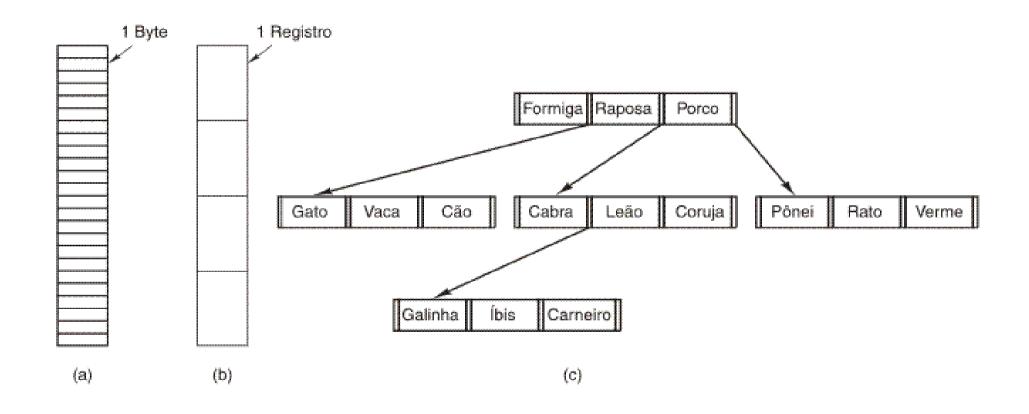
Sistemas de Arquivos

Arquivos e Diretórios Características e Implementação

Tadeu Ferreira Oliveira - tadeu.ferreira@ifrn.edu.br

Sistemas de Arquivos

- Objetivos
 - Armazenar uma quantidade grande de informação
 - Sobreviver ao término do processo
 - Múltiplos processos devem poder acessar um dado
- Duas operações básicas
 - Leitura
 - Escrita


Arquivos – Identificação

- É a característica mais importante para o usuário final
- Nome e extensão
- Extensão costuma ser apenas uma convenção
- No Windows pode relacionar um arquivo a um programa

Arquivos — Estruturas

- Arquivos em bytes
 - Acesso e leituras byte a byte
- Arquivos em registros
 - Acesso e leituras em blocos de n bytes que compõem um registro
- Arquivos em listas ligadas
 - Acesso através de uma chave

Arquivos - Estruturas

Arquivos – Tipos

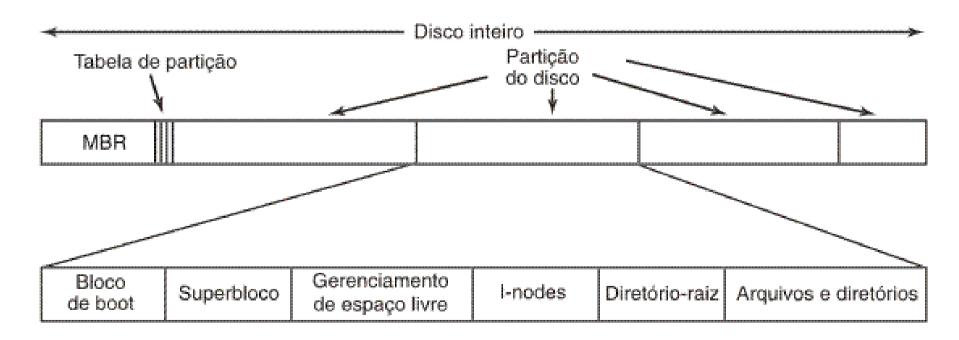
- Arquivos comuns
- Arquivos Especiais de bloco
- Arquivos Especiais de caracter
- O número mágico
 - Comando file no Linux

Arquivos – Atributos

- Também chamados metadados
- Tempos de criação, alteração acesso
- Tamanho
- Arquivo oculto, backup, temporário, lock

