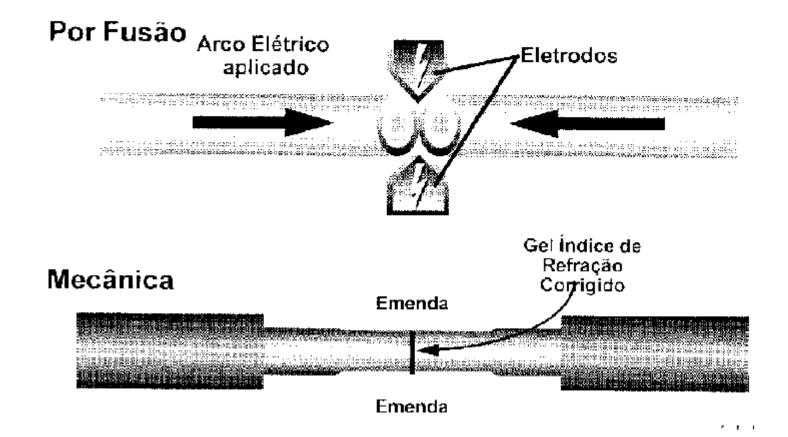
Pelo processo de fusão

Alto investimento inicial

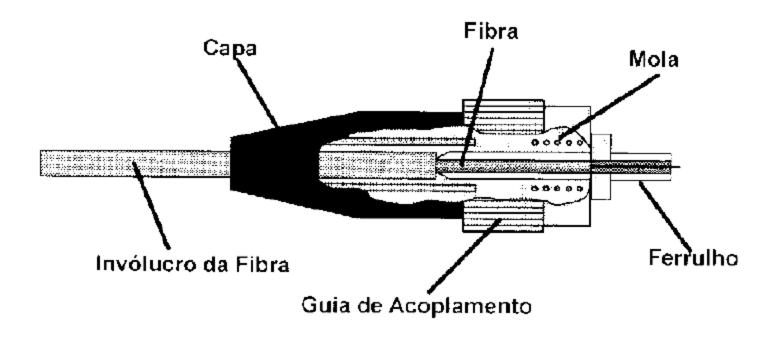
Pequena atenuação (0,015 a 0,020dB)

Sem custo de material para cada emenda

Mecânica


Baixo investimento inicial

Existe custo de material associado com cada emenda


Maior perda em relação a fusão (0,15 a 0,20dB)

Conectorização

Emendas (fusão e mecânica)

Conector para fibra óptica

Alguns tipos de conectores

Conector	Características
ST	Acoplamento "baioneta" / com mola Ambientes com pouca vibração Atual/ usado para TV, equipamentos teste
SC	" <i>Push-pull</i> " / com mola Permite duplexação Modelos SC-PC e SC-APC
SMA	Especificado para uso militar (desde 1970) Dois tipos: 905 e 906
FDDI	Usado em redes ópticas FDDI Duplex com dois ferrulhos (com capa)
FC	Uso em telefonia e ambientes de vibração Com mola

lnstalação de cabos externos

Cabeamento para MAN pode ser instalado:

Através de canalização subterrânea

Através de canalização aérea

Existem normas de projeto específicas para cada tipo de solução adotada

Existem diferentes tipos de cabo para uso nas diferentes canalizações

Canalização aérea

Em geral mais barata que a subterrânea

Instalada em <u>postes</u> que podem ser próprios ou alugados a operadoras de serviços (elétrico, TV a cabo, telecom.)

Instalação de posteamento próprio pode exigir licença junto à Prefeitura

Material específico para instalação dos cabos, pontos de emenda e terminações

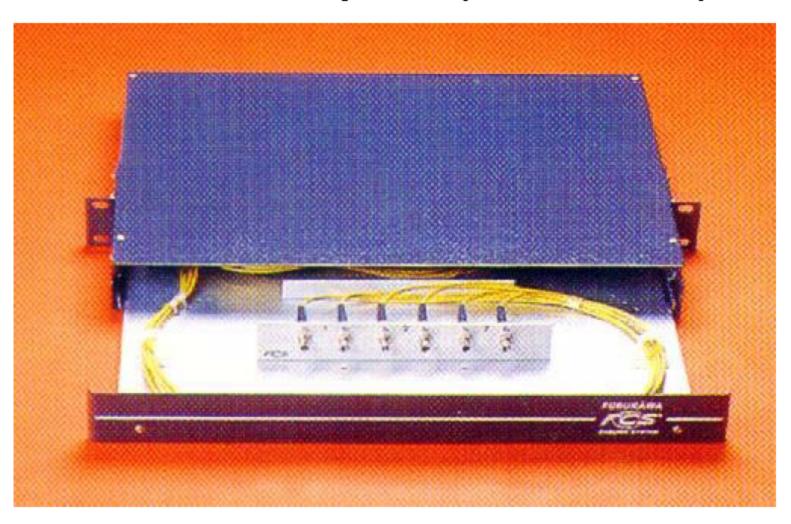
Exemplo de serviços envolvidos em instalação de cabos auto-sustentados:

