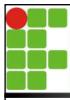


Introdução às Redes de Computadores Turma: 20192.1.01405.1N


Camada Física - Parte III

Prof. Thiago Dutra <thiago.dutra@ifrn.edu.br>

Agenda – Camada Física

- Introdução
- ■Técnicas de Transmissão de Dados
- Meios de Transmissão
- Dispositivos
- Cabeamento Estruturado

Agenda – Parte I

- Dispositivos
 - Placas de Rede
 - Equipamentos Ativos (Hub, Switch, Roteador)
 - Pontes (Access Point, Transceivers)
- Cabeamento Estruturado
 - Introdução
 - Normas e Padrões
 - Subsistemas Básicos
 - Ferramentas
 - Conectorização RJ-45

3

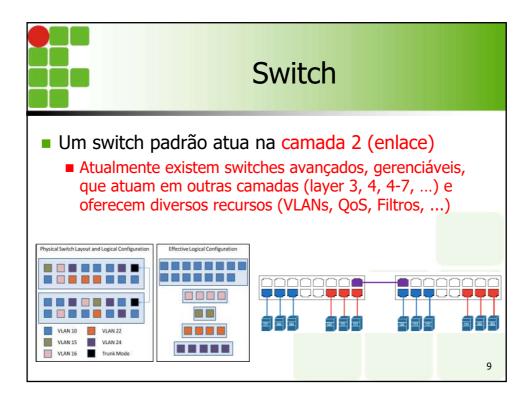
Placas de Rede

- Fazem a conexão do dispositivo final com a rede
 - Em geral possuem leds indicadores de atividade
 - Atualmente é bem comum termos placas de redes onboard

Hub

- Também chamado de concentrador
 - Em geral os modelos são de 8, 16, 24 ou 32 portas
- Recebe os dados de um computador e os transmite a todas as outras máquinas da mesma rede
 - Atua na camada 1 (física)
 - Grande probalidade de colisões => baixo desempenho
 - Encontra-se em fase de desuso

7



Switch

- Também chamado de comutador
- Semelhante ao Hub, porém cria um canal exclusivo entre origem e destino
 - Evita colisões => aumento de desempenho
 - Em geral possuem 8, 16, 24, 26 (24+2), 48 ou 52 (48+4) portas

Roteador

- Nas grandes redes possuem grande capacidade de processamento e agregam recursos extras (ex.: firewall)
- Base do funcionamento da Internet
 - São encontrados principalmente nos Backbones e ISPs
 - Roteadores de Borda

11

Pontes

- Comumente chamados de bridges
- São equipamentos utilizados para interligar dois segmentos de rede, fazendo com que eles formem uma única rede
 - Normalmente trabalham na camada 2 (enlace) encaminhando apenas os frames necessários de um segmento para o outro
 - Eram bastante utilizados nas antigas redes para aumentar o desempenho através da introdução de diferentes domínios de colisão, papel desempenho pelos switches nas rede atuais

Pontes

- Atualmente as pontes são principalmente utilizadas para:
 - Conectar redes empresariais de longa distância (ex.: links de rádio)
 - Unificar segmentos que utilizam mídias distintas
- Os tipos de bridges para unificar segmentos mais utilizadas nos dias de hoje são:
 - Access Points: ligação wireless <-> par trançado
 - Transceivers: ligação fibra óptica <-> par trançado



Cabeamento Estruturado

- Pequenas Redes
 - Poucos Cabos e Equipamentos
 - Identificação e Gerenciamento Simples
- Médias e Grandes Redes
 - Dezenas/Milhares de Cabos e Equipamentos
 - Identificação e Gerenciamento Complexos
 - Estatisticamente, cerca de 70% dos problemas que ocorrem em uma rede de computadores deve-se ao cabeamento
- Ideias Básicas
 - Fornecer um sistema de cabeamento que facilite a instalação/remoção/mudança de equipamentos => ORGANIZAÇÃO!
 - Otimizar o tempo, Planejar expansão, Unificar a instalação de cabos