Arquivos – Operações

- Create
- Delete
- Open
- Close
- Read
- Write
- Append

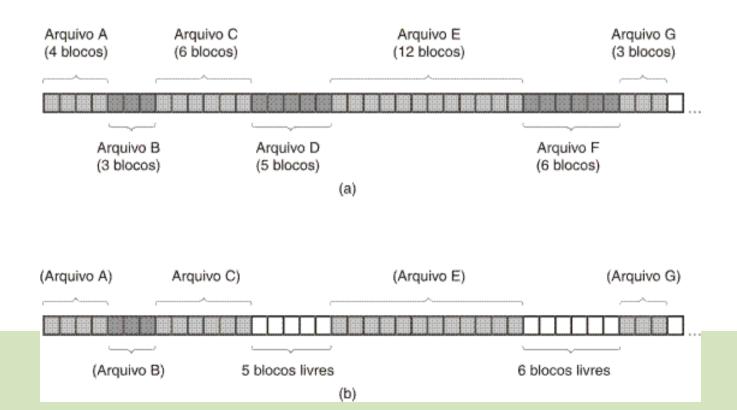

- Seek
- Get Attributes
- Set Attributes
- Rename

Caminho de arquivos

- Caminho Absoluto
 - Ex.: /home/Tadeu/Aulas/Aula4.ppt
- Caminho Relativo
 - Considera o diretório atual ou diretório de trabalho
 - Ex.:Aulas/Aula4.ppt
- O diretório de trabalho é relativo ao processo
- As entradas . e ..
 - Diretório Atual
 - .. Diretório Pai

Layout do Sistema de Arquivos

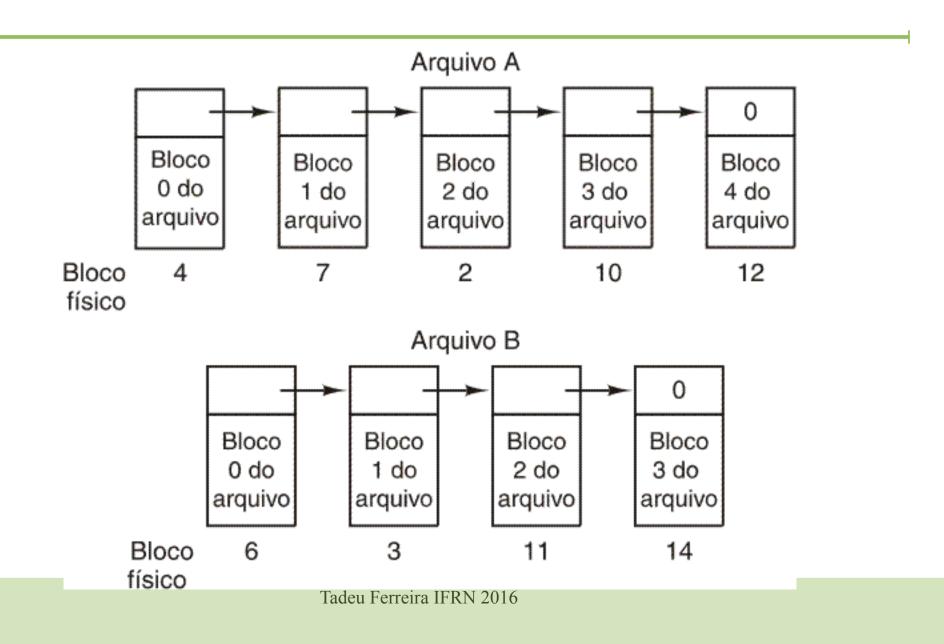
- A tabela de partições indica o início de cada partição
- Dentro da partição o S.O. decide o layout



Implementação de arquivos

- O principal aspecto é:
 - Como indicar onde cada arquivo está
- Quatro abordagens
 - Alocação contigua
 - Alocação baseada em listas ligadas
 - Alocação baseada em listas ligadas usando uma tabela em memória
 - I-Nodes

Alocação contígua


- Ótima velocidade
- Fácil implementação
- Problema de fragmentação

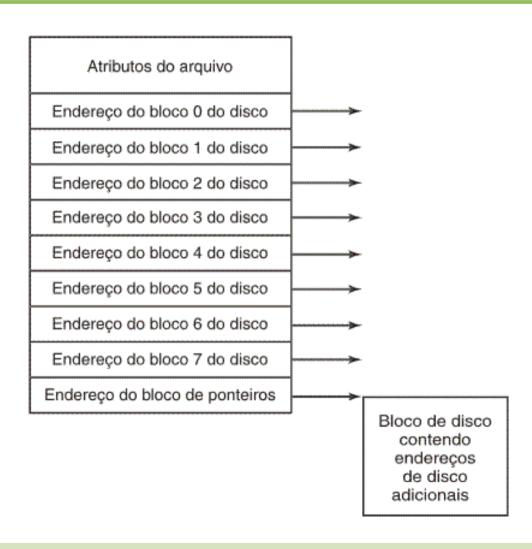
Alocação baseada em listas ligadas

- Evita fragmentação
- Problemas para leitura não sequencial
- Espaço desperdiçado em cada bloco para o ponteiro

Alocação baseada em listas ligadas

Alocação baseada em listas ligadas usando uma tabela em memória

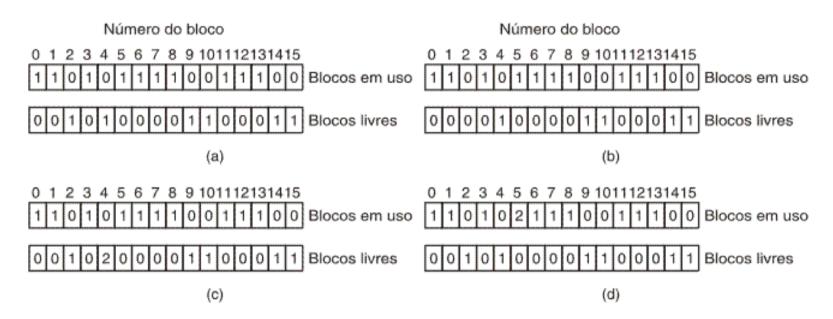
- Busca resolver os dois problemas da lista ligada
- Retira os ponteiros do bloco e transfere para uma tabela separada
- Conhecida com Tabela de Alocação de Arquivos (FAT)
- A tabela fica gravada no disco mas é carregada para a memória
- O espaço da tabela em memória é muito grande


Alocação baseada em listas ligadas usando uma tabela em memória

I-Nodes

- Uma estrutura de dados que aramzena os metadados do arquivo e o endereço de seus blocos
- Apenas os i-nodes dos arquivos abertos no momento precisam estar em memória
- Um problema é para arquivos grandes onde o número de blocos supera a capacidade de um i-node
 - Solução: Endereço de Bloco de Link Indireto

I-Nodes


Confiabilidade

- Sistemas de arquivos com journaling
 - Conceito de transações atômicas
 - Ex.: ext3, ReiserFS, NTFS
 - Gravam um log do que irá ser feito antes de fazê-lo

Checagem de disco

- fsck
- Duas tabelas
 - Uma indica quantas vezes um bloco aparece na lista de free-blocks
 - Outra indica quantas vezes um bloco aparace referenciado por um arquivo

fsck

Estados do sistema de arquivos

- a) consistente
- b) bloco desaparecido
- c) bloco duplicado na lista de livres
- d) bloco de dados duplicados

Performance

- Técnicas para aumentar a performance em sistemas de arquivos
- Cache
 - Pode usar os mesmos algoritmos de paginação
 - Duas características podem melhorar a performance
 - É provável que o bloco será usado novamente?
 - O bloco é essencial para a consistência do FS?
- Leitura de bloco antecipada
 - Ler o próximo bloco do disco pertencente ao arquivo recentemente lido
 - Bom para arquivos em leitura sequencial
 - Ruim para leitura aleatória pois desperdiça tempo do disco

Desfragmentação

- Útil para agrupar os arquivos após muitas leituras e gravações
- defrag

Linux

- Múltiplos sistemas de arquivos carregáveis
 - Ext3, ReiserFS, XFS, JFS
 - Módulos do kernel
- Links
- Locks
- Sistema de Arquivos Virtual (VFS)
 - Permite que se utilize múltiplos sistemas de arquivo
 - Abstrai detalhes do tipo de FS usado

Linux

- Minix 1
 - Arquivos de até 64MB
- ext
 - Arquivos maiores
- ext2
 - Melhora na performance do ext
- ext3
 - Implementação de Journalling

ext2

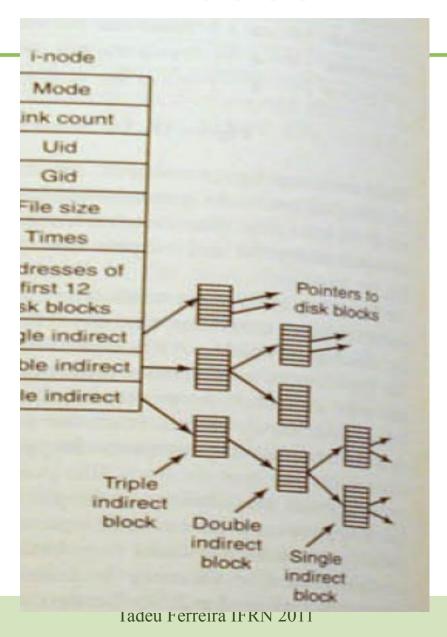
- Divide o disco em grupos
- Cada grupo consiste de:
 - Superbloco
 - Descritor do grupo
 - Bitmap de blocos livres
 - Bitmap de i-nodes livres
 - Inodes
 - Blocos de dados