- Instalação de <u>ferragens de fixação</u> em postes
- Regraduação de ferragens e cabos existentes
- Instalação de <u>prendedores</u> e <u>ganchos</u> para fixação em fachadas
- Roçadas e podas de vegetação
- Puxamento, fixação e amarração dos cabos
- Fechamento das pontas dos cabos
- Amarrações provisórias de cabos existentes a ser removidos
- Testes ópticos do cabo antes e depois

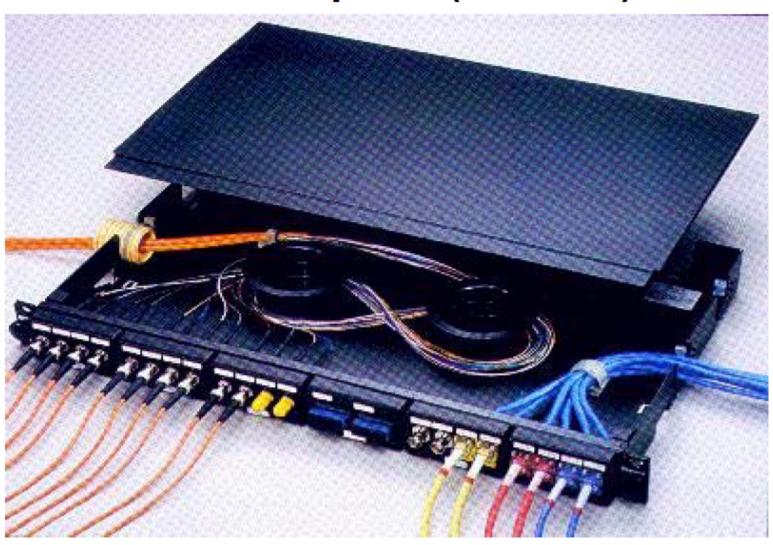
Canalização subterrânea

Requer um maior investimento, pois necessita de mais tempo e maior número de recursos → envolve obras de Engenharia Civil

Instalação dessa canalização pode usar:


método de abertura de valas método não destrutivo (perfuração subterrânea)

Linhas instaladas podem ser:


encapsuladas - protegidas por cobertura de concreto (passagem sob ruas, ...)

não encapsuladas - sob calçadas, áreas livres, ...

Distribuidor óptico (Furukawa)

Distribuidor óptico (Panduit)

Testes em fibras ópticas

Necessidade dos testes

Verificar a qualidade do enlace

Criar documentação para facilitar as expansões, diagnósticos e manutenções

Homologar as instalações

Fases de testes

No recebimento do cabo (bobina)

Na conclusão das instalações

Nas processos de expansão e reconfiguração

Na manutenção, com o objetivo de diagnosticar problemas

Testes em fibras ópticas

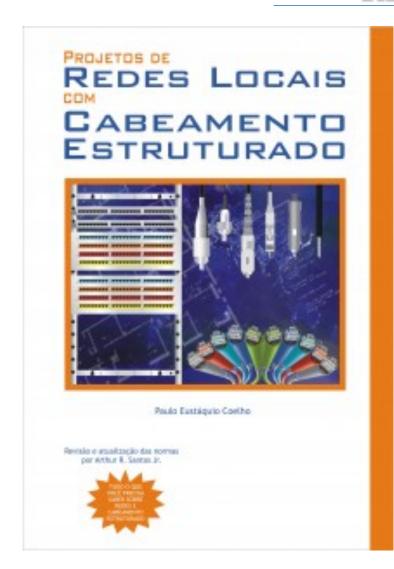
Tipos de testes

Continuidade

Utiliza injetor de luz (Fonte de luz)

Atenuação fim-a-fim

Utiliza *Power Meter* (Medidor de potência)


Características do cabo

Utiliza OTDR (Optical Time-Domain Reflectomer)

Opera como um radar: envia luz através da fibra e mede a quantidade refletida

Requer acesso a somente uma extremidade da fibra

REFERENCIAS

Material do professor Sérgio Fialho.