Normas e Padrões

- CE é uma infra-estrutura única de cabeamento metálico ou óptico não proprietária, capaz de atender a diversas aplicações proporcionando flexibilidade de layout, facilidade de gerenciamento, administração e manutenção
 - Garantir a compatibilidade entre equipamentos e instalações
 - Direcionar os fabricantes
 - Prevenir sistemas proprietários
- Normas Nacionais e Internacionais
 - Brasil (ABNT NBR 14565)
 - EUA (ANSI/EIA/TIA-568)
 - Europa (IBCS)
 - Internacional (ISO/OSI)

Facilidades de Entrada (6)

- Também chamado de entrada de telecomunicações
- Consiste em cabos, hardware de conexão (tais como, roteadores e modens) e equipamentos de proteção elétrica (ex.: aterramento e no-break) necessários para conectar os sistemas externos (ex.: Internet, televisão e telefonia) ao cabeamento interno

Sala de Equipamentos (5)

- É o local onde se localizam os equipamentos de telecomunicações (hubs, switches, roteadores, servidores, cetrais de TV, som e telefone)
- Ela deve ser segura, ter uma ventilação adequada, energia elétrica estável e espaço para os dispositivos

Área de Trabalho (3)

- Local onde o usuário interage com os equipamentos terminais de telecomunicações
- É o ponto final do cabeamento estrutrado, onde há uma tomada fixa para a conexão de cada equipamento
- Esses equipamentos acessam os sistemas por meio de cabos conectores ligados as tomadas

23

Área de Trabalho (3)

Tomadas

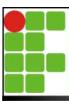
- Ponto mais próximo às estações
- Recomenda-se um mínimo de duas tomadas para cada 10 m² de área de trabalho


Armário de Telecomunicações (4)

- Armário de telecomunicações (também conhecido como rack) conecta o cabeamento horizontal ao vertical
- Este armário contém equipamentos ativos de telecomunicações (switchs e roteadores) e hardware de conexão, como patch panel
 - Protege esses equipamentos contra a ação do tempo e manipulação indevida
- Os racks devem ficar localizadas o mais próximo possível da posição central da área a ser servida para facilitar a distribuição do cabeamento

Armário de Telecomunicações (4)

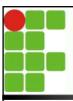
- Patch Panels são painéis de conexão utilizados para interligar diferentes pontos da rede (tomadas) e os equipamentos concentradores da rede
 - Conjunto de portas RJ-45 Fêmeas (12, 24, 48, ...)
 - Equipamento passivo (extensão do cabo)
- O Patch Panel tem a função de uma interface flexível, ou seja, através dele é possível alterar-se o layout lógico dos pontos da rede
 - Permite manobras e atualizações rápidas de cabeamento



Armário de Telecomunicações (4)

Armário de Telecomunicações (4)

- Patch Cord
 - Ligar Patch Panel ao ativo de rede
- Categorias de Patch Panel
 - Melhorias (material, conexão, etc)
 - CAT5e = conexão dos cabos é lateral
 - CAT6 = conexão dos cabos é frontal


Armário de Telecomunicações (4)

- Distribuidor Interno Óptico (DIO)
 - "O DIO esta para fibra óptica assim como o Patch Panel esta para o cabos de par trançado"
 - As fibras lançadas não são muito flexíveis e dificultam as manipulação dentro dos racks
 - "Transforma" as fibras rígidas em flexíveis (cordões ópticos)

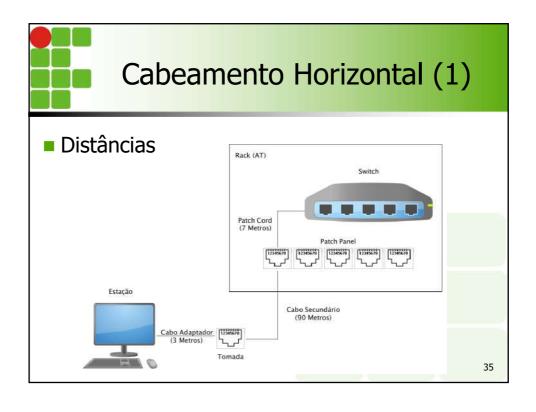
Cabeamento Vertical (2)