ext2 - Superbloco

- Contem informações sobre o layout do sistemas de arquivos
 - Ex.:
 - Número de blocos
 - Número de i-nodes
 - Início da lista de blocos livres

ext2 - Descritor do grupo

- Informações do grupo
 - Local do Bitmaps i-nodes livres
 - Local do Bitmaps de blocos livres
 - Número de diretórios neste grupo


ext2 - Bitmaps

- Um mapa de bits para blocos livres
- Um mapa de bits para i-nodes livres

ext2 - Inodes

- Um para cada arquivo
- Um I-node ocupa 128 bytes e descreve um único arquivo
- Campos do I-node
 - Modo
 - NLinks
 - Uld/Gld
 - Tamanho
 - Hora de Acesso/Gravação/Criação

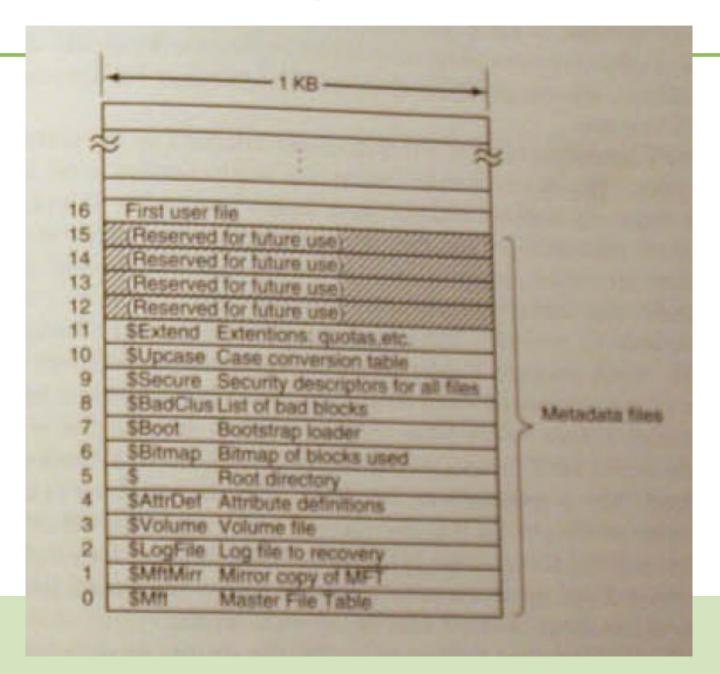
I-Nodes

ext2 - Blocos de dados

- Onde os dados reais estão fisicamente gravados
- Os blocos de um mesmo arquivo não precisam necessariamente ser contínuos

ext3

- É uma evolução do ext2
- Uso de Journalling
- O journal pode ser armazenado no mesmo disco ou em outro
- Pode ser configurado para fazer log apenas de metadados ou de todas as operações do disco


Windows

- Sistemas de arquivos FAT e NTFS
- FAT16 e FAT32
 - MsDOS até Windows98
- NTFS
 - Windows NT, Windows XP e sucessores

NTFS

- Usa uma área do disco para manter uma tabela com os dados dos arquivos
- Master File Table MFT
- Um bloco pode ir de 512 bytes a 64 KB
 - Depende do tamanho da partição
- O comum é 4KB

NTFS - MFT

NTFS - MFT

- 0 Master file table
- 1 Cópia do MFT
- 2 Arquivo de Journal
- 3 Info. da partição
- 4 Definições dos atributos
- 5 Diretório raiz
- 6 Bitmap de blocos livres
- 7 Arquivo de BOOT

- 8 Lista de Bad Blocks
- 9 Informações de segurança
- 10 Mapeamento de maiúsculas X minúsculas
- 11 Quotas de disco, links e ID de objetos

NTFS - MFT

- Uma entrada de registro contêm:
 - Nome do arquivo
 - Lista de atributos
 - Ponteiros para outra entrada contendo a continuação do arquivo
 - Dados
 - Podem estar direto na MFT
 - Na maioria dos casos é um ponteiro para um bloco do disco

NTFS - Diretórios

- É uma entrada na MFT
- O diretório contém para cada arquivo:
 - O tamanho do nome do arquivo
 - O nome do arquivo
 - Vários outros campos e flags

NTFS - Diretórios

- Para diretórios grandes (com muitos arquivos)
 - É implementado como uma árvore B+
 - Facilita a busca nominal de um arquivo

NTFS – Outras características

- Compressão
- Arquivos esparsos
- Journalling
- Criptografia de arquivos