- São aberturas circulares nas paredes (tetos ou pisos), eletrocalhas ou canaletas que permitem a passagem de cabos entre os armários de telecomunicações, salas de equipamentos e as facilidades de entrada
- É o cabeamento que interliga os andares

31

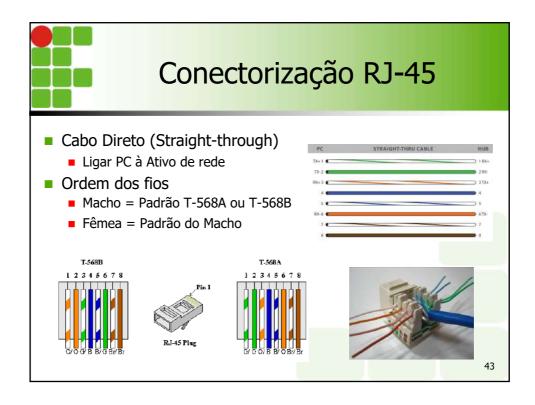
Cabeamento Horizontal (1)

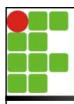
- Corresponde ao cabeamento que se estende da tomada de telecomunicações na área de trabalho até o rack (topologia em estrela)
- Utilizam estruturas de passagem
 - Aparatos colocados nas construções para "Guiar" os cabos do AT até próximo as estações (tomadas)
 - Eletrocalha, eletroduto, canaleta, etc
 - Não devem realizar curvas em 90°

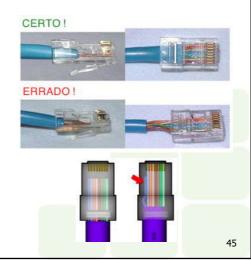


Cabeamento Horizontal (1)

- O comprimento máximo admitido para o cabeamento UTP é de 100m, assim distribuídos:
 - 90m: o comprimento máximo do cabo, contando desde o dispositivo de terminação do cabeamento horizontal, instalado no armário de telecomunicações até a tomada;
 - 7m: são utilizados no armário de telecomunicações do andar como cordão de conexão entre blocos da rede horizontal com a vertical e entre esta com os equipamentos ativos => patch cords
 - 3m: são reservados para conectar o equipamento do usuário a tomada.

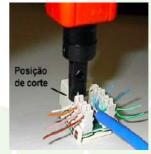


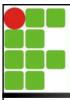




Conectorização RJ-45

- Crimpagem Macho
 - Cortar cabo
 - Decapar cabo
 - Decapador, estilete, faca
 - Separar pares
 - Colocar fios na ordem do padrão
 - Da esquerda para à direita
 - T568A ou T568B
 - Esticar ("arrepiar") fios
 - Chave de fenda, caneta, dedos
 - Alinhar pontas dos fios
 - Cortar pontas
 - Inserir no conector
 - Contatos para cima
 - Crimpar
 - Pressão com alicate de crimpagem




Conectorização RJ-45

- Crimpagem Fêmea
 - Cortar cabo
 - Decapar cabo
 - Separar pares e colocar fios nas conexões de acordo com a identificação no conector
 - Seguir padrão T568A ou T568B
 - Fixar fios e cortar arrestas
 - Alicate de impacto

Referências

- TORRES, G. Redes de Computadores (Curso Completo). Rio de Janeiro: Axcel Books.
- TANENBAUM, A. S. **Redes de Computadores** 5a Ed., Pearson, 2011.

47

Introdução às Redes de Computadores Turma: 20192.1.01405.1N

Camada Física - Parte III

Prof. Thiago Dutra <thiago.dutra@ifrn.edu.